

Big Data Concepts. Considerations

Gayane IBM Client Center 82190210@ru.ibm.com

Agenda

- What is Big Data?
- Data at Rest: Hadoop and InfoSphere BigInsights
- Data in Motion: InfoSphere Streams
- Considerations for BigInsights and Streams
- Concluding Thoughts

The Big Data Opportunity

Extracting insight from an immense volume, variety and velocity of data, in a timely and cost-effective manner.

Variety: All kinds of data All kinds of analytics

Velocity: Streaming data and large volume data movement

Volume: Scale from terabytes to zettabytes

Verasity Truthfulness a certainty of data

Where is this data coming from?

4.6 30 billion RFID billion tags today camera (1.3B in 2005) phones world wide 100s of millions of GPS enabled devices sold annually 2+ billion people on the 76 million smart Web by meters in 2009... end 2011 200M by 2014

What is "BIG DATA"? Where do I find it? Throw it away vs. Storing it?

	Log files	practically every system creates and stores some kind of log	typically not examined unless there is trouble	Typically text and log wraps around on a regular basis to save space
http://ww	HTTP	All web content	Web content based on xml format and is highly variable	No evident pattern to store in DB. DB cannot capture context
	Metering and Instrumentation	Usually depicts real time status or cumulative value	Variable over time Usually collect over interval	Summary over interval or recorded peak. Patterns not analyzed
	Video & Audio	Either streamed or stored in large files	Detail cannot be stored in DB	Only segments are of interest and require processing to analyze
viller cebook	Personal profiles	Volumes of texts and pictures	Can be external Can receive block or interval	Analysis requires cognitive – parsing Large volumes of retrieved data are irrelevant
	Metadata	Information that is in addition to actual data stored in DB	Additional detail of a transaction that does not relate directly to billing	End to end story of events that relates to a transaction Large volumes of data that is difficult to store over time

"Big Data technologies describe a new generation of technologies and architectures, designed to **economically extract value** from very large **volumes** of a wide **variety** of data, by enabling high **velocity** capture, discovery and/or analysis."

Source: Matt Eastwood, IDC

Concept Associations for Old Data and New Big Data

- Standard DBW (Warehouse)
 - Structured
 - Schema
 - Ad-hoc queries
 - Reports
 - Indexes
 - Repeatable
 - Optimized queries
 - ETL
 - Cleansed data
 - Transactions
 - High availability
 - MPP
 - SMP
 - Complex analytics
 - Data models
 - Master data
 - Model building
 - SQL

- New Big Data (BigInsights, Streams)
 - Unstructured
 - Streaming
 - Discovery
 - Programming
 - Text analytics
 - Video
 - Time series
 - Sensors
 - Log files
 - Noisy data
 - Commodity hardware
 - Cluster
 - Real-time analytics
 - Complex analytics
 - Tweets
 - Sentiment analysis
 - Social network analysis
 - Model-driven optimization
 - NoSQL

Data Warehouse and BigInsights Comparison Chart

	Data Warehouse	Hadoop / Streams	
Data Types	Largely structured data	Any type of data, structured or unstructured	
Data Loading	Data is cleansed/structured before going into the warehouse to maximize its utility	Raw data may be ingested as is, without any modification, as the relationships may not be understood or defined	
Reliability	ACID compliant	Not ACID compliant	
Integrity	Database maintains integrity	Applications code integrity	
Analytic Approach	 <i>High value</i>, structured data <i>Repeated</i> operations and processes (e.g. transactions, reports, BI, etc.) Relatively <i>stable</i> sources Well-understood requirements Optimized for fast access and analysis 	 Highly variable data and content Iterative, exploratory analysis (e.g. scientific research, behavioral modeling) Volatile sources III-defined questions and changing requirements Optimized for flexibility 	
Hardware	Powerful appliance and optimized hardware	Inexpensive, commodity hardware	

IBM's Value: Complementary Analytics

The Big Data Ecosystem: Interoperability is Key

Classic OLTP/Data Warehouse Environment

Business Intelligence

Hadoop / Streams Environment

New Consolidated Environment

What can you do with big data?

- Fraud detection
- Risk management
- 360° View of the Customer

- Utilities
- Weather impact analysis on power generation
- Transmission monitoring
- Smart grid management

Transportation

- Weather and traffic impact on logistics and fuel consumption
- Traffic congestion

Health & Life Sciences

- Epidemic early warning
- ICU monitoring
- Remote healthcare monitoring

Telecommunications

- CDR processing
- Churn prediction
- Geomapping / marketing
- Network monitoring

()

IT

- System log analysis
- Cybersecurity

Retail

- 360° View of the Customer
- Click-stream analysis
- Real-time promotions

Law Enforcement

- Real-time multimodal surveillance
- Situational awareness
- Cyber security detection

The IBM Big Data Platform **Apache Hadoop:** open source framework for the distributed processing of large data sets across clusters of computers using a simple programming model InfoSphere BigInsights Hadoop-based low latency analytics for variety and volume Data-At-Rest Hadoop Information Stream Integration Computing **InfoSphere Information InfoSphere Streams** Server Low Latency Analytics for streaming data High volume data integration and transformation Velocity, Variety & Volume **MPP Data Warehouse** Data-In-Motion Netezza High

InfoSphere Warehouse Large volume structured data analytics

Capacity Appliance

PureData for Analytics

Informix Timeseries Time-structured analytics

New Architecture to Leverage All Data and Analytics

Entry points are accelerated by products within the big data platform

Big Data - Hadoop

What is Hadoop?

