Social Choice with a Poverty Line

E. Maskin

– Arrow Impossibility Theorem

• let *X* be set of social alternatives (e.g., which public projects to undertake)

- let *X* be set of social alternatives (e.g., which public projects to undertake)
- society consists of *n* individuals 1,...,*n*

- let *X* be set of social alternatives (e.g., which public projects to undertake)
- society consists of *n* individuals 1,...,*n*
- each individual *i* has utility function $u_i: X \to \mathbb{R}$

- let *X* be set of social alternatives (e.g., which public projects to undertake)
- society consists of *n* individuals 1,...,*n*
- each individual *i* has utility function $u_i : X \to \mathbb{R}$ - $u_i(x) = i's$ utility from *x*

- let *X* be set of social alternatives (e.g., which public projects to undertake)
- society consists of *n* individuals 1,...,*n*
- each individual *i* has utility function $u_i : X \to \mathbb{R}$ - $u_i(x) = i's$ utility from *x*
- social welfare function (SWF) *f* - aggregates individuals' utilities to obtain social preferences

- let *X* be set of social alternatives (e.g., which public projects to undertake)
- society consists of *n* individuals 1,...,*n*
- each individual *i* has utility function $u_i : X \to \mathbb{R}$ - $u_i(x) = i's$ utility from *x*
- social welfare function (SWF) *f* - aggregates
 individuals' utilities to obtain social preferences
 - function *f* maps profile (u_1, \dots, u_n) of individual utility functions into social utility function $W: X \to \mathbb{R}$

- let *X* be set of social alternatives (e.g., which public projects to undertake)
- society consists of *n* individuals 1,...,*n*
- each individual *i* has utility function $u_i : X \to \mathbb{R}$ - $u_i(x) = i's$ utility from *x*
- social welfare function (SWF) *f* - aggregates
 individuals' utilities to obtain social preferences
 - function *f* maps profile (u_1, \dots, u_n) of individual utility functions into social utility function $W: X \to \mathbb{R}$

$$f(u_1,\ldots,u_n)=W$$

• $f(u_1,...,u_n)$ must be defined for all logically possible utility functions $u_1,...,u_n$

- $f(u_1,...,u_n)$ must be defined for all logically possible utility functions $u_1,...,u_n$
 - Unrestricted Domain (U)

• $f(u_1,...,u_n)$ must be defined for all logically possible utility functions $u_1,...,u_n$

– Unrestricted Domain (U)

• if $u_i(x) > u_i(y)$ for all *i*, then W(x) > W(y)

• $f(u_1,...,u_n)$ must be defined for all logically possible utility functions $u_1,...,u_n$

– Unrestricted Domain (U)

• if $u_i(x) > u_i(y)$ for all *i*, then W(x) > W(y)

– Pareto Property (P)

• $f(u_1,...,u_n)$ must be defined for all logically possible utility functions $u_1,...,u_n$

– Unrestricted Domain (U)

• if $u_i(x) > u_i(y)$ for all *i*, then W(x) > W(y)

– Pareto Property (P)

• if
$$(u_1, \dots, u_n)\Big|_{\{x, y\}} = (u'_1, \dots, u'_n)\Big|_{\{x, y\}}$$
, then
 $W(x) \ge W(y) \iff W'(x) \ge W'(y)$

• $f(u_1,...,u_n)$ must be defined for all logically possible utility functions $u_1,...,u_n$

– Unrestricted Domain (U)

• if $u_i(x) > u_i(y)$ for all *i*, then W(x) > W(y)

– Pareto Property (P)

• if
$$(u_1, \dots, u_n)\Big|_{\{x, y\}} = (u'_1, \dots, u'_n)\Big|_{\{x, y\}}$$
, then
 $W(x) \ge W(y) \iff W'(x) \ge W'(y)$

- Independence of Irrelevant Alternatives (IIA)

• $f(u_1,...,u_n)$ must be defined for all logically possible utility functions $u_1,...,u_n$

