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Resume

This course introduces a newly developed optimization technique for
a wide class of discrete and continuous-time �nite Markov chains
models.

Along with a coherent introduction to the Markov models description
(controllable Markov chains classi�cations, ergodicity property, rate of
convergence to a stationary distribution) some optimization methods
(such as Lagrange multipliers, Penalty functions and Extra-proximal
scheme) are discussed.

Based on the these models and numerical methods Marketing,
Portfolio Optimization, Transfer Pricing as well as Stackleberg-Nash
Games, Bargaining and Other Con�ict Situations are profoundly
considered.

While all required statements are proved systematically, the emphasis
is on understanding and applying the considered theory to real-world
situations.
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Structure of the course

1-st Lecture Day:
Basic Notions on Controllable Markov Chains Models, Decision
Making and Production Optimization Problem.

2-nd Lecture Day:
The Mean-Variance Customer Portfolio Problem: Bank Credit Policy
Optimization.

3-rd Lecture Day:
Con�ict Situation Resolution: Multi-Participants Problems, Pareto
and Nash Concepts, Stackelberg equilibrium.

4-th Lecture Day:
Bargaining (Negotiation).

5-th Lecture Day:
Partially Observable Markov Chain Models and Tra¢ c Optimization
Problem.
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1-st Lecture Day

Basic Notions
on Controllable Markov Chains

Models,
Decision Making

and Production Optimization
Problem
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Markov Processes
Classical De�nition

PART 1: MARKOV CHAINS AND DECISION MAKING

De�nition
A stochastic dynamic system satis�es the Markov property, as it is
accepted to say (this de�nition was introduced by A.A.Markov in 1906),
"if the probable (future) state of the system at any time t > s is
independent of the (past) behavior of the system at times t < s, given the
present state at time s".

This property can be nicely illustrated by considering a classical movement
of a particle which trajectory after time s depends only on its coordinates
(position) and velocity at time s, so that its behavior before time s has no
absolutely any a¤ect to its dynamic after time s.
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Markov Processes
Stochastic process: rigorous mathematical de�nition

De�nition
x (t,ω) 2 Rn is said to be a stochastic process de�ned on the probability
space (Ω,F ,P) with state space Rn and the index time-set
J := [t0,T ] � [0,∞). Here

ω 2 Ω is an individual trajectory of the process, Ω a set of
elementary events;

F is the collection (σ - algebra) of all possible events arrising from Ω;
P is a probabilistic measure (probability) de�ned for any event A 2 F .

The time set J may be
- discrete, i.e., J = [t0, t1, ..., tn, ...) - then we talk on a discrete-time
stochastic process x (tn,ω) ;
- continuous, i.e., J = [t0,T ) - then we talk on a continuos-time
stochastic process x (t,ω)

Alexander S. Poznyak (Cinvestav, Mexico) Markov Chain Models April 2017 12 / 59



Markov Processes
Stochastic process: illustrative �gures

Discrete time process. Continuos time process.
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Markov Processes
Markov property

De�nition
fx (t,ω)gt2J is called a Markov process (MP), if the following Markov
property holds: for any t0 � τ � t � T an all A 2 Bn

P
n
x (t,ω) 2 A j F[t0,τ]

o
a.s .
= P fx (t,ω) 2 A j x (τ,ω)g
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Finite Markov Chains
Main de�nition

Let the phase space of a Markov process fx (t,ω)gt2T be discrete, that is,

x (t,ω) 2 X := f(1, 2, ...,N) or N[ f0gg
N =1, 2, ... is a countable set, or �nite

De�nition
A Markov process fx (t,ω)gt2T with a discrete phase space X is said to
be a Markov chain (or Finite Markov Chain if N is �nite)

a) in continuous time if

T := [t0,T ) , T is admitted to be ∞

b) in discrete time if

T := ft0, t1, ..., tT g , T is admitted to be ∞
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Finite Markov Chains
Markov property for Markov Chains

Corollary
The main Markov property for this particular case looks as follows:

in continuose time: for any i , j 2 X and any
s1 < � � � < sm < s � t 2 T

P fx (t,ω) = j j x (s1,ω) = i i , ..., x (sm ,ω) = im , x (s,ω) = ig

a.s .
= P fx (t,ω) = j j x (s,ω) = ig

in discrete time: for any i , j 2 X and any n = 0, 1, 2, ...

