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On repeated zero-sum games with incomplete

information and asymptotically bounded values3

To the memory of Victor Domansky

We consider repeated zero-sum games with incomplete information on the side of
Player 2 with the total payoff given by the non-normalized sum of stage gains. In the
classical examples the value VN of such an N -stage game is of the order of N or

√
N as

N →∞.
Our aim is to find what is causing another type of asymptotic behavior of the value VN

observed for the discrete version of the financial market model introduced by De Meyer
and Saley. For this game Domansky and independently De Meyer with Marino found
that VN remains bounded as N → ∞ and converges to the limit value. This game is
almost-fair, i.e., if Player 1 forgets his private information the value becomes zero.

We describe a class of almost-fair games having bounded values in terms of an easy-
checkable property of the auxiliary non-revealing game. We call this property the piece-
wise property, and it says that there exists an optimal strategy of Player 2 that is
piecewise-constant as a function of a prior distribution p. Discrete market models have the
piecewise property. We show that for non-piecewise almost-fair games with an additional
non-degeneracy condition VN is of the order of

√
N .
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1 Introduction

The theory of repeated games with incomplete information originated in the early sixties
from reports of Aumann and Maschler to the United States Arms Control and Disar-
mament Agency (the reports were published as a book: Aumann and Maschler (1995)).
Their goal was to develop a game-theoretical framework for repeated disarmament nego-
tiations between the USSR and USA. The main feature of that interaction was a strategic
usage of information in a dynamic framework, that is, when selecting an action now one
has to care about information revealed by one’s action and its affect on future behavior
of the opponent.

It turned out that the simplest zero-sum case with only one side having private infor-
mation is already very nontrivial. For the introduction to the theory of such games we
refer to Aumann and Maschler (1995), Zamir (1992), Sorin (2002), and to Mertens, Sorin
and Zamir (2015) for further reading.

In this paper we consider the classical setting mentioned above: zero-sum repeated
games with incomplete information on one side. In these games two players repeatedly
play the same zero-sum game which is selected by chance before the first stage of a
multistage interaction according to a prior distribution known to both players. The game
selected is told to Player 1 only, so he knows the game he is playing while his uninformed
opponent does not know. Multistage setting gives to the uninformed player an opportunity
to guess what is the actual stage game by observing previous actions of Player 1. In turn,
informed player has to balance between two sometimes opposite goals: to benefit from
his private information at a current stage and to avoid fast revelation so as to be able
to benefit in the future. Complexity of optimal strategies usually prevents their explicit
description, and forces qualitative and asymptotic analyses to be the main tools to study
such games.

One of the main asymptotic problems is to describe the behavior of the value VN of
an N -stage game for large N . This problem has attracted much attention because the
asymptotic behavior of the value is related to the benefit that the informed player can
get from his information.

Throughout the paper we assume that the total payoff equals to the sum of stage
payoffs (i.e., there is neither discounting nor normalization). Then, as it was shown by
Aumann and Maschler, under some technical assumptions VN grows linearly up to an error
term bounded by a constant times

√
N (Aumann and Maschler (1995); Gensbittel (2015)

and Neyman (2013) for recent extensions).
The linear component disappears if we assume that all the strategic advantages or

disadvantages in a repeated game arise from information asymmetry. Formally this means
that the auxiliary one-stage game where nobody is informed (the so-called non-revealing
game) is fair for any prior distribution, i.e., has zero value. We call repeated games with
this property almost-fair. For almost-fair games the value VN can be interpreted as the
value of information possessed by Player 1, and it coincides with the error term and thus
does not exceed

√
N by the order of magnitude. The growth is sublinear because Player 1
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loses the information advantage from stage to stage revealing his private information by
past actions.

The paper deals with the problem of finding a relation between the asymptotic be-
havior of the value VN of an almost-fair repeated game and the strategic properties of
a non-revealing game. Importance of such a relation comes from the fact that the non-
reveling game is usually easy to solve. Our main results are easily checkable sufficient
conditions for the two kinds of asymptotic behavior of the value: being asymptotically
bounded and

√
N -growth. The conditions are nearly opposite of each other, and hence our

results provide an almost complete characterization of the possible asymptotic behaviors.
This gives a general explanation of many results from the literature.

For a long time all known almost-fair games had
√
N -behavior of the value. Almost

all methods in the theory of repeated games with incomplete information originated as
tools to analyze games of this class. The first example was constructed by Zamir (1971)
(we include it in Subsection 1.1). Mertens and Zamir (1976, 1995) proved that for a
class of games containing Zamir’s example VN/

√
N converges to a limit related to the

normal distribution. They used a very technical analysis of a recurrent equation for the
sequence of values VN . De Meyer (1996A, 1996B) introduced a duality approach which
allowed to extend the results of Mertens and Zamir to a broader class of games without
dealing with any technicalities. He obtained two representations of the VN/

√
N limit: one

from the Central Limit Theorem and one as a solution of a partial differential equation.
Other results were based on finding explicit solutions (see Heuer (1991), Domansky and
Kreps (1994, 1995, 1999)). Similar problems of dynamic strategic use of information also
demonstrate

√
N -behavior of the value. Mertens and Zamir (1977) and De Meyer (1998)

studied martingale optimization problem of the maximal L1-variation of a bounded mar-
tingale which is connected to the optimal speed of information revelation in games with√
N -behavior (Gensbittel (2015) showed that any game can be reduced to a generalized

problem of the maximal variation). Problems arising as continuous-time limits of
√
N -

games were discussed by De Meyer (1999) and Gensbittel (2013) (working with such limit
problems is known as “compact approach”, see Sorin (2002)).

An example of another asymptotic behavior of VN is given by a financial market model
introduced by De Meyer and Saley (2003) to analyze impact of information asymmetry
on a financial market. In this model a risky asset is exchanged between two agents; one of
them is an insider and knows the actual value of a risky asset, and the other does not (see
Subsection 1.1 for the definition). Depending on existence of the minimal currency unit
the corresponding almost-fair game demonstrates either asymptotically bounded value
or VN of the order of

√
N , though the model is robust to change of other modeling

assumptions:

• If there is no minimal currency unit De Meyer and Saley showed that the value
has
√
N -behavior and the limit price-process is related to the Brownian motion.

Prices are the elements of strategy, and the authors argue that their result provides
endogenous justification for the Brownian motion in finance. The informal reason
for the appearance of the Brownian motion is that the insider can benefit with
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revealing an arbitrary small “portion of information” using an arbitrary small change
of his price. As N → ∞ optimal “portions” become infinitesimally small, and
the Brownian motion arises from the Central Limit Theorem, and

√
N originates

from the standard normalization. Various extensions of this model (De Meyer and
Marino (2004), De Meyer (2010), De Meyer and Fournier (2015)) have the same
properties.