– Unrestricted Domain (U)

• if $u_i(x) > u_i(y)$ for all *i*, then W(x) > W(y)

– Pareto Property (P)

• if
$$(u_1, \dots, u_n)\Big|_{\{x, y\}} = (u'_1, \dots, u'_n)\Big|_{\{x, y\}}$$
, then
 $W(x) \ge W(y) \iff W'(x) \ge W'(y)$

– Independence of Irrelevant Alternatives (IIA)

• if $(u'_1,...,u'_n) = (\phi_1(u_1),...,\phi_n(u_n)),$

where for all $i \phi_i : \mathbb{R} \to \mathbb{R}$ is increasing function, then

W' = W

• $f(u_1,...,u_n)$ must be defined for all logically possible utility functions $u_1,...,u_n$

– Unrestricted Domain (U)

• if $u_i(x) > u_i(y)$ for all *i*, then W(x) > W(y)

– Pareto Property (P)

• if
$$(u_1, \dots, u_n)\Big|_{\{x, y\}} = (u'_1, \dots, u'_n)\Big|_{\{x, y\}}$$
, then
 $W(x) \ge W(y) \iff W'(x) \ge W'(y)$

– Independence of Irrelevant Alternatives (IIA)

• if $(u'_1,...,u'_n) = (\phi_1(u_1),...,\phi_n(u_n)),$

where for all $i \phi_i : \mathbb{R} \to \mathbb{R}$ is increasing function, then

W' = W- ordinality (O) *Arrow Theorem* : if *f* satisfies U, P, IIA, and O, then there exists i_* such that, for all (u_1, \dots, u_n) and all x, y, if $u_{i_*}(x) > u_{i_*}(y)$ then W(x) > W(y) *Arrow Theorem*: if *f* satisfies U, P, IIA, and O, then there exists i_* such that, for all (u_1, \dots, u_n) and all x, y, if $u_{i_*}(x) > u_{i_*}(y)$ then W(x) > W(y)

 $-i_*$ is a dictator

• Many "escape routes" from Arrow's theorem have been proposed

- Many "escape routes" from Arrow's theorem have been proposed
- one is to relax *ordinality*

- Many "escape routes" from Arrow's theorem have been proposed
- one is to relax *ordinality*
 - rules out interpersonal comparisons

- Many "escape routes" from Arrow's theorem have been proposed
- one is to relax *ordinality*
 - rules out interpersonal comparisons
- in reality we make interpersonal comparisons all the time

- Many "escape routes" from Arrow's theorem have been proposed
- one is to relax *ordinality*
 - rules out interpersonal comparisons
- in reality we make interpersonal comparisons all the time
 - we say: person *i* is worse off than person *j* under alternative x

- Many "escape routes" from Arrow's theorem have been proposed
- one is to relax *ordinality*
 - rules out interpersonal comparisons
- in reality we make interpersonal comparisons all the time
 - we say: person *i* is worse off than person *j* under alternative x

or

- Many "escape routes" from Arrow's theorem have been proposed
- one is to relax *ordinality*
 - rules out interpersonal comparisons
- in reality we make interpersonal comparisons all the time
 - we say: person *i* is worse off than person *j* under alternative x

or

- person j gains more in going from x to y than person j loses

- Many "escape routes" from Arrow's theorem have been proposed
- one is to relax *ordinality*
 - rules out interpersonal comparisons
- in reality we make interpersonal comparisons all the time
 - we say: person *i* is worse off than person *j* under alternative x

or

- person j gains more in going from x to y than person j loses
- shouldn't we take account of such comparisons?