P fx (tn+1,ω) = j j x (t0,ω)=i0, ..., x (tm ,ω)=im , x (tn,ω)=ig

a.s .
= P fx (tn+1,ω) = j j x (tn,ω) = ig := πj ji (n)
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Finite Markov Chains
(Stationary) Markov Chains

Homogeneous

De�nition
A Markov Chain is said to be Homogeneous (Stationary) if the transition
probabilities are constant, that is,

πj ji (n) = πj ji = const for all n = 0, 1, 2, ...

Figure: The elements of the transition matrix.
Alexander S. Poznyak (Cinvestav, Mexico) Markov Chain Models April 2017 17 / 59



Finite Markov Chains
Transition Matrix

Transition matrix Π:

Π =

26664
π1j1 π2j1 � � � πN j1
π1j2 π2j2 � � � πN j2
...

...
. . .

...
π1jN π2jN � � � πN jN

37775 = �πj ji �i ,j=1,...,N
Stochastic property

N

∑
j=1

πj ji = 1 for all i = 1, ...,N
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Finite Markov Chains
Dynamic Model of Finite Markov Chains

By the Bayes formula

P fAg = ∑
i
P fA j BigP fBig

it follows

P fx (tn+1,ω) = jg =
N

∑
i=1
P fx (tn+1,ω) = j j x (tn,ω) = ig| {z }

πj ji

P fx (tn,ω) = ig

De�ning pi (n) := P fx (tn,ω) = ig , we can write the Dynamic Model of
Finite Markov Chain as

pj (n+ 1) =
N

∑
i=1

πj jipi (n)
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Finite Markov Chains
Dynamic Model of Finite Markov Chains: the vector format

In the vector format, Dynamic Model of Finite Markov Chain can be
represented as follows

p (n+ 1) = Π|p (n) , p (n) := (p1 (n) , ..., pN (n))
|

Iteration back implies

p (n+ 1) = Π|p (n) = (Π|)n+1 p (0)
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Finite Markov Chains
Ergodic Finite Markov Chains: de�nition

De�nition
A Markov Chain is called ergodic if all its states are returnable.

The result below shows that homogeneos ergodic Markov chains posses
some additional property:
after a long time such chains "forget" the initial states from which they
have started.
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Finite Markov Chains
Ergodic Theorem

Theorem (the ergodic theorem)

Let for some state j0 2 X of a homogeneous Markov chain and some n0 > 0, δ
2 (0, 1) for all i 2 (1, ...,N)

(Πn0)j0 ji � δ > 0

i.e., after n0-times multiplications Π by itself at least one column of the matrix
Πn0 has all nonzero elements. Then for any initial state distribution
P fx (t0,ω) = ig and for any i , j 2 (1, ...,N) there exists the limit

p�j := lim
n!∞

(Πn)j ji > 0

such that for any t � 0 this limit is reachable with an exponential rate, namely,���(Πn)j ji � p�j
��� � (1� δ)[tn/n0 ] = e�α[tn/n0 ], α := jln (1� δ)j
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Finite Markov Chains
Ergodic property: example

Show that the Finite Markov Chain with the transition matrix

Π:=

2664
0 0.3 0 0.7
1 0 0 0
0.1 0 0.9 0
0 1 0 0

3775
is ergodic. Indeed, after 2 steps (n0 = 2)