- Traditonal computation model
 - Bring data to the function
 - Load data into memory, and process on a central server
 - Does not scale well for Big Data problems

Apache Hadoop: open source framework for data-intensive applications

- Inspired by Google technologies (MapReduce, GFS)
- Well-suited to batch-oriented, read-intensive applications
- Yahoo! Adopted these technologies and open sourced them into the Apache Hadoop project

Enables applications to work with thousands of nodes and petabytes of data in a highly parallel, cost effective manner

- CPU + disks of commodity box = Hadoop "node"
- Boxes can be combined into massive clusters
- New nodes can be added as needed without changing
 - Data formats
 - How data is loaded
 - How jobs are written

Hadoop Explained, Two Key Concepts: Map Reduce

Hadoop computation model

- Data stored in a distributed file system spanning many inexpensive computers
- Bring function to the data
- Distribute application to the compute resources where the data is stored
- Scalable to thousands of nodes and petabytes of data

- 1. Map Phase (break job into small parts)
- 2. Shuffle (transfer interim output for final processing)
- 3. Reduce Phase (boil all output down to a single result set)

Hadoop Explained, Two Key Concepts: HDFS

HDFS stores data across multiple nodes

HDFS achieves reliability by replicating data across multiple nodes (typically 3 or more)

file system is a cluster of data nodes

serves up blocks of data over the network using a block protocol specific to HDFS

HDFS Name Node is a single point of failure

IBM eliminates this single point of failure while improving file system performance with GPFS-SNC (available as beta code)

InfoSphere BigInsights = Hadoop + IBM Innovation

Scalable

New nodes can be added on the fly

Affordable

 Massively parallel computing on commodity servers

Flexible

 Hadoop is schema-less, and can absorb any type of data

Fault Tolerant

 Through MapReduce software framework

IBM Innovation

Performance & Reliability

 Adaptive MapReduce, Compression, BigIndex, Flexible Scheduler

Analytic Accelerators

Productivity Accelerators

- Web-based UIs
- Tools to leverage existing skills
- End-user visualization

Enterprise Integration

 To extend & enrich your information supply chain

How IBM BigInsights extends Hadoop capability

Manageability

- Single Click Integrated Install
- Browser Based Cluster Mgmt
- GPFS-SNC

Developer Value

- New Query Language (jaql)
- Eclipse Tools for Analytics
- Broad Integration with other Information Management Technologies (DW, DataStage, RDBMS, et al)
- Integration with InfoSphere Streams

Performance & Availability

- GPFS-SNC (Data Replication)
- Splittable Compression
- Improved Map/Reduce
- Job Scheduling Improvements
- Large Scale Indexing

Advanced Analytics

- Bundled Scalable Text Analytics (AQL - Sentiment Analysis -NLP)
- BigData Scale Visualization (BigSheets)
- Bundled Scalable Machine Learning (DML)

Security

- Secure File System (GPFS-SNC)
- Cluster Hardening

Providing competitive advantage

Faster analysis, design and simulation while managing costs

Financial Services

Banking, financial markets, insurance

Risk management, compliance, investment decisions, liquidity management

Manufacturing

Automotive, Aerospace and Defense and Engineering

New designs, more complex products and higher quality

Electronics

Electronics and Semiconductor

More complex designs and simulations

Petroleum

Oil and gas exploration and production

Reserve identification, imaging and reclamation

Research & Academic

Life sciences, research, higher education

Drug development, sequencing, cross department collaboration

Government & Intelligence

Scientific research, classified/defense, weather/ environmental sciences

Intelligence gathering and insight development

Dynamic resource sharing among heterogeneous tenants

Resource Orchestration

Streams

Stream Computing – Analyze Data in Motion

Traditional Computing

Historical fact finding

Find and analyze information stored on disk

Batch paradigm, pull model

Query-driven: submits queries to static data

Stream Computing

Current fact finding

Analyze data in motion - before it is stored

Low latency paradigm, push model

Data driven: bring the data to the query

InfoSphere Streams: Massively Scalable Stream Analytics

.181

Å

Linear Scalability

 Clustered deployments – unlimited scalability

Automated Deployment

 Automatically optimize operator deployment across clusters

Performance Optimization

- JVM Sharing minimize memory use
- Fuse operators on same cluster Sources
- Telco client 25 Million messages per second

Analytics on Streaming Data

- Analytic accelerators for a variety of data types (text, acoustic, image, video, geospatial, etc)
- Optimized for real-time performance

28

How Streams Works

Achieve scale:

By partitioning applications into software components By distributing across stream-connected hardware hosts Where appropriate:

Elements can be *fused* together for lower communication latency

IBM Consumer Oriented Analytic Architecture

CEP : Complex Event Processing RTAP : Real-Time Analytic Processing BRMS : Business Rules Management System

Industrial references

Thank You

Your questions