• if, for all i, $u'_i = \alpha u_i + \beta$, $\alpha > 0$ (α and β same for all i)

• if, for all i, $u'_i = \alpha u_i + \beta$, $\alpha > 0$ (α and β same for all i)

• then
$$f(u_1, ..., u_n) = f(u'_1, ..., u'_n)$$

• if, for all i, $u'_i = \alpha u_i + \beta$, $\alpha > 0$ (α and β same for all i)

• then
$$f(u_1, ..., u_n) = f(u'_1, ..., u'_n)$$

- Full Comparability (FC)

- if, for all i, $u'_i = \alpha u_i + \beta$, $\alpha > 0$ (α and β same for all i)
- then $f(u_1, ..., u_n) = f(u'_1, ..., u'_n)$
 - Full Comparability (FC)
 - allows us to compare both utility *levels* and utility *differences* across individuals

With two additional axioms can use FC to obtain a centuries-old method of aggregating utilities

With two additional axioms can use FC to obtain a centuries-old method of aggregating utilities

(1) • for some
$$J \subseteq \{1, ..., n\}$$
 suppose
 $u_j = u'_j$ for all $j \in J$
and
 $u_i(x) = u_i(y)$ and $u'_i(x) = u'_i(y)$ for all $i \notin J$
(1) • for some
$$J \subseteq \{1, ..., n\}$$
 suppose
 $u_j = u'_j$ for all $j \in J$
and
 $u_i(x) = u_i(y)$ and $u'_i(x) = u'_i(y)$ for all $i \notin J$

• then $W(x) \ge W(y) \iff W'(x) \ge W'(y)$

(1) • for some
$$J \subseteq \{1, ..., n\}$$
 suppose
 $u_j = u'_j$ for all $j \in J$
and
 $u_i(x) = u_i(y)$ and $u'_i(x) = u'_i(y)$ for all $i \notin J$

• then $W(x) \ge W(y) \iff W'(x) \ge W'(y)$

- independence of indifferent individuals (III)

(2) • if
$$(u_1^m, \dots, u_n^m) \to (u_1, \dots, u_n)$$
 as $m \to \infty$
and

 $W^m(x) \ge W^m(y)$ for all m

(1) • for some
$$J \subseteq \{1, ..., n\}$$
 suppose
 $u_j = u'_j$ for all $j \in J$
and
 $u_i(x) = u_i(y)$ and $u'_i(x) = u'_i(y)$ for all $i \notin J$

• then $W(x) \ge W(y) \iff W'(x) \ge W'(y)$ - independence of indifferent individuals (III)

(2) • if
$$(u_1^m, \dots, u_n^m) \to (u_1, \dots, u_n)$$
 as $m \to \infty$
and

 $W^m(x) \ge W^m(y)$ for all m

• then $W(x) \ge W(y)$

(1) • for some
$$J \subseteq \{1, ..., n\}$$
 suppose
 $u_j = u'_j$ for all $j \in J$
and
 $u_i(x) = u_i(y)$ and $u'_i(x) = u'_i(y)$ for all $i \notin J$

• then $W(x) \ge W(y) \iff W'(x) \ge W'(y)$ - independence of indifferent individuals (III)

(2) • if
$$(u_1^m, \dots, u_n^m) \to (u_1, \dots, u_n)$$
 as $m \to \infty$
and

 $W^m(x) \ge W^m(y)$ for all m

• then
$$W(x) \ge W(y)$$

- continuity

-f is utilitarianism

-f is utilitarianism

• if *f* also satisfies Anonymity (A) $f(u_1,...,u_n) = f(u_{\pi(1)},...,u_{\pi(n)}),$

-f is utilitarianism

• if *f* also satisfies Anonymity (A) $f(u_1,...,u_n) = f(u_{\pi(1)},...,u_{\pi(n)}),$ where π is a permutation of $\{1,...,n\}$

-f is utilitarianism

• if f also satisfies Anonymity (A) $f(u_1, \dots, u_n) = f(u_{\pi(1)}, \dots, u_{\pi(n)}),$ where π is a permutation of $\{1, \dots, n\}$ then

-f is utilitarianism

• if *f* also satisfies Anonymity (A) $f(u_1,...,u_n) = f(u_{\pi(1)},...,u_{\pi(n)}),$ where π is a permutation of $\{1,...,n\}$ then

$$W(x) \ge W(y) \iff \sum u_i(x) \ge \sum u_i(y)$$

• from U, P, IIA, and continuity, there exists $V : \mathbb{R}^n \to \mathbb{R}$

such that

 $W(x) \ge W(y) \iff V(u_1(x), \dots, u_n(x)) \ge V(u_1(y), \dots, u_n(y))$

• from U, P, IIA, and continuity, there exists $V : \mathbb{R}^n \to \mathbb{R}$ such that

 $W(x) \ge W(y) \iff V(u_1(x), \dots, u_n(x)) \ge V(u_1(y), \dots, u_n(y))$

- only *utilities* matter (not alternatives themselves)

• from U, P, IIA, and continuity, there exists $V : \mathbb{R}^n \to \mathbb{R}$

such that

 $W(x) \ge W(y) \iff V(u_1(x), \dots, u_n(x)) \ge V(u_1(y), \dots, u_n(y))$

- only *utilities* matter (not alternatives themselves)

• from U, P, IIA, and continuity, there exists $V : \mathbb{R}^n \to \mathbb{R}$

such that

 $W(x) \ge W(y) \iff V(u_1(x), \dots, u_n(x)) \ge V(u_1(y), \dots, u_n(y))$

- only *utilities* matter (not alternatives themselves)

$$V(u_1,\ldots,u_n)=\sum g_i(u_i)$$

• from U, P, IIA, and continuity, there exists $V : \mathbb{R}^n \to \mathbb{R}$

such that

 $W(x) \ge W(y) \iff V(u_1(x), \dots, u_n(x)) \ge V(u_1(y), \dots, u_n(y))$

- only *utilities* matter (not alternatives themselves)

$$V(u_1,...,u_n) = \sum g_i(u_i)$$

- given u_i and u'_i , as vary $v_2,...,v_n$

• from U, P, IIA, and continuity, there exists $V : \mathbb{R}^n \to \mathbb{R}$

such that

 $W(x) \ge W(y) \iff V(u_1(x), \dots, u_n(x)) \ge V(u_1(y), \dots, u_n(y))$ - only *utilities* matter (not alternatives themselves)

$$V(u_1, \dots, u_n) = \sum g_i(u_i)$$

- given u_i and u'_i , as vary v_2, \dots, v_n
$$V(u_1, v_2, \dots, v_n) - V(u'_1, v_2, \dots, v_n) = \text{constant}$$

• from U, P, IIA, and continuity, there exists $V: \mathbb{R}^n \to \mathbb{R}$

such that

 $W(x) \ge W(y) \iff V(u_1(x), \dots, u_n(x)) \ge V(u_1(y), \dots, u_n(y))$ - only *utilities* matter (not alternatives themselves)

$$V(u_1, ..., u_n) = \sum g_i(u_i)$$

- given u_i and u'_i , as vary $v_2, ..., v_n$
$$V(u_1, v_2, ..., v_n) - V(u'_1, v_2, ..., v_n) = \text{constant}$$

- hence $\frac{\partial^2 V}{\partial u_1 \partial u_i} = 0$ for i

• from U, P, IIA, and continuity, there exists $V : \mathbb{R}^n \to \mathbb{R}$

such that

 $W(x) \ge W(y) \iff V(u_1(x), \dots, u_n(x)) \ge V(u_1(y), \dots, u_n(y))$ - only *utilities* matter (not alternatives themselves)

$$V(u_{1},...,u_{n}) = \sum g_{i}(u_{i})$$

$$- \text{ given } u_{i} \text{ and } u'_{i}, \text{ as vary } v_{2},...,v_{n}$$

$$V(u_{1},v_{2},...,v_{n}) - V(u'_{1},v_{2},...,v_{n}) = \text{constant}$$

$$- \text{ hence } \frac{\partial^{2}V}{\partial u_{1}\partial u_{i}} = 0 \text{ for } i$$

$$- V \text{ separable}$$

• $V = \sum g_i(u_i)$

- $V = \sum g_i(u_i)$
- from FC, for all $(u_1, ..., u_n), (v_1, ..., v_n)$

 $\sum g_i(u_i) \ge \sum g_i(v_i)$ \Leftrightarrow $\sum g_i(\alpha u_i + \beta) \ge \sum g_i(\alpha v_i + \beta) \text{ for all } \alpha > 0, \beta$