• Domansky (2007) and independently De Meyer with Marino (2005) showed that
introducing the minimal currency unit radically changes the behavior of the model:
the value VN becomes bounded as N → ∞. The informal explanation is that the
minimal currency unit does not allow insider to obtain non-zero profit revealing a
small “portion of information” because he has to change his price significantly: at
least by one currency unit. This forces him to reveal information fast and to lose
the information advantage in a finite number of steps collecting only a bounded
total gain. This informal explanation is supported by results of Domansky who
explicitly solved the infinite-stage version of the game and showed that the optimal
strategy of the insider reveals his private information in finite number of stages and
that the price-process is a simple random walk over the lattice of admissible prices
with absorption at the true value of the asset. Asymptotic boundedness and fast
revelation holds for different modifications of the model with minimal currency unit
(Domansky and Kreps (2009, 2013, 2016), Sandomirskaia (2016)).

The market model with minimal currency unit was historically the second non-trivial
example of an almost-fair game with bounded values. However, the first such example
from (Domansky and Kreps (1994)) is similar to market model with three admissible bids
(see Subsection 1.1 for details).

Our research was inspired by the desire to find an abstract property responsible for
the effect of VN being bounded in an almost-fair game. Theorem 2.1 shows that the
value is bounded if in the non-revealing game Player 2 has an optimal strategy that
is piecewise-constant as a function of the prior distribution. This is what we call the
piecewise property. The market models with minimal currency unit are piecewise games
(Example 2.2) thereby Theorem 2.1 immediately implies many results cited above. The-
orem 2.2 shows the result is sharp: if for some interval of prior distributions the optimal
strategy of Player 2 is unique and non-constant, then the value is of the order of

√
N .

Remark 2.5 compares this condition with the weakest known sufficient condition from
De Meyer (1996A). Up to an additional assumption of uniqueness the theorems give a
characterization of possible asymptotic behaviors of VN for almost-fair games. These re-
sults are stated in Section 2. The proofs explain the strategic origin of the two behaviors:
we formalize the intuition that relates the behavior of VN with an opportunity to benefit
from an arbitrary small revelation of information (see above and Propositions 3.1 and 4.1).
The proof of Theorem 2.1 is contained in Section 3. The approach is based on ideas of
De Meyer and Marino that link upper bounds on the value with invariant functions of the
recurrent equation and on the explicit construction of an invariant function using geom-
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etry of the Kantorovich metric. Theorem 2.2 is proved in Section 4. For this purpose we
pass from the game to a martingale optimization problem of generalized maximal vari-
ation (Gensbittel (2013)). By analyzing optimal strategies under small perturbations of
matrix games we show that the value of the martingale optimization problem is bounded
from below by a quantity related to the typical movement of a simple random walk after
N steps that is of the order of

√
N . The last Section 5 presents a list of open problems.

1.1 Notation, definitions, classic results, and examples

In N-stage zero-sum game ΓN = ΓN(p) with incomplete information on the side of
Player 2 the players repeatedly play the same I × J matrix game Ak depending on a
random state k ∈ K. The state k is selected by chance before the first stage from the
set of states K according to a prior distribution p ∈ ∆(K) known to players (∆(K) de-
notes the set of all probability measures over K). Player 1 knows the realization of k,
but Player 2 does not. The players choose their actions in ∈ I and jn ∈ J at a stage
n = 1, 2, ..N taking into account their current knowledge: the history of their actions
hn = (it, jt)

n−1
t=1 (known to both) and knowledge of k (for Player 1). Stage payoffs Akin,jn

are not observed during the game. The objective of Player 1 (2) is to maximize (minimize)

the expected total payoff4 GN = E
[∑N

n=1A
k
in,jn

]
. Players can randomize their actions

using behavioral strategies (defined below), and so the expectation is taken with respect
to the joint distribution of k and hN+1.

A behavioral strategy σ of Player 1 is a collection {σn}Nn=1, where σn(hn, k) ∈ ∆(I) is
the distribution used by Player 1 to randomize his action in depending on his “knowledge”
(hn, k) at a stage n. In a behavioral strategy τ = {τn}Nn=1 of Player 2 the distribution
τn(hn) ∈ ∆(J) used to select jn does not depend on the state k as Player 2 does not know
it. Note that GN = GN(σ, τ) represents the game ΓN in normal form. By Kuhn’s the-
orem behavioral strategies are equivalent to mixed strategies if deterministic behavioral
strategies (i.e., such that σn and τn take values in the Dirac δ-measures over I and J ,
respectively) are considered as pure. Hence under the standard finiteness assumption of
I, J , and K the min-max theorem applies. Therefore the game ΓN(p) has a value VN(p)
and players have optimal strategies. The game also has a value for compact metric spaces
I, J , and K with continuous A by the standard approximation arguments: optimal strate-
gies in the game with discretized sets of actions and states induce ε-optimal strategies in
the original one, and ε goes to zero as discretization becomes finer (see Remark 3.2 for
an example of using such techniques).

The non-revealing game ΓNR
1 (p) is a version of the one-stage game Γ1(p) where both

players do not know the state k. This game is equivalent to I × J matrix game with
expected payoff matrix Ap = EAk. Hence Ap =

∑
l∈K plA

l for finite K (here pl = P({k =
l}) is the weight that p gives to an element l ∈ K). The value of the non-revealing game

4Usually one considers the expected average total payoff, i.e., the expected sum of stage gains divided
by N , to ensure that the sequence of values VN is bounded as N → ∞. However, we do not follow this
convention as VN remains bounded in the games we are interested in without any normalization.
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is traditionally denoted by u(p).
The Cav [u]-theorem of Aumann and Maschler shows that the the non-revealing game

is responsible for the leading term of repeated game’s value as N →∞:

VN(p) = N · Cav [u](p) +O(
√
N), N →∞, (1.1)

in the case of finite I, J , and K. Here Cav [u] denotes the least concave majorant of u
treated as a function ∆(K)→ R.

We say that a repeated game ΓN is almost-fair if the value u(p) of the non-revealing
game is zero for any p ∈ ∆(K). In other words, almost-fair game is a game that becomes
fair if Player 1 forgets k. By (1.1) the value of an almost-fair game can not grow faster5

than
√
N .

The following almost-fair games will be used to illustrate our results:

Example 1.1 (The first game with VN of the order of
√
N). Zamir (1971) showed that for

the repeated game with I = J = K = {0, 1} and stage games given by

A0 =

(
3 −1
−3 1

)
and A1 =

(
2 −2
−2 2

)
(1.2)

the value grows as
√
N . Checking that the non-revealing game Ap = p0A

0 + p1A
1 has

zero value is left to the reader.

