Markov Chain Models in Economics, Management and Finance

Intensive Lecture Course

in High Economic School, Moscow Russia

Alexander S. Poznyak

Cinvestav, Mexico

April 2017

Alexander S. Poznyak (Cinvestav, Mexico)

Markov Chain Models

April 2017 1 / 59

Alexander S. Poznyak CINVESTAV-IPN, Mexico http://www.ctrl.cinvestav.mx/coordinacion/apoznyak/apoznyak.html apoznyak@ctrl.cinvestav.mx

Resume

- This course introduces a newly developed optimization technique for a wide class of discrete and continuous-time finite Markov chains models.
- Along with a coherent introduction to the Markov models description (controllable Markov chains classifications, ergodicity property, rate of convergence to a stationary distribution) some optimization methods (such as Lagrange multipliers, Penalty functions and Extra-proximal scheme) are discussed.
- Based on the these models and numerical methods Marketing, Portfolio Optimization, Transfer Pricing as well as Stackleberg-Nash Games, Bargaining and Other Conflict Situations are profoundly considered.
- While all required statements are proved systematically, the emphasis is on understanding and applying the considered theory to real-world situations.

• 1-st Lecture Day:

Basic Notions on Controllable Markov Chains Models, Decision Making and Production Optimization Problem.

• 2-nd Lecture Day:

The Mean-Variance Customer Portfolio Problem: Bank Credit Policy Optimization.

• 3-rd Lecture Day:

Conflict Situation Resolution: Multi-Participants Problems, Pareto and Nash Concepts, Stackelberg equilibrium.

• 4-th Lecture Day:

Bargaining (Negotiation).

• 5-th Lecture Day:

Partially Observable Markov Chain Models and Traffic Optimization Problem.

Books:1

Alexander S. Poznyak (Cinvestav, Mexico)

Markov Chain Models

▲ ■ ▶ ■ つへの April 2017 5 / 59

(日) (同) (三) (三)

Books:2

VOLUME ONE **ADVANCED** MATHEMATICAL TOOLS FOR AUTOMATIC CONTROL ENGINEERS **Deterministic Techniques** ALEXANDER S. POZNYAK

ADVANCED MATHEMATICAL TOOLS FOR AUTOMATIC CONTROL ENGINEERS

Stochastic Techniques

ALEXANDER S. POZNYAK

(日) (同) (三) (三)

Papers recently published (1)

- Julio B. Clempner and Alexander S. Poznyak, Simple Computing of the Customer Lifetime Value: a Fixed Local-OoptimalL Policy Approach. J. Syst. Sci. Syst. Eng. December 2014, v.23, issue 4, pp. 439-459.
- Kristal K.Trejo, Julio B..Clempner, Alexander S. Poznyak. A Stackelberg security game with random strategies based on the extraproximal theoretic approach. Engineering Applications of Artificial Intelligence, 37 (2015), 145–153.
- Kristal K.Trejo, Julio B..Clempner, Alexander S. Poznyak. A Computing the Stckleberge/Nash Equilibria Using the Extraproximal Method. Int. J. Appl. Math. Comput. Sci., 2015, Vol. 25, No. 2, 337–351.
- Julio B. Clempner, **Alexander S. Poznyak**. Modeling the multi-traffic signal-control synchronization: A Markov chains game theory approach. Engineering Applications of Artificial Intelligence, 43 (2015) 147–156.
- Julio B. Clempner, Alexander S. Poznyak. Stackelberg security games: Computing the shortest-path equilibrium. Expert Systems with Applications, 42 (2015), 3967–3979.

Papers recently published (2)

- Emma M. Sanchez, Julio B. Clempner and **Alexander S. Poznyak**. Solving The Mean-Variance Customer Portfolio In Markov Chains Using Iterated Quadratic/Lagrange Programming: A Credit-Card Customer Limits Approach. Expert Systems with Applications. 42 (2015) pp. 5315–5327.
- Emma M. Sanchez, Julio B. Clempner and Alexander S. Poznyak. A priori-knowledge/actor-critic reinforcement learning architecture for computing the mean-variance customer portfolio: The case of bank marketing campaigns. Engineering Applications of Artificial Intelligence. Volume 46, Part A, November 2015, Pages 82–92.
- Julio B. Clempner, **Alexander S. Poznyak**. Computing the strong Nash equilibrium for Markov chains games. Applied Mathematics and Computation, Volume 265, 15 August 2015, Pages 911–927.
- Julio B. Clempner, Alexander S. Poznyak. Convergence analysis for pure stationary strategies in repeated potential games: Nash, Lyapunov and correlated equilibria. Expert Systems with Applications. Volume 46, 15 March 2016. Pages 474–484.

Papers recently published (3)

- Julio B. Clempner, