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– rules out interpersonal comparisons 

• in reality we make interpersonal comparisons all the time 
– we say: person i is worse off than person j under alternative x 

     or 
– person j gains more in going from x to y than person j loses 
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• But this doesn’t seem right 
– implies each person gets infinitesimal amount 

• what’s wrong with utilitarianism? 
– as            eventually reach a point where life becomes 

wretched 
– a “misery” or “zero” line 
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• from RS 
 
 

• hence, g is homogeneous, i.e.,  
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( ) ( ) ( ) ( ), for all >0i i i ig u g v g u g vα α α≥ ⇔ ≥∑ ∑ ∑ ∑

( ) , where  can depend on quadrant r
i ig u u r=



• from RS 
 
 

• hence, g is homogeneous, i.e.,  
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( ) ( ) ( ) ( ), for all >0i i i ig u g v g u g vα α α≥ ⇔ ≥∑ ∑ ∑ ∑

( ) , where  can depend on quadrant r
i ig u u r=

1  multiplying ( , , ) by  preserves quadrantnu u α− …
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( ) r
i iu uφ =



 
focus on n=2 
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focus on n=2 
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2 2
1 2 1 2 1 2  suppose 1 in first quadrant, e.g., ( , ) , when 0, 0r V u u u u u u> = + > >

( ) r
i iu uφ =



 
focus on n=2 
 

 

92 

2 2
1 2 1 2 1 2  suppose 1 in first quadrant, e.g., ( , ) , when 0, 0r V u u u u u u> = + > >

2 2
1 2  then indifference curve is u u c− + =

( ) r
i iu uφ =



 
focus on n=2 
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1 2 1 2 1 2  suppose 1 in first quadrant, e.g., ( , ) , when 0, 0r V u u u u u u> = + > >

2 2
1 2  then indifference curve is u u c− + =

  violates DSR−

( ) r
i iu uφ =



 
focus on n=2 
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1 2 1 2 1 2  suppose 1 in first quadrant, e.g., ( , ) , when 0, 0r V u u u u u u> = + > >

2 2
1 2  then indifference curve is u u c− + =

  violates DSR−
1/3 1/3

1 2 1 2 1 2  suppose 1  in first quadrant, e.g., ( , ) , when 0, 0r W u u u u u u< = + > >

( ) r
i iu uφ =



 
focus on n=2 
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1 2 1 2 1 2  suppose 1 in first quadrant, e.g., ( , ) , when 0, 0r V u u u u u u> = + > >

2 2
1 2  then indifference curve is u u c− + =

  violates DSR−
1/3 1/3

1 2 1 2 1 2  suppose 1  in first quadrant, e.g., ( , ) , when 0, 0r W u u u u u u< = + > >

1/3 1/3
1 2  indifference curve is u u c− + =

( ) r
i iu uφ =



 
focus on n=2 
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2 2
1 2 1 2 1 2  suppose 1 in first quadrant, e.g., ( , ) , when 0, 0r V u u u u u u> = + > >

2 2
1 2  then indifference curve is u u c− + =

  violates DSR−
1/3 1/3

1 2 1 2 1 2  suppose 1  in first quadrant, e.g., ( , ) , when 0, 0r W u u u u u u< = + > >

1/3 1/3
1 2  indifference curve is u u c− + =

2
1

1

  so slope of indifference curve is =  at 0du u
du

− ∞ =

( ) r
i iu uφ =



 
focus on n=2 
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2 2
1 2 1 2 1 2  suppose 1 in first quadrant, e.g., ( , ) , when 0, 0r V u u u u u u> = + > >

2 2
1 2  then indifference curve is u u c− + =

  violates DSR−
1/3 1/3

1 2 1 2 1 2  suppose 1  in first quadrant, e.g., ( , ) , when 0, 0r W u u u u u u< = + > >

1/3 1/3
1 2  indifference curve is u u c− + =

  violates DSR in second quadrant−

2
1

1

  so slope of indifference curve is =  at 0du u
du

− ∞ =

( ) r
i iu uφ =



• so from A, indifference curves in first quadrant must 
satisfy 
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1 2  (utilitarian)u u c+ =



• so from A, indifference curves in first quadrant must 
satisfy 
 

• in second quadrant, where                     must still have 
linear indifference curves but can have higher weight on  
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1 2  (utilitarian)u u c+ =

1 20, 0u u< >

1u



• so from A, indifference curves in first quadrant must 
satisfy 
 

• in second quadrant, where                     must still have 
linear indifference curves but can have higher weight on  
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1 2  (utilitarian)u u c+ =

1 20, 0u u< >

1u

1 2 ,   where 1au u c a+ = >



• so from A, indifference curves in first quadrant must 
satisfy 
 

• in second quadrant, where                     must still have 
linear indifference curves but can have higher weight on  
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1 2  (utilitarian)u u c+ =

1 20, 0u u< >

1u

1 2 ,   where 1au u c a+ = >

  DSR implies can't have 1a− <
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