Example 1.2 (The first game with bounded VN). A repeated game is called flat if u(p) is
an affine function of p. Domansky and Kreps (1994) explicitly solved all flat (“eventually
revealing” by their terminology) games with I = J = K = {0, 1}. They discovered
that except for games similar to (1.2) this class contains almost-fair games with bounded
values: if stage games are

A0 =

(
1 0
0 −(1− α)

)
and A1 =

(
−1 0
0 (1− α)

)
, α ∈ [0, 1], (1.3)

then the value VN(p) does not exceed 1/2 for any N and p. If α = 0, the game ΓN(p) is
especially simple: the optimal strategy of Player 1 does not depend on n and prescribes to
play “top” if k = 0 and “bottom”, otherwise. This strategy completely reveals k after the
first stage and leads to VN(p) = max{p0, p1} for any N . For α > 0 the optimal strategy
becomes n-dependent. Note that the degenerate case of α = 0 is equivalent to the discrete
market model with m = 2 described in Example 1.3.

Example 1.3 (The financial market model with asymmetric information). A model of
De Meyer and Saley (2003) has I = J = [0, 1], the set of states K = {0, 1}, and the stage
games given by Aki,j = sgn (i− j)(k −max{i, j}). This repeated game can be interpreted
as follows. The state k is a liquidation value of a risky asset, and only Player 1, the

5For almost-fair games with infinite I, J , and K the value can also grow as Nα with α ∈ (0.5, 1), see
Sandomirskiy (2014).
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insider, knows k. At each stage of ΓN(p) both players propose their prices in and jn for
the asset, and the player with higher price buys one unit of the asset from his opponent
for this price. Players have enough assets and money. The objective of both players is
to maximize their expected welfare after N trading rounds. This game is almost-fair (by
symmetry) and has

√
N -behavior of the value. We refer to this model as the continuous

one.
Introducing the minimal currency unit 1

m
,m ∈ N, leads to the discrete version of the

model with I = J =
{

0, 1
m
, 2
m
, ..1
}

. For the discrete model the value VN remains bounded
as N →∞, see Domansky (2007) and De Meyer with Marino (2005).

2 Results

The following property turns out to be responsible for the sequence of values VN being
bounded as N →∞.

Definition 2.1. We say that a repeated game ΓN with incomplete information is a piece-
wise game if there exists a function y∗ : ∆(K)→ ∆(J) taking a finite number of different
values and such that y∗(p) is an optimal strategy of Player 2 in the non-revealing game
ΓNR

1 (p) for any p ∈ ∆(K).

Theorem 2.1. Let ΓN be an almost-fair piecewise repeated game with incomplete infor-
mation and finite I, J , and K. For any p ∈ ∆(K) and N ≥ 1

0 ≤ VN(p) ≤ ‖A‖lipQ, (2.1)

where ‖A‖lip = maxi,j,k,k′
∣∣Aki,j − Ak′i,j∣∣ and Q is the number of different values that y∗ takes

(see Definition (2.1)).

Remark 2.1. Note that only the upper bound in (2.1) is non-trivial since playing his
optimal strategy for ΓNR

1 (p) at all stages of ΓN(p), Player 1 guarantees expected payoff of
at least 0.

Corollary 2.1. Under the conditions of Theorem 2.1 the sequence VN(p) has a finite
limit V∞(p) as N → ∞. Indeed, this sequence is bounded and non-decreasing (if at the
first stage of ΓN+1(p) Player 1 plays the strategy optimal in ΓNR

1 (p) and then plays as if
the remaining game is ΓN(p), he gets at least VN(p)).

Remark 2.2. Theorem 2.1 can be easily extended in two ways:

• The result holds for flat games (games with affine u(p) =
∑

k∈K pkval[Ak]) if we put
the error term VN(p)−Nu(p) instead of VN(p) in (2.1). This can be deduced from
strategic equivalence of any flat game to an almost-fair game with stage payoffs
given by Ãk = Ak − val[Ak].
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• The result holds for games with arbitrary compact metric space K, finite I, J , and
continuous A without any changes. Indeed, the right-hand side of (2.1) does not
explicitly depend on cardinality of K that allows to use standard approximation
techniques. For the formal argument see Remark 3.2.

Example 2.1. Let us check that the game from Example 1.2 is a piecewise game. In a
non-revealing game Ap = p0A

0 + p1A
1 the optimal strategy of Player 2 is to play “left” if

p1 > p0 and play “right” if p1 < p0. If p1 = p0 any convex combination of the two actions
is optimal. So

y∗(p) =

{
δL, p1 ≥ p0

δR, p1 < p0

does the job (here and below δa denotes the Dirac δ-measure concentrated at a).

Example 2.2. It is easy to check that the discrete market model (see Example 1.3) has
the piecewise property for all m. If nobody knows k, and the probability p1 = P({k = 1})
belongs to the interval

[
q
m
, q+1
m

]
for some q = 0, 1, ..m − 1, then for both players it is

optimal to select i = j = q
m

. Hence the pure strategy y∗(p) = δ [p1m]
m

guarantees 0 in the

non-revealing game ([x] denotes the integral part of x ∈ R). Informally, the reason is
that, if nobody knows the value k of a risky asset, the optimal price in the continuous
model would be the expectation Ek = p1, but in the discrete one only discrete prices
are allowed, and hence players select the closest point to p1. So the convergence results
from Domansky (2007) and De Meyer with Marino (2005) become immediate corollaries
of Theorem 2.1.

For the continuous market model (recall that it has VN of the order
√
N) the optimal

strategies in the non-revealing game are i = j = p1. They are unique and depend
continuously on the prior p. This suggests a form of converse to Theorem 2.1.

Let [p′, p′′] denote the segment {αp′ + (1 − α)p′′ | α ∈ [0, 1]} for p′, p′′ ∈ ∆(K). By
∆relint(K) we denote the relative interior of ∆(K), i.e., the set of all p ∈ ∆(K) such that
pk > 0 for any k ∈ K.

Theorem 2.2. Let ΓN be an almost-fair repeated game with incomplete information and
finite I, J , and K. Suppose that there exists a segment [p′, p′′] such that for all p ∈ [p′, p′′]
the optimal strategy y∗(p) of Player 2 in the non-revealing game ΓNR

1 (p) is unique, but
y∗(p) takes infinitely many different values when p ranges over [p′, p′′]. Then for any
p ∈ ∆relint(K)

C1

√
N ≤ VN(p) ≤ C2

√
N, N ≥ 1, (2.2)

where Ch = Ch(p), h = 1, 2, are positive constants independent of N .

Remark 2.3. The upper bound in Theorem 2.2 follows from the estimate (1.1) of Aumann
and Maschler. The lower bound shows that the piecewise property is almost a criterion
of boundedness. We expect that the piecewise property is a criterion, but the role of
uniqueness assumption in Theorem 2.2 remains a question for future research.
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Example 2.3. Zamir’s game (Example 1.1) fulfills the assumptions of Theorem 2.2. The
optimal strategy y∗(p) of Player 2 in the non-revealing game p0A

0 + p1A1 is unique and
equals

(
1+p1

4
, 3−p1

4

)
. It continuously depends on p and takes infinitely many values on any

segment [p′, p′′] with p′ 6= p′′. Hence Theorem 2.2 implies
√
N -growth of VN(p).

Remark 2.4. Theorem 2.2 can not be directly applied to the continuous market model
(Example 1.3) because finiteness of I and J is important for the proof.

Remark 2.5. Assumptions of Theorem 2.2 are weaker than the condition for the
√
N -

behavior by De Meyer (1996A), the weakest condition from the literature. Under the
additional assumption that certain partial-differential equation has regular solutions, he
claims that the limit of VN/

√
N as N → ∞ exists for an almost-fair game if (1) all the

sets I, J , and K are finite (2) both players have equal number of actions, i.e., |I| = |J |
(3) in the non-revealing game Player 1 has unique optimal strategy x∗ independent of
p ∈ ∆(K), and this strategy is completely mixed. Let us check that Theorem 2.2 applies
to any such game except the degenerate case with VN(p) = 0 for any N and p. Kaplansky
lemma (see De Meyer (1996A), Lemma 4.1) implies that the optimal strategy y∗(p) of the
second player is unique and completely mixed and rationally depends on elements of Ap.
Therefore y∗(p) either fulfills the assumptions of Theorem 2.2 or does not depend on p at
all. In the last case VN(p) = 0 because Player 2 defends zero by playing y∗ at any stage
of ΓN(p).

Let us modify Zamir’s example (Example 1.1) by adding a fixed convex combination of
rows to both matrices Ak as a new pure strategy of Player 1. This new game is strategically
equivalent to the initial one and has VN of the order of

√
N that can be deduced also

from Theorem 2.2, but De Meyer’s result becomes inapplicable because |I| 6= |J |. So
Theorem 2.2 gives a wider class of

√
N -games, but existence of the limit limN→∞ VN/

√
N

is an open problem for this class.

3 Recurrent equation, the Kantorovich metric, and

proof of Theorem 2.1

There are two different approaches to investigate repeated games with incomplete in-
formation: from the perspective of the informed player and from the perspective of his
non-informed opponent. The first one leads to a martingale-optimization problems that
arise in selecting the optimal rate of revealing information. The second one, the dual
approach, is based on the concept of dual game introduced by De Meyer and on its re-
current structure. The problem of finding the optimal strategy of Player 2 has a flavor
of multi-criteria optimization: such a strategy does not depend on the state k but has to
be efficient for any k ∈ K. This is made precise in an application of the approachability
theory studying games with vector payoffs to the behavior of uninformed player in long
games with incomplete information.
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Our proof of Theorem 2.1 is based on the first approach6. The scheme resembles the
one used by De Meyer and Marino (2005) to derive an upper bound for the value of the
discrete market model. We start from the recurrent equation VN+1(p) = T [VN ](p) in the
form from Gensbittel (2015) and construct an explicit non-negative invariant function h
of the Shapley operator T using the Kantorovich metric. Monotonicity ideas of De Meyer
and Marino imply that h is an upper bound for VN . This lets us almost avoid strategic
analysis of the game but nonetheless get an explicit upper bound.

3.1 Recurrent equation

Given a strategy σ of Player 1 the process of information revealing by his actions is
described by a sequence of posterior distributions p(n) ∈ ∆(K) of k at a stage n, i.e.,

p
(n)
l are defined as the conditional probability of k = l given hn. Posterior distribution

of k can be treated as a dynamic state variable of the game from the Player’s 1 point of
view since p(n) represents the beliefs of Player 2 about k at a current stage. Denote the
sequence of random variables p(1), p(2), ..p(N+1) by p(n≥1).

The sequence of random variables ξ(1), ξ(2), ..ξ(N) is called a martingale of length N
adapted to the natural filtration (hereafter, a martingale) if the conditional expectation
E
[
ξ(n+1) | ξ(1), ξ(2), ..ξ(n)

]
equals ξ(n) for all n = 1, ..N − 1.

The process of posterior distributions p(n≥1) is a martingale of length N+1 with values
in ∆(K) and with non-random p(1) = p (see Mertens, Sorin, and Zamir (2015), Section
V.2.a.).

Let Mp denote the set of all ∆(K)-valued martingales of infinite length with p(1) = p.
Formally, elements of Mp are pairs consisting of a probability space and a martingale

6I am grateful to Eilon Solan for telling me about the paper of Mannor and Perchet (2013) which allows
to use the second approach to prove boundedness of VN . They studied fast convergence of Blackwell’s
approachability procedure for repeated games with vector payoffs and found that, if a target set B is a
polytope approachable by a finite number of pure actions, then the approaching player has a strategy τ
such that for any strategy σ of the opponent and any N the expected Euclidean distance between the
average payoff ~gN after N rounds and B is bounded from above by C

N with some constant C.
Let us apply this result to show boundedness of VN in almost-fair piecewise games using the standard

link between behavior of Player 2 and the approachability (see Mertens, Sorin, and Zamir (2015), Section
V.2.c.). It is enough to show that for any p ∈ ∆(K) in N -stage game the uninformed player has a strategy
τ such that for any strategy σ of Player 1 the expected distance between the normalized vector payoff

~gN =
(

1
N

∑N
n=1A

l
in,jn

)
l∈K
∈ RK and the target set B = {v ∈ RK | vl ≤ 0 ∀l ∈ K} is bounded by C

N .

Let us call a game pure-piecewise if piecewise condition is fulfilled in pure actions (i.e., y∗ takes values in
J , not in ∆(J)). For pure-piecewise games B is approachable in pure actions, and the result of Mannor
and Perchet applies and provides boundedness of VN .