Π2=

2664
0.3 0.7 0 0
0 0.3 0 0.7
0.09 0.03 0.81 0.07
1.0 0 0 0

3775 ,Π3=

2664
0.7 0.09 0 0.21
0.3 0.7 0 0
0.111 0.097 0.729 0.063
0 0.3 0 0.7

3775
Π3 = Π1+n0 contains the column j = 2 with strictly positive elements.
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Finite Markov Chains
Ergodicity coe¢ cient

Corollary
If for a homogeneous �nite Markov chain with transition matrix Π the
ergodicity coe¢ cient kerg (n0) is strictly positive,that is,

kerg (n0) := 1� 1
2
max

i ,j=1,...,N

N

∑
m=1

���(Πn0)mji � (Πn0)mjj

��� > 0
then this chain is ergodic.

Th following simple estimate holds

kerg (n0) � min
i=1,...,N

max
j=1,...,N

(Πn0)j ji := k�erg (n0)

Corollary

Si, if k�erg (n0) > 0, then the chain is ergodic.
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Finite Markov Chains
Main Ergodic property

Corollary

For any j 2 (1, 2, ...,N) of an ergodic homogeneous �nite Markov chain
the components p�j of the stationary distribution, satisfy the folowing
ergodicity relations

p�j = ∑
i2X

πj ji p
�
i

∑
i2X

p�i = 1, p
�
i > 0 (i = 1, 2, ...,N)

9=;
or equivalently, in the vector format

p� = Π|p�, p� := (p�1 , ..., p
�
N ) , Π :=

πj ji

i ,j=1,...,N

that is, the positive vector p� is the eigenvector of the matrix Π| (t)
corresponding to its eigenvalue equal to 1.
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Controllable Markov Chains
Transition matrices for controllable Finite Markov Chain processes

Let Πk (n) :=
πj ji ,k (n)


i ,j=1,...,N

be the transition matrix with the
elements

πj ji ,k (n) :=P fx (tn+1,ω) =j j x (tn,ω) =i , a (tn,ω) =kg , k = 1, ...,K

where the variable a (tn,ω) is associated with a control action (decision
making) from the given set of possible controls (1, ...,K ) . Each control
action a (tn,ω) = k may be selected (realized) in state x (tn,ω) = i with
the probability

dki (n) := P fa (tn,ω) = k j x (tn,ω) = ig

ful�lling the stochastic constraints

dki (n) � 0,
N

∑
k=1

dki (n) = 1 for all i = 1, ...,N
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Controllable Markov Chains
What are control strategies (decision making) for Finite Markov Chain processes?

De�nitions
A sequence fd (0) , d (1) , ...g of a stochastic matrices

d (n) := kdki (n)ki=1,...,N ;k=1,...,K

with the elements satisfying the stochastic constrains is called a control
strategy or decision making process.

If d (n) = d is a constant stochastic matrix such startegy is named
stationary one.
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Controllable Markov Chains
Pure and mixed strategies

De�nition
If each row of the matrix d contains one element equal to 1 and others equal to
zero, i.e., dki = dk0 i δk ,k0 where δk ,k0 is the Kronecker

symbol δk ,k0 :=
�
1 if k = k0
0 if k 6= k0

, then the strategy is referred to as pure, if

at least in one row this is not true, then strategy is called mixed.

Example

d=

2664
0 1 0 0
1 0 0 0
0 0 1 0
0 0 1 0

3775 - a pure
strategy

; d=

2664
0 0.2 0 0.8
1 0 0 0
0.3 0 0.7 0
0 0 1 0

3775 - a mixed
strategy
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Controllable Markov Chains
Structure of a controllable Markov Chain

Figure: Structure of a controllable Markov Chain.
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Controllable Markov Chains
Transition matrix for controllable Markov Chains

Again by the Bayes formula P fAg = ∑
i
P fA j BigP fBig we have

πj ji (n) := P fx (tn+1,ω) = j j x (tn,ω) = ig =
N

∑
k=1

P fx (tn+1) = j j x (tn) = i , a (tn) = kg| {z }
πj ji ,k (n)