- $V = \sum g_i(u_i)$
- from FC, for all $(u_1, ..., u_n), (v_1, ..., v_n)$

$$\sum g_i(u_i) \ge \sum g_i(v_i)$$

$$\Leftrightarrow$$

$$\sum g_i(\alpha u_i + \beta) \ge \sum g_i(\alpha v_i + \beta) \text{ for all } \alpha > 0, \beta$$

• hence
$$g_i = a_i u_i + b$$

- $V = \sum g_i(u_i)$
- from FC, for all $(u_1, ..., u_n), (v_1, ..., v_n)$

$$\sum g_i(u_i) \ge \sum g_i(v_i)$$

$$\Leftrightarrow$$

$$\sum g_i(\alpha u_i + \beta) \ge \sum g_i(\alpha v_i + \beta) \text{ for all } \alpha > 0, \beta$$

• hence
$$g_i = a_i u_i + b$$

• so $W(x) \ge W(y) \iff \sum a_i u_i(x) \ge \sum a_i u_i(y)$

• divide a cake among population of size *n*

- divide a cake among population of size *n*
- each person gets 1/n

- divide a cake among population of size *n*
- each person gets 1/n
- if everyone has same utility function u (with u' > 0 and u(0) = 0), total utility is nu(1/n)

- divide a cake among population of size *n*
- each person gets 1/n
- if everyone has same utility function u (with u' > 0 and u(0) = 0), total utility is nu(1/n)
- if $\lim_{x\to 0} u'(x) = \infty$ (Inada condition), then $nu(1/n) \to \infty$ as $n \to \infty$

- divide a cake among population of size *n*
- each person gets 1/n
- if everyone has same utility function u (with u' > 0 and u(0) = 0), total utility is nu(1/n)
- if $\lim_{x\to 0} u'(x) = \infty$ (Inada condition), then $nu(1/n) \to \infty$ as $n \to \infty$
- optimal population is unbounded

• But this doesn't seem right

- But this doesn't seem right
 - implies each person gets infinitesimal amount

- But this doesn't seem right
 - implies each person gets infinitesimal amount
- what's wrong with utilitarianism?

- But this doesn't seem right
 - implies each person gets infinitesimal amount
- what's wrong with utilitarianism?
 - as $n \to \infty$, eventually reach a point where life becomes wretched

- But this doesn't seem right
 - implies each person gets infinitesimal amount
- what's wrong with utilitarianism?
 - as $n \to \infty$, eventually reach a point where life becomes wretched
 - a "misery" or "zero" line

- But this doesn't seem right
 - implies each person gets infinitesimal amount
- what's wrong with utilitarianism?
 - as $n \to \infty$, eventually reach a point where life becomes wretched
 - a "misery" or "zero" line
 - below this line, person's welfare *subtracts* from social welfare

Ratio scale invariance (RS)
Ratio scale invariance (RS)

• for all
$$(u_1, \dots, u_n), (u'_1, \dots, u'_n)$$
 such that
 $u'_i = \alpha u_i$ for all *i*, where $\alpha > 0$

Ratio scale invariance (RS)

for all (u₁,...,u_n), (u'₁,...,u'_n) such that u'_i = αu_i for all *i*, where α >0
we have f(u₁,...,u_n) = f(u'₁,...,u'_n)

Ratio scale invariance (RS)

- for all $(u_1, \dots, u_n), (u'_1, \dots, u'_n)$ such that $u'_i = \alpha u_i$ for all *i*, where $\alpha > 0$
- we have $f(u_1, ..., u_n) = f(u'_1, ..., u'_n)$
 - reference level means can't transform utilities by adding β anymore and still get invariance

• given U, P, I, and continuity, obtain downward sloping social indifference curves in individuals' utility space

- given U, P, I, and continuity, obtain downward sloping social indifference curves in individuals' utility space
- one more requirement:

Decreasing Social Returns to Utility: social

indifference curves are *convex*

- given U, P, I, and continuity, obtain downward sloping social indifference curves in individuals' utility space
- one more requirement:

Decreasing Social Returns to Utility: social

- indifference curves are *convex*
 - as we decrease person 2's utility and increase person 1's utility along an indifference curve,

- given U, P, I, and continuity, obtain downward sloping social indifference curves in individuals' utility space
- one more requirement:

Decreasing Social Returns to Utility: social

- indifference curves are *convex*
 - as we decrease person 2's utility and increase person 1's utility along an indifference curve,
 - need to give increasingly more to 1 to compensate for 2's loss

• then there exist $(a_1(\cdot), \dots, a_n(\cdot))$ such that for all $(u_1, \dots, u_n), x, y$

- then there exist $(a_1(\cdot), \dots, a_n(\cdot))$ such that for all $(u_1, \dots, u_n), x, y$
- $W(x)R(y) \Leftrightarrow \sum a_i(u_i(x))u_i(x) \ge \sum a_i(u_i(y))u_i(y),$

- then there exist $(a_1(\cdot), \dots, a_n(\cdot))$ such that for all $(u_1, \dots, u_n), x, y$
- $W(x)R(y) \Leftrightarrow \sum a_i(u_i(x))u_i(x) \ge \sum a_i(u_i(y))u_i(y),$

• where
$$a_i(v_i) = \begin{cases} 1, \text{ if } v_i > 0 \\ a(\ge 1), \text{ if } vi < 0 \end{cases}$$

- then there exist $(a_1(\cdot), \dots, a_n(\cdot))$ such that for all $(u_1, \dots, u_n), x, y$
- $W(x)R(y) \Leftrightarrow \sum a_i(u_i(x))u_i(x) \ge \sum a_i(u_i(y))u_i(y),$
- where $a_i(v_i) = \begin{cases} 1, \text{ if } v_i > 0 \\ a(\ge 1), \text{ if } vi < 0 \end{cases}$

Proof: from U, P, I, A, III, and continuity, *f* representable by *W* such that

- then there exist $(a_1(\cdot), \dots, a_n(\cdot))$ such that for all $(u_1, \dots, u_n), x, y$
- $W(x)R(y) \Leftrightarrow \sum a_i(u_i(x))u_i(x) \ge \sum a_i(u_i(y))u_i(y),$
- where $a_i(v_i) = \begin{cases} 1, \text{ if } v_i > 0 \\ a(\ge 1), \text{ if } vi < 0 \end{cases}$

Proof: from U, P, I, A, III, and continuity, *f* representable by *W* such that

•
$$V(u_1,\ldots,u_n) = \sum g(u_i)$$

$\sum g(u_i) \ge \sum g(v_i) \Leftrightarrow \sum g(\alpha u_i) \ge \sum g(\alpha v_i), \text{ for all } \alpha > 0$

• from RS

$$\sum g(u_i) \ge \sum g(v_i) \Leftrightarrow \sum g(\alpha u_i) \ge \sum g(\alpha v_i), \text{ for all } \alpha > 0$$

• hence, g is homogeneous, i.e.,

 $g(u_i) = u_i^r$, where *r* can depend on quadrant

• from RS

$$\sum g(u_i) \ge \sum g(v_i) \Leftrightarrow \sum g(\alpha u_i) \ge \sum g(\alpha v_i), \text{ for all } \alpha > 0$$

• hence, g is homogeneous, i.e.,

 $g(u_i) = u_i^r$, where *r* can depend on quadrant

– multiplying (u_1, \ldots, u_n) by α preserves quadrant

$$\phi(u_i) = u_i^r$$

$$\phi(u_i) = u_i^r$$

$$\phi(u_i) = u_i^r$$

• suppose r > 1 in first quadrant, e.g., $V(u_1, u_2) = u_1^2 + u_2^2$, when $u_1 > 0, u_2 > 0$

$$\phi(u_i) = u_i^r$$

- suppose r > 1 in first quadrant, e.g., $V(u_1, u_2) = u_1^2 + u_2^2$, when $u_1 > 0, u_2 > 0$
 - then indifference curve is $u_1^2 + u_2^2 = c$

$$\phi(u_i) = u_i^r$$

- suppose r > 1 in first quadrant, e.g., $V(u_1, u_2) = u_1^2 + u_2^2$, when $u_1 > 0, u_2 > 0$
 - then indifference curve is $u_1^2 + u_2^2 = c$
 - violates DSR

$$\phi(u_i) = u_i^r$$

- suppose r > 1 in first quadrant, e.g., $V(u_1, u_2) = u_1^2 + u_2^2$, when $u_1 > 0, u_2 > 0$
 - then indifference curve is $u_1^2 + u_2^2 = c$
 - violates DSR
- suppose r < 1 in first quadrant, e.g., $W(u_1, u_2) = u_1^{1/3} + u_2^{1/3}$, when $u_1 > 0, u_2 > 0$

$$\phi(u_i) = u_i^r$$

- suppose r > 1 in first quadrant, e.g., $V(u_1, u_2) = u_1^2 + u_2^2$, when $u_1 > 0, u_2 > 0$
 - then indifference curve is $u_1^2 + u_2^2 = c$
 - violates DSR
- suppose r < 1 in first quadrant, e.g., $W(u_1, u_2) = u_1^{1/3} + u_2^{1/3}$, when $u_1 > 0, u_2 > 0$

- indifference curve is $u_1^{1/3} + u_2^{1/3} = c$

$$\phi(u_i) = u_i^r$$

- suppose r > 1 in first quadrant, e.g., $V(u_1, u_2) = u_1^2 + u_2^2$, when $u_1 > 0, u_2 > 0$
 - then indifference curve is $u_1^2 + u_2^2 = c$
 - violates DSR
- suppose r < 1 in first quadrant, e.g., $W(u_1, u_2) = u_1^{1/3} + u_2^{1/3}$, when $u_1 > 0, u_2 > 0$

- indifference curve is $u_1^{1/3} + u_2^{1/3} = c$

- so slope of indifference curve is $\frac{du_2}{du_1} = \infty$ at $u_1 = 0$

$$\phi(u_i) = u_i^r$$

- suppose r > 1 in first quadrant, e.g., $V(u_1, u_2) = u_1^2 + u_2^2$, when $u_1 > 0, u_2 > 0$
 - then indifference curve is $u_1^2 + u_2^2 = c$
 - violates DSR
- suppose r < 1 in first quadrant, e.g., $W(u_1, u_2) = u_1^{1/3} + u_2^{1/3}$, when $u_1 > 0, u_2 > 0$
 - indifference curve is $u_1^{1/3} + u_2^{1/3} = c$
 - so slope of indifference curve is $\frac{du_2}{du_1} = \infty$ at $u_1 = 0$
 - violates DSR in second quadrant

 $u_1 + u_2 = c$ (utilitarian)

 $u_1 + u_2 = c$ (utilitarian)

• in second quadrant, where $u_1 < 0, u_2 > 0$ must still have linear indifference curves but can have *higher* weight on u_1

 $u_1 + u_2 = c$ (utilitarian)

• in second quadrant, where $u_1 < 0, u_2 > 0$ must still have linear indifference curves but can have *higher* weight on u_1

 $au_1 + u_2 = c$, where a > 1

 $u_1 + u_2 = c$ (utilitarian)

• in second quadrant, where $u_1 < 0, u_2 > 0$ must still have linear indifference curves but can have *higher* weight on u_1

 $au_1 + u_2 = c$, where a > 1

- DSR implies can't have a < 1