It remains to check that any piecewise game can be reduced to a pure-piecewise. Indeed, define a new
set of actions of Player 2 by J̃ = J ∪ y∗(∆(K)) (we add Q actions) and the stage game by Ãki,j = Aki,j for

i ∈ I, j ∈ J and Ãki,y =
∑
j∈J yjA

k
i,j for y ∈ y∗(∆(K)). The new repeated game is pure-piecewise because

playing mixed action y = y∗(p) becomes equivalent to selecting pure action y ∈ J̃ . The values of both
games coincide since addition of a convex combination of rows as a new row to a matrix game does not
change its value.
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defined on this space.
From the early works of Zamir and Mertens the recurrent equation for the sequence

of values is the central tool to study asymptotic behavior of the value. Gensbittel (2015)
represented the recurrent equation as a martingale optimization problem where Player 1
decides how much information to reveal at the first stage by selecting the distribution of
the uninformed player’s beliefs at the second stage.

Theorem 3.1 (Gensbittel (2015), Proposition 3.5). For a game ΓN with finite I, J , and
K the following recurrent relation holds for any N ≥ 0 (by convention, V0 ≡ 0)

VN+1(p) = T [VN ](p) = sup
p(n≥1)∈Mp

[
V1(P) + EVN(p(2))

]
, (3.1)

where P ∈ ∆(∆(K)) is the distribution of p(2), and VN ′(P) is the value of the auxiliary
N ′-stage game GN ′(P) with partial information on the side of Player 1 defined below.

The game GN ′(P) is a version of ΓN ′ where Player 1 is not fully informed of k but
receives a noisy signal such that his believes about k are P-distributed. It can be viewed
as a usual game with incomplete information with ∆(K) as a set of states, P as a prior
distribution, and Ap =

∑
k∈K pkA

k as a stage payoff function. By the min-max theorem
V1 has the following representation

V1(P) = min
y∈∆(J)

E

[
max
i∈I

∑
j∈J

yjA
p(2)

i,j

]
, (3.2)

where p(2) ∼ P , i.e., is P-distributed.

3.2 Non-existence of small profitable revelations

The introductory section contains informal reasoning explaining that the
√
N -behavior of

the value is related with the opportunity for Player 1 to reveal his information by means
of small beneficial portions. The purpose of this subsection is to formalize the opposite
situation.

We say that in an almost-fair game ΓN Player 1 has no small profitable revelations if
∆(K) can be represented as a finite union of closed convex subsets ∆q ⊂ ∆(K), q = 1, ..Q′,
such that for any q and any P supported on ∆q the value V1(P) is zero.

Informally, this definition says that, if the prior distribution p is inside ∆q, then
Player 1 can not benefit at first stage of N -stage game without changing the belief p(2)

of Player 2 significantly enough by pushing p(2) outside of ∆q (see (3.1)), i.e., without
revealing enough information by his action i1.

The following proposition supports the intuition that non-existence of small profitable
revelations leads to bounded values.

11



Proposition 3.1. If in an almost fair-game ΓN with finite I, J , and K Player 1 has no
small profitable revelations, then for any N ≥ 1 and any p ∈ ∆(K)

VN(p) ≤ ‖A‖lipQ
′.

Theorem 2.1 is a corollary of Proposition 3.1 and the next lemma. Subsections 3.3, 3.4,
and 3.5 develop the technique to prove Proposition 3.1 and thereby to complete the proof
of Theorem 2.1.

Lemma 3.1. If a game ΓN fulfills the assumptions of Theorem 2.1, then Player 1 has no
small profitable revelations with Q′ = Q.

Proof. Denote by {yq}Qq=1 ⊂ ∆(J) the set of all values that y∗ takes. Define ∆q as the
subset of all p ∈ ∆(K) such that yq is an optimal strategy of Player 2 in ΓNR

1 (p). Then
∆(K) =

⋃Q
q=1 ∆q. The subset ∆q is a closed convex polytope since this subset is cut from

∆(K) by the family of linear inequalities
∑

k pk

(∑
j y

q
jA

k
i,j

)
≤ 0, i ∈ I. It remains to

check that for any q and any P ∈ ∆(∆q) we have V1(P) = 0. Indeed, playing yq in G1(P)

Player 2 defends 0. This follows from (3.2) because maxi∈I
∑

j∈J y
q
jA

p(2)

i,j is the value of

the non-revealing game ΓNR
1 (p(2)) for p(2) ∈ ∆q and equals zero by almost-fairness.

3.3 Monotonicity properties and the role of invariant functions

The Shapley operator T defined by formula (3.1) has the following properties:

1. Representation of the value: VN = TN [0] (recall that V0 ≡ 0);

2. Monotonicity: if f ≥ g, then T [f ] ≥ T [g].

3. Increasing property (for almost-fair games): T [f ] ≥ f .

Here f ≥ g means f(p) ≥ g(p) for all p ∈ ∆(K). The first two items immediately follow
from (3.1). To prove the third item we take in (3.1) a constant martingale p(n) ≡ p.
For such martingale P = δp, where δp is the Dirac δ-measure at p. The game G1(δp)
can be identified with the non-revealing game Γ1(p) (see Gensbittel (2015)). Hence by
almost-fairness V1(δp) = 0 that implies the third item.

Using the following observation, De Meyer and Marino proved that the discrete market
model has bounded values.

Lemma 3.2 (De Meyer, Marino (2005), Lemma 4.3). If T has the properties (1) and (2)
mentioned above, h ≥ 0, and T [h] = h, then VN ≤ h for any N ≥ 1.

Indeed, VN = TN [0] ≤ TN [h] = h as 0 ≤ h.
In order to prove Proposition 3.1 we need to construct such h for any almost-fair game

where Player 1 has no small profitable revelations. We use the Kantorovich metric for
that.
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3.4 The Kantorovich metric

Let (X0, d0) be a compact metric space. The metric d0 induces the Kantorovich7 metric
d1 on X1 = ∆(X) by

d1(p′, p′′) = inf
x′∼p′, x′′∼p′′

E [d0(x′, x′′)] ,

where infimum is taken over all joint distributions of x′ and x′′ with marginals p′ and p′′,
respectively. This makes X1 a compact metric space, and the definition can be iterated
to define X2 = ∆(X1) and, more generally, Xn for each n.

The dual way to define d1 is by the Kantorovich-Rubinstein formula

d1(p′, p′′) = sup
|f(x′)−f(x′′)|≤d0(x′,x′′)

∫
X0

f(x) (dp′(x)− dp′′(x)),

where supremum is over all real-valued functions f that are 1-Lipshitz with respect to d0

(see Villani (2008), 5.16) Hence for a Lipshitz function g on X0 the integral
∫
X0
g(x) dp(x)

is Lipschitz with respect to d1 as a function of p with the same constant.
Let us come back to games. Denote by d0 the discrete metric on K defined by

d0(k′, k′′) =

{
1, k′ 6= k′′

0, k′ = k′′
.

It induces the Kantorovich metric d1 that in this case coincides with the total-variation
distance d1(p′, p′′) = maxB⊂K |p′(B)− p′′(B)|. In turn, d1 induces the Kantorovich metric
d2 on ∆(∆(K)).

Lemma 3.3. For any game ΓN with finite I, J , and K

|V1(P ′)− V1(P ′′)| ≤ ‖A‖lipd2(P ′,P ′′), (3.3)

where ‖A‖lip is from Theorem 2.1.

This result with a constant 2 maxi,j,k |Aki,j| instead of ‖A‖lip is proved by Gensbit-
tel (2015), Proposition 2.1. For Zamir’s game (Example 1.1) we have 2 maxi,j,k |Aki,j| = 6
and ‖A‖lip = 1.

Proof. The one-stage payoff Aki,j is Lipschitz in k with respect to d0 with a constant
‖A‖lip. Hence Api,j =

∫
K
Aki,j dp(k) is ‖A‖lip-Lipschitz in p with respect to d1. Also for

any y ∈ ∆(J) we get maxi∈I
∑

j∈J yjA
p
i,j is ‖A‖lip-Lipschitz in p. Together with (3.2) this

implies (3.3).

Remark 3.1. The above reasoning extends to the case of uncountable compact metric
space (K, d) and ‖A‖lip-Lipschitz payoffs by putting d instead of d0 in the proof above.
Estimate (3.3) can be also generalized to the case of VN with arbitrary N . Indeed,∑N

n=1 A
p
in,jn

is an N‖A‖lip-Lipschitz function of p for any fixed sequence of actions, and
taking expectation or minimum/maximum with respect to side variables does not change
the Lipschitz constant.

7Sometimes this metric is called the Wasserstein distance (named after Leonid Vaserstein). Note that
Kantorovich introduced this metric to study optimal transportation problems 27 years before Vaserstein
used it in dynamical system context (see the discussion by Vershik (2013).
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3.5 Construction of the invariant function and the end of proof

The construction of the invariant function h of T is based on the next lemma.

Lemma 3.4. Let ΓN be an almost-fair game with finite I, J,K and without small profitable
revelations (i.e., it satisfies the assumptions of Proposition 3.1). Then for all q = 1, ..Q′

and P ∈ ∆(∆(K))
V1(P) ≤ ‖A‖lipEp∼P d1(p,∆q), (3.4)

where the distance from a point to a set is defined in the usual way as d1(p,∆q) =
infpq∈∆q d1(p, pq).

Proof. Since for any P ′ supported on ∆q we have V1(P ′) = 0, the Lipshitz property (3.3)
implies

V1(P) ≤ ‖A‖lipd2(P ,P ′).

Let R : ∆(K) → ∆(K) be a continuous selection of argmin p′∈∆q [d1(p, p′)]. Picking P ′
equal to the push-forward of P by R leads to d2(P ,P ′) = Ep∼Pd1(p,∆q) and completes
the proof. The intuition behind such a choice of P ′ is that we want to transport the
“portion of P” at each p to the closest p′ ∈ ∆q, and one can show that this choice is the
optimal one.

Lemma 3.5. Under the assumptions of Proposition 3.1

h(p) = ‖A‖lip

Q′∑
q=1

(1− d1(p,∆q))

defines a non-negative invariant function of T .

Proof. The total-variation metric d1 is bounded by 1, and, therefore, h(p) is non-negative.
Consider T [h](p) for some p from ∆w, w = 1, ..Q′. Fix a martingale p(n≥1) ∈ Mp. From
Lemma 3.4 and the definition of h we get

V1(P) + Eh(p(2)) ≤ ‖A‖lipE

[
d1(p(2),∆w) +

Q′∑
q=1

(1− d1(p(2),∆q))

]
=

= ‖A‖lipE

[
1 +

∑
q 6=w

(1− d1(p(2),∆q))

]
. (3.5)

Note that the total-variation distance to a convex set is convex. Since Ep(2) = p, Jensen’s
inequality applied to (3.5) implies

V1(P) + Eh(p(2)) ≤ ‖A‖lip

(
1 +

Q′∑
q 6=w

(1− d1(p,∆q))

)
.
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Since d1(p,∆w) = 0 we can return 1 = 1− d1(p,∆w) into the sum and get

V1(P) + Eh(p(2)) ≤ ‖A‖lip

Q′∑
q=1

(1− d1(p,∆q)) = h(p).

Taking maximum over p(n≥1) we obtain T [h](p) ≤ h(p), and so T [h] ≤ h. But the
increasing property of T says that T [h] ≥ h. Thus T [h] = h.

Now Proposition 3.1 becomes a combination of Lemmas 3.2 and 3.5. This also com-
pletes the proof of Theorem 2.1.

Remark 3.2. Let us check that the statement of Theorem 2.1 remains valid for games
with a compact metric space K, finite I, J , and continuous A. Along the lines of the
proof of inequality (2.1) we show existence of the value VN for such a game.

Fix δ > 0. By uniform continuity of A we find ε-net Kε of K such that for any k ∈ K
and any i, j we have ∣∣Aki,j − Akεi,j∣∣ ≤ δ, (3.6)

where kε ∈ Kε denotes a point nearest to k. Enumerate points in Kε and make kε single-
valued by selecting the point with the smaller number in case of a tie. Let pε ∈ ∆(Kε) be
the distribution of kε(k) if k is distributed according to p. Inequality (3.6) implies that
for any strategy σ of Player 1 the guaranteed payoffs in ΓN(p) and in ΓN(pε) differ at
most by Nδ. The same holds for any strategy τ of Player 2. The game ΓN(pε) can be
considered as a game with finite set of states Kε, hence has a value VN(pε) that does not
exceed Q‖A‖lip by Theorem 2.1. For lower and upper values of ΓN(p) we have

VN(pε)−Nδ ≤ V N(p) ≤ V N(p) ≤ VN(pε) +Nδ ≤ Q‖A‖lip +Nδ.

Since δ is arbitrary, the value exists and the inequality (2.1) holds.

4 Small profitable revelations, simple random walks,

parametric families of matrix games, and proof of

Theorem 2.2

The main tool in the proof is a representation for VN as the value of a martingale-
optimization problem from Proposition 3.5 of Gensbittel (2015) (definitions of Mp and
V1 are introduced in Subsection 3.1 where we already formulated another version of his
result):

VN(p) = max
p(n≥1)∈Mp

E

[
N∑
n=1

V1(Pn)

]
, (4.1)

where Pn is the conditional distribution of p(n+1) given p(1), p(2), ..p(n).
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Remark 4.1. Starting from an arbitrary martingale p(n≥1) one can explicitly construct

a strategy of Player 1 that guarantees E
[∑N

n=1 V1(Pn)
]

in ΓN(p), see Gensbittel (2015).