P fa (tn) = k j x (tn) = ig| {z }
dk ji (n)

so,

πj ji (n) =
N

∑
k=1

πj ji ,k (n) dk ji (n)

For homogenous Finite Markov models and stationary under stationary
strategies dk ji (n) = dk ji one has

πj ji (d) =
N

∑
k=1

πj ji ,kdk ji
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Controllable Markov Chains
Dynamics of state probabilities

For stationary startegy d = kdkiki=1,...,N ;k=1,...,K we have

pj (n+ 1) := P fx (tn,ω) = ig =
N

∑
i=1

πj ji (d) pi (n)

=
N

∑
i=1

 
N

∑
k=1

πj ji ,kdk ji

!
pi (n)

which represents the Dynamic Model of Controllable Finite Markov Chain
under a stationary starategy d . If for each d the chain is ergodic, then
pj (n) !

n!∞
pj satisfying

pj =
N

∑
i=1

N

∑
k=1

πj ji ,kdk jipi

or
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Controllable Markov Chains
Convergence illustration

Figure: Convergence to stationary distribution.
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Controllable Markov Chains
Dynamics of state probabilities: the vector form

In the vector form the Dynamic Model of Controllable Finite Markov
Chain (or Decision Making process) under a stationary strategy d looks as

p = Π| (d) p

Π (d) =

 N

∑
k=1

πj ji ,kdki


i=1,...,N ;j=1,...,N

Fact
So, the �nal distribution p depends also on the strategy d , that is,
p = p(d), so that

p(d) = Π| (d) p(d)
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Simplest Production Optimization Problem
Problem formulation (1)

PART 2: Simplest Production Optimization Problem

Suppose that some company obtains for the transition

x (tn,ω) = i , a (tn,ω) =k ! x (tn+1,ω) = j

from state i to the state j , applying the control k, the following income

Wj ji ,k , i , j = 1, ..., n, k = 1, ...,K

Then the average income of this company in stationary state is

J (d) :=
N

∑
i=1

N

∑
j=1
Wj ji ,k

 
N

∑
k=1

πj ji ,kdk ji

!
pi =

N

∑
i=1

K

∑
k=1

N

∑
j=1
Wj ji ,kπj ji ,kdk jipi

where the components pi satis�es the ergodicity condition

pj (d) =
N

∑
i=1

N

∑
k=1

πj ji ,kdk jipi (d)
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Simplest Production Optimization Problem
Problem formulation (2)

The rigorous mathematical problem formulation is as follows:

Problem

J (d) =
N

∑
i=1

K

∑
k=1

N

∑
j=1
Wj ji ,kπj ji ,kdk jipi (d)! max

d2Dadm
under the constrains

Dadm :=

(
dk ji : pj (d) =

N

∑
i=1

N

∑
k=1

πj ji ,kdk jipi (d) , j = 1, ...N

dk ji � 0,
N

∑
k=1

dk ji = 1, i = 1, ...N

)

9>>>>>>>>>>>=>>>>>>>>>>>;
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Simplest Production Optimization Problem
Best-reply strategy

De�nition

The matrix dbr is called the best-reply strategy if

dbrβjα=

8><>: 1 if
N

∑
j=1
Wj jα,βπj jα,β�

N

∑
j=1
Wj ji ,kπj ji ,k

0 if not

Indeed, the upper bound for J (d) can be estimated as

J (d) =
N

∑
i=1

K

∑
k=1

N

∑
j=1
Wj ji ,kπj ji ,kdk jipi (d)�

N

∑
i=1
max
k

 
N

∑
j=1
Wj ji ,kπj ji ,k

!
pi (d)

which is reachable for dbrk ji = d
br
k ji . It is optimal if and only if

max
k

 
N

∑
j=1
Wj ji ,kπj ji ,k

!
=max

k

 
N

∑
j=1
Wj js ,kπj js ,k

!
8i , s (1)

Alexander S. Poznyak (Cinvestav, Mexico) Markov Chain Models April 2017 36 / 59



Simplest Production Optimization Problem
State and action spaces interpretation (1)

Example (State and action spaces interpretation)
Let

the state x (tn,ω) = i be associated with a number of working unites
(sta¤ places);

the action a (tn,ω) =k is related with the �nancial schedule (possible
wage increase,decreasing or no changes): k = (�1, 0, 1);
the incomes for these actions may be calculated as

Wj ji ,k = [v0 � (v + ∆vk)� v1] (j � i)

where v0 the price of the product, produced by a single working unit
with the salary v , its ∆v adjustment and the production costs v1
supporting this process.
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Simplest Production Optimization Problem
State and action spaces interpretation (2)

Example (State and action spaces interpretation (continuation-1))

For example, for N = 3, i = (10, 20, 30) and v0 = 400, 000.00,
v1 = 20, 000.00, v = 80, 000.00, ∆v = 5, 000.00 we have

Wj ji ,k=�1
 =

24 0 3050, 000.00 6100, 000.00
�3050, 000.00 0 3050, 000.00
�6100, 000.00 �3050, 000.00 0

35
Wj ji ,k=0

 =
24 0 3000, 000.00 6000, 000.00
�3000, 000.00 0 3000, 000.00
�6000, 000.00 �3000, 000.00 0

35
Wj ji ,k=1

 =
24 0 2950, 000.00 5900, 000.00
�2950, 000.00 0 2950, 000.00
�5900, 000.00 �2950, 000.00 0

35
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Simplest Production Optimization Problem
State and action spaces interpretation (3)

Example (State and action spaces interpretation (continuation-2))

Let the transition matrices
πj ji ,k

 be as follows:
24 0.5 0.3 0.2

0 0.5 0.5
0 0.5 0.5

35
| {z }

k=�1

,

24 0 0.1 0.9
0 0 1
0 0 1

35
| {z }

k=0

,

24 0.5 0.2 0.3
0 0.25 0.75
1 0 0

35
| {z }

k=1
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Simplest Production Optimization Problem
State and action spaces interpretation (4)

Example (State and action spaces interpretation (continuation-3))

Then the matrix

 N

∑
j=1
Wj ji ,kπj ji ,k

, participating in the average income, is
 N

∑
j=1
Wj ji ,kπj ji ,k

 =

2 745 000 5 700 000 2 360 000
1 525 000 3 000 000 2 212 500
�1 525 000 0 �5 900 000


and the best reply strategy is (it is non-optimal)

dbr =


0 1 0
0 1 0
0 1 0


So, no changes are recommended since k� = 0 for all states i .
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Optimization Problem with Additional Constrains
Problem formulation with additional constrains

Problem

J (d) =
N

∑
i=1

K

∑
k=1

N

∑
j=1
Wj ji ,kπj ji ,kdk jipi (d)! max

d2Dadm
under the constrains

Dadm :=

(
dk ji : pj (d) =

N

∑
i=1

N

∑
k=1

πj ji ,kdk jipi (d) , j = 1, ...N

dk ji� 0,
N

∑
k=1

dk ji= 1, i = 1, ...N

N

∑
i=1

K

∑
k=1

 
N

∑
j=1
A(l)j ji ,kπj ji ,k

!
dk jipi (d)� bl , l = 1, ..., L

)

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
The additional constrains may be interpreted as some �nancial limitations.
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Optimization Problem with Additional Constrains
What can we do in this complex situation?

Fact
The best reply strategy in general is non optimal: it may not satisfy
condition (1) and the additional constrans.

The functional

J (d) =
N

∑
i=1

K

∑
k=1

N

∑
j=1
Wj ji ,kπj ji ,kdk jipi (d)

as well as the constrains

pj (d) =
N

∑
i=1

N

∑
k=1

πj ji ,kdk jipi (d) ,
N

∑
i=1

K

∑
k=1

N

∑
j=1
A(l)j ji ,kπj ji ,kdk jipi (d)� bl

are extremely nonlinear functions of d .

The question is: what can we do in this complex situation?
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Optimization Problem with Additional Constrains
What can we do in this complex situation? Answer: c-variables!

De�nition
De�ne new variables

cik := dk jipi (d)

Then the Production Optimization Problem can be express as a Linear
Programming Problem solved by standard Matlab Toolbox:

J (d) =
N

∑
i=1

K

∑
k=1

N

∑
j=1
Wj ji ,kπj ji ,k| {z }
W π
ik

dk jipi (d)| {z }
cik

=
N

∑
i=1

K

∑
k=1

W π
ik cik := J (c)! min

c2Cadm

Cadm :=

(
cik :

N

∑
k=1

cjk=
N

∑
i=1

K

∑
k=1

πj ji ,kcik , j =1,N, c ik� 0,
N

∑
i=1

K

∑
k=1

cik= 1,

N

∑
i=1

K

∑
k=1

 
N

∑
j=1
A(l)j ji ,kπj ji ,k

!
cik� bl , l =1, L

)
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Optimization Problem with Additional Constrains
Important properties of c-variables

Corollary

For c-variables de�ned as cik := dk jipi (d) and found as the solution c�

of the LPP above

1) we can recuperate the state distribution pi (d�) as

pi (d�) =
K

∑
k=1

c�ik > 0 (by the ergodicity property)

2) and the optimal control strategy (or decision making) d�k ji can be
recuperated as

d�k ji =
c�ik

p�i (d)
=

c�ik
K

∑
k=1

c�ik
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Soltion of LPP
Numerical solution of LPP with the data of the previous example

c�ik =

24 0.0001 0.0001 0.0001
0.0001 0.0001 0.3996
0.5996 0.0001 0.0002

35
p�i (d) = (0.0003, 0.3998, 0.5999)

d�k ji =

24 0.3333 0.3333 0.3333
0.0002 0.0003 0.9995
0.9995 0.0002 0.0003

35
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Continuous-time controllable Markov chains
Main de�nition

De�nition
A controllable continuous-time Markov chain is a 4-tuple

CTMC = (S ,A,K,Q) where S is the �nite state space
n
s(1), ..., s(N )

o
, A is

the set of actions: for each s 2 S , A(s) � A is the non-empty set of admissible
actions at state s 2 S , K = f(s, a)js 2 S , a 2 A(s)g is the class of admissible
state-action pairs and Q = is the transition rates

h
q(j ji ,k )

i
with the elements

de�ned as

q(j ji ,k )=

8<:q(i ji ,k ) = �
N
∑
i 6=j
q(j ji ,k ) � 0 if i = j

� 0 if i 6= j
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Continuous-time controllable Markov chains
Properties of the the transition rates

Fact
For each �xed k the matrix of the transition rates is assumed to be

conservative, i.e., from the de�nition above it follows that
N
∑
j=1

q(j ji ,k ) = 0 and

stable, which means that q(i ) := max
a(k )2A(s(i ))

q
(j ji ,k ) < ∞ 8i .

Example

q(j ji ,k=1)=

266664
�0.5366 0.0888 0.0611 0.1893 0.1409
0.0416 �0.5689 0.0588 0.1331 0.0942
0.2358 0.1929 �0.3784 0.1878 0.2084
0.0942 0.1929 0.1244 �0.5963 0.0570
0.1649 0.0942 0.1342 0.0861 �0.5005

377775
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Continuous-time controllable Markov chains
Transition probabilities

De�nition
Let Xs := fi 2 X : P fx (s,ω) = ig 6= 0, s 2 T g. For s � t (s, t 2 T )
and i 2 Xs , k 2 A, j 2 X de�ne the conditional probabilities

πj ji ,k (s, t) := P fx (t,ω) = j j x (s,ω) = i , a (s) = kg

which we will call the transition probabilities of a given Markov chain de�ning the
conditional probability for a process fx (t,ω)gt2T to be in the state j at time t
under the condition that it was in the state i at time s < t and in the same tame
the decision a (s) = k was done. The transition probabilities to be in the state j
at time t under the condition that it was in the state i at time s < t

πij (s, t j d):=
K
∑
k=1

πj ji ,k (s, t)P fa (s)=k j x (s,ω)=ig| {z }
dk ji

=
K
∑
k=1

πj ji ,k (s, t) dk ji
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Continuous-time controllable Markov chains
Properties of Transition probabilities

The function πij (s, t j d) for any i 2 Xs , j 2 X and any s � t (s, t 2 T )
should satisfy the following four conditions:

1) πij (s, t j d) is a conditional probability, and hence, is nonnegative, that is,
πi ,j (s, t) � 0.

2) starting from any state i 2 Xs the Markov chain will obligatory occur in
some state j 2 Xt , i.e., ∑

j2Xt
πij (s, t j d) = 1.

3) if no transitions, the chain remains to in its starting state with probability
one, that is, πij (s, s j d) = δij for any i , j 2 Xs , j 2 X and any s 2 T ;

4) the chain can occur in the state j 2 Xt passing through any intermediate
state k 2 Xu (s � u � t), i.e.,

πij (s, t j d) = ∑
k2Xu

πik (s, u j d)πkj (u, t j d)

This relation is known as the Markov (or Chapman-Kolmogorov) equation.
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Continuous-time controllable Markov chains
Properties of Transition probabilities for homogeneous Markov chains

Corollary

Since for homogeneous Markov chains the transition probabilities πi ,j (s, t)
depend only on the di¤erence (t � s), below we will use the notation

πij (s � t j d) := πij (s, t j d) (2)

In this case the Markov equation becomes

πi ,j (h1 + h2 j d) = ∑
k2X

πi ,k (h1 j d)πk ,j (h2 j d) (3)

valid for any h1, h2 � 0.
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Continuous-time controllable Markov chains
Distribution function of the time just before changing the current state

Consider now the time τ (after the time s) just before changing the current
state i , i.e., τ > s .

By the homogeneity property it follows that distribution function of the time
τ1 (after the time s1 := s + u, x (s + u,ω) = i) is the same as for the τ
(after the time s , x (s,ω) = i) that leads to the following identity

P fτ > v j x (s,ω) = ig = P fτ1 > v j x (s1,ω) = ig

P fτ > v + u j x (s + u,ω) = ig =

P fτ > u + v j x (s,ω) = i , τ > u � sg

since the event fx (s,ω) = i , τ > ug includes as a subset the event
fx (s + u,ω) = ig.
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Continuous-time controllable Markov chains
Lemma on the expectation time before changing a state

Lemma
The expectation time τ (of the homogenous Markov chain fx (t,ω)gt2T with
a discrete phase space X ) to be in the current state x (s,ω) = i before its
changing has the exponential distribution

P fτ > v j x (s,ω) = ig = e�λi v (4)

where λi is a nonnegative constant which inverse value characterizes the
average expectation time before the changing the state x (s,ω) = i , namely,

1
λi
= E fτ j x (s,ω) = ig , λi =

���q(i ji ,k )��� = N
∑
i 6=j
q(j ji ,k ) (5)

The constant λi is usually called the "exit density".
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Continuous-time controllable Markov chains
Ideas of the proof (1)

Proof.
De�ne the function fi (u) as fi (u) := P fτ > u j x (s,ω) = ig. By the Bayes
formula

fi (u + v) := P fτ > u + v j x (s,ω) = ig=
P fτ > u + v j x (s,ω) = i , τ > ugP fτ > u j x (s,ω) = ig

= P fτ > u + v j x (s,ω) = i , τ > ug fi (u)