This idea together with (4.1) comes from De Meyer (2010) where it was formulated in the
context of market models.

In particular, a strategy that gives to Player 1 an expected gain of the order of
√
N

can be extracted from our proof of Theorem 2.2.

We begin with formalization of what does it mean that Player 1 can benefit by reveal-
ing an arbitrary small amount of information. Intuition mentioned in the introduction for
the continuous market model connects this property with

√
N -behavior. So does Propo-

sition 4.1 below. It is proved in Subsection 4.2 using formula 4.1 and explicit construction
of a martingale that provides

√
N -lower bound on VN(p). In Subsection 4.3 we check that

the assumptions of Theorem 2.2 imply existence of small profitable revelations.

4.1 Small profitable revelations imply
√
N-behavior

In an almost fair game Player 1 is said to have small profitable revelations if for some
p′, p′′ ∈ ∆(K), p′ 6= p′′, there exists CA > 0 such that for any α1, α2 ∈ [0, 1]

V1

(
1

2
δp(α1) +

1

2
δp(α2)

)
≥ CA|α1 − α2|,

where p(α) = αp′ + (1− α)p′′, and δp ∈ ∆(∆(K)) is the Dirac δ-measure at p.
In other words, Player 1 has small profitable revelations if at first stage of N -stage

game by an arbitrary small change of the uninformed player’s belief (from p(1) = p
(
α1+α2

2

)
to p(2) = p(α1) or to p(2) = p(α2) equally likely) he can get a profit of the order of this
change.

Proposition 4.1. If in an almost-fair game ΓN with finite I, J , and K Player 1 has
small profitable revelations, then VN(p) is of the order of

√
N for any p ∈ ∆relint(K).

This proposition is proved in the next subsection. Together with the next proposition
it implies Theorem 2.2.

Proposition 4.2. Under the assumptions of Theorem 2.2 Player 1 has small profitable
revelations.

We prove Proposition 4.2 in Subsection 4.3.

4.2 Simple random walks and proof of Proposition 4.1

In order to prove Proposition 4.1 we define a martingale p(n≥1) from Mp( 1
2) that ensures

√
N -lower-bound in (4.1) by

p(n) = p

(
1

2
+
Z(n∧τN )

4
√
N

)
,

16



where Z(n≥1) is the simple random walk over Z starting from 0 at time n = 1, stopping
time τN is the minimal n such that |Z(n)| ≥ 2

√
N − 1, and ∧ denotes taking minimum.

As above, p(α) = αp′ + (1− α)p′′.
The following lemma says that p(n≥1) makes enough jumps before time N + 1.

Lemma 4.1. P({τN > N}) > 1
2

for any N ≥ 1.

Proof. Let us estimate P({τN > N}) = 1 − P
(
{maxn=1,..N

∣∣Z(n)
∣∣ ≥ 2

√
N − 1}

)
from

below.
For any square-integrable martingale ξ(n≥1), λ 6= 0, and N ≥ 1 the maximal Doob

inequality holds (see Revyz, Yor (1999), Corollary (1.6) from Chapter II):

P
({

max
n=1,..N

∣∣ξ(n)
∣∣ ≥ λ

})
≤

E
[(
ξ(N)

)2
]

λ2
.

The simple random walk ZN is a martingale, and hence by Doob’s inequality

P
({

max
n=1,..N

∣∣Z(n)
∣∣ ≥ 2

√
N − 1

})
≤ N − 1

(2
√
N − 1)2

<
1

2
.

Thus P({τN > N}) > 1
2

that completes the proof of the lemma.

Proof of Proposition 4.1. First, let us prove the result for p = p
(

1
2

)
. Using the con-

structed martingale p(n≥1) in formula (4.1) we get

VN

(
p

(
1

2

))
≥ E

[
N∑
n=1

V1(Pn)

]
≥

N∑
n=1

E [V1(Pn) | τN > n]P ({τN > n}) .

If the martingale has a jump at time n, i.e., if τN > n, then the conditional distribution
Pn of p(n+1) given p(1), ..p(n) with p(n) = p(α) is equal to 1

2
δ
p
(
α+ 1

4
√
N

) + 1
2
δ
p
(
α− 1

4
√
N

). Since

Player 1 has small profitable revelations E [V1(Pn) | τN > n] ≥ CA

2
√
N

. Therefore

VN

(
p

(
1

2

))
≥ CA

2
√
N

N∑
n=1

P ({τN > n}) ≥ CA
2

√
NP ({τN > N}) ≥ CA

4

√
N.

(in the last inequality we applied Lemma 4.1). This gives the result for p = p
(

1
2

)
.

Now consider an arbitrary prior distribution p from the relative interior ∆relint(K) of
the simplex. We need two observations:

• For almost-fair games VN(δk) = 0 for any k. Indeed, for such prior both players
know that the game is N times repeated matrix game Ak that can be identified with
ΓNR

1 (δk) and so has zero value.
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• VN is a concave function of p (see Mertens, Sorin, Zamir (2015), Section V.1., or
Gensbittel (2015)).

Any p ∈ ∆relint(K) can be represented as a convex combination p = βp
(

1
2

)
+
∑

k∈K βkδk
with β > 0. The maximal possible β equals 1 − d1

(
p, p

(
1
2

))
, where d1 denotes the

total-variation distance (d1 is defined in Subsection 3.4). Concavity leads to

VN(p) ≥ βVN

(
p

(
1

2

))
+
∑
k∈K

βkVN(δk) = βVN

(
p

(
1

2

))
≥
(

1− d1

(
p, p

(
1

2

)))
CA
4

√
N.

Thus Proposition 4.1 is proved.

4.3 Parametric families of matrix games and proof of Proposi-
tion 4.2

The proof of Proposition 4.2 is based on two lemmas. The first one says that we can
find a subinterval where the unique optimal strategy y∗ = y∗(α) ∈ ∆(J) of Player 2 in
the non-revealing game ΓNR

1 (p(α)) depends on α strongly enough. Let us formulate this
result more rigorously.

Lemma 4.2. Under the assumptions of Theorem 2.2 there exists a constant C > 0 and
0 ≤ αmin < αmax ≤ 1 such that for any α1, α2 ∈ [αmin, αmax]

‖y∗(α1)− y∗(α2)‖ ≥ C|α1 − α2|, (4.2)

where ‖ · ‖ denotes the Euclidean norm.

Proof. Consider an arbitrary matrix game A. Let y∗ be an extreme point of the set of
Player’s 2 optimal strategies. Denote by y∗>0 the vector of its non-zero components. The
classical result of Snow and Shapley (see Karlin (1959), Theorem 2.4.3) says that there

exists a square submatrix M of A such that y∗>0 = adj(M)e
〈e,adj(M)e〉 with non-zero denominator.