By the homogeneous property one has

fi (u + v) := P fτ > u + v j x (s,ω) = ig=
P fτ > v j x (s,ω) = ig fi (u) = f i (v) fi (u)

which means that

ln fi (u + v) = ln fi (u) + ln fi (v)
fi (τ = 0) = P fτ > 0 j x (s,ω) = ig= 1
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Continuous-time controllable Markov chains
Ideas of the proof (2)

Proof.
[Continuation of the proof] Di¤erentiation the logarithmic identity by u gives
f 0i (u+v )
fi (u+v )

=
f 0i (u)
fi (u)

which for u = 0 becomes

f 0i (v )
fi (v )

=
f 0i (0)
fi (0)

= f 0i (0) := �λi ! fi (v) = e�λi v

To prove (5) it is su¢ cient to notice that

E fτ j x (s,ω) = ig =
∞R

t=0
td [�fi (t)] =

�
�te�λi t

�∞
t=0 �

∞R
t=0

�
�e�λi t

�
dt =

∞R
t=0

e�λi tdt = λ�1i

Lemma is proven.
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Continuous-time controllable Markov chains
The Kolmogorov forward equations

For homogenous Markov chains πij (s, t j d) = πij (t � s j d) and
stationary strategies P fa (s) = k j x (s,ω) = ig = dk ji the Markov
equation becomes (taking s = 0)

d
dt

πij (t j d) = �
 
N

∑
i
q(j ji ,k )

!
πij (t j d) + q(j ji ,k )πil (t j d)

can be written as the matrix di¤erential equation as follows:

Π0(t j d) = Π(t j d)Q (d) ; Π(0) = IN�N

Π(t j d) = kπi ,k (t j d)k 2 RN�N , Q (d) =

 K
∑
k=1

q(j ji ,k )dk ji


This system can be solved by

Π(t j d) = Π(0)eQ (d )t = eQt :=
∞

∑
t=0

tnQn (d)
n!

(6)
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Continuous-time controllable Markov chains
Stationary distribution

At the stationary state, the probability transition matrix is

Π (d) = lim
t!∞

Π(t j d)

De�nition

The vector P 2 RN
�
N
∑
i=1
Pi = 1

�
is called the stationary distribution vector

if
Π> (d)P = P

Claim
This vector can be seen as the long run proportion of time that the process is in
state s(i ) 2 S .

Alexander S. Poznyak (Cinvestav, Mexico) Markov Chain Models April 2017 56 / 59



Continuous-time controllable Markov chains
Additional linear constraint

Theorem (Xianping Guo, Onesimo Hernandez Lerma, 2009)
The the stationary distribution vector P satis�es the linear equation

Q> (d)P = 0 (7)

Fact
The Production Optimization Problem, described by a continuous-time
controllable Markov chain in stationary states, is the same Linear programming
problem (LPP) as for a discrete-time model but with the additional linear
constraint (7).
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Conclusion
Which topics we have discussed today?

1-st Lecture Day: Basic Notions on Controllable Markov Chains Models,
Decision Making and Production Optimization Problem.
� Markov Processes: Classical De�nition (Markov), Mathematical De�nition
(Kolmogorov), Markov property in a general format
� Finite Markov Chains: Main de�nition, Homogeneous (Stationary) Markov
Chains, Transition matrix, Dynamic Model of Finite Markov Chains,

Ergodic Markov Chains, Ergodic Theorem, Ergodicity coe¢ cient.
� Controllable Markov Chains: Transition matrices for controllable Finite
Markov Chain processes, Pure and mixed strategies.
� Simplest Production Optimization Problem: c-variables, Linear
Programming Problem.
� Continuous-time controllable Markov chains: Distribution function of the
time just before changing the current state, the transition rates,

expectation time, Additional linear constraint and LPP problem.
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Conclusion
Next lecture

Next Lecture Day: The Mean-Variance Customer Portfolio Problem:
Bank Credit Policy Optimization.

Thank you for your attention! See you soon!
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