Here e denotes the vector of all ones, 〈·, ·〉 is the standard scalar product, and adj(M)
is the adjugate of M , i.e., adj(M)i,j equals the (j, i)-cofactor of M . In particular y∗ is a
rational function of entries of M .

The result of Snow and Shapley implies that, if a matrix game A = A(α) is an affine
function of a parameter α and the optimal strategy y∗ = y∗(α) of Player 2 is unique for all
α, then y∗ is a piecewise-rational function of α with finitely many domains of rationality
(since the number of square submatrices of A is finite).

In Theorem 2.2 it is assumed that y∗(α) takes infinitely many different values. There-
fore there is an interval D ⊂ [0, 1] such that y∗(α) is a non-constant rational function on D.
Hence there is a point in the interior of D where d

dα
y∗ 6= 0. In a small annulus [αmin, αmax]

of this point y∗ is close to affine function with non-zero slope. This implies (4.2).
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The next lemma says that losses of Player 2 from playing non-optimal mixed strategy
in the non-revealing game are proportional to the distance between the strategy used and
the optimal one. This result is similar to Lemma 4.3 from De Meyer (1996A). We borrow
the idea of the proof from his paper.

Lemma 4.3. Under the conditions of Lemma 4.2 there exist an interval [α′min, α
′
max] ⊂

[αmin, αmax] of non-zero length and a constant C ′ > 0 such that for any y ∈ ∆(J) and any
α ∈ [α′min, α

′
max]

max
i∈I

∑
j∈J

A
p(α)
i,j yj ≥ C ′‖y∗(α)− y‖. (4.3)

Proof. Let I0(α) be the set of all i ∈ I such that
∑

j∈J A
p(α)
i,j y∗j (α) = 0. Find a subin-

terval [α′min, α
′
max] of [αmin, αmax] such that I0(α) and the support J∗(α) of y∗(α) remain

the same when α ranges over the subinterval. Such subinterval exists since y∗(α) is a
continuous function of α (indeed, if αm → α as m→∞ and y = limm→∞ y

∗(αm), then y
is an optimal strategy in Ap(α), and hence y = y∗(α) by uniqueness). The left-hand side

of (4.3) is bounded from below by f(α, ε) = maxi∈I0(α)

∑
j∈J A

p(α)
i,j εj, where ε = y−y∗(α).

Define D(α) =
{
ε ∈ RJ | ε = (y − y∗(α))/‖y − y∗(α)‖, y ∈ ∆(K) \ {y∗(α)}

}
and note

that D(α) is a compact set and does not depend on α for α ∈ [α′min, α
′
max]. A func-

tion f is a homogeneous function of ε for any α. Therefore it is enough to show that
C = min[α′min,α

′
max]×D f(α, ε) > 0. Since f is continuous, this minimum exists an is

attained at some (α∗, ε∗). If C ≤ 0, then for λ > 0 small enough we would have

maxi∈I
∑

j∈J A
p(α∗)
i,j yj ≤ 0 for y = y∗(α∗) + λε∗ that contradicts the uniqueness of the

optimal strategy of Player 2 in ΓNR
1 (p(α∗)). This contradiction completes the proof.

Now Proposition 4.2 can be proved easily.

Proof of Proposition 4.2. Consider the game G1(P) with P = 1
2
δp(α1) + 1

2
δp(α2). This game

can be interpreted as follows. Chance selects one of two matrix games Ap(α1) or Ap(α2)

equally likely. Then the game selected is played, but only Player 1 knows the choice. We
assume that α1, α2 ∈ [α′min, α

′
max], where α′min and α′max come from Lemma 4.3. Suppose

Player 2 uses a strategy y ∈ ∆(J). Then Lemmas 4.2 and 4.3 prevents him from being
successful in both Ap(α1) and Ap(α2). More formally, by playing y he defends (see (3.2))

Ep(2)∼P

[
max
i∈I

∑
j∈J

yjA
p(2)

i,j

]
=

1

2
max
i∈I

∑
j∈J

yjA
p(α1)
i,j +

1

2
max
i∈I

∑
j∈J

yjA
p(α2)
i,j .

Lemma 4.3 implies that this amount is bounded from below by

1

2
C ′‖y∗(α1)− y‖+

1

2
C ′‖y∗(α2)− y‖ ≥ 1

2
C ′‖y∗(α1)− y∗(α2)‖.

Here we applied the triangle inequality. By Lemma 4.2 this quantity is greater than
CC ′|α1 − α2|/2. Since y was arbitrary we get

V1

(
1

2
δp(α1) +

1

2
δp(α2)

)
≥ 1

2
CC ′|α1 − α2|.
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This inequality is equivalent to existence of small profitable revelations with redefined p′ =
p(α′min), p′′ = p(α′max), and CA = CC′

2(α′max−α′min)
and concludes the proof of Proposition 4.2.

5 What is next?

The results of this paper raise more questions than answers:

• The piecewise property can be easily checked for any particular repeated game
because it appeals only to a parametric family of matrix games. But can one
describe piecewise games more explicitly? How does one construct examples of such
games? The only way we know is to start from discrete market game and to modify
it somehow.

• Here we obtained that the sequence of values VN of N -stage almost-fair piecewise
game converges to some finite limit V∞ as N → ∞. This suggests one to consider
an infinite-stage version Γ∞ of such game. Do players have optimal strategies in
Γ∞? For discrete market games the positive answer with explicit construction is
given by Domansky (2007). In particular, he obtained that in the infinite market
game Player 1 (behaving optimally) will reveal his private information in a finite
time. Do we have such a counterintuitive effect for all almost-fair piecewise games?
What are the properties of V∞? For market games it is a piecewise-linear function
of p, see the paper of Domansky and the one of De Meyer and Marino (2005). What
is the speed of VN convergence? Sandomirskaia (2016) showed that the speed is
exponential for the discrete market model.

• The role of uniqueness assumption in Theorem 2.2 should be clarified. For example,
are there any almost-fair games with VN growing to infinity but slower than

√
N?

Does there exist a non-piecewise almost-fair game with bounded values?

• Existence of the limit VN/
√
N as N →∞ for games with VN of the order of

√
N is an

important open question. For the widest class of games considered in the literature,
the result is conditional: existence is proved under the assumption that a certain
partial-differential equation has sufficiently regular solution (De Meyer (1996A)).

• To find a proper generalization of Theorem 2.1 to infinite I and J and of Theorem 2.2
to infinite I, J,K seems to be interesting. So are generalizations of the theorems to
games that are not almost-fair or have incomplete information on both sides.

We plan to discuss some of the questions raised in subsequent publications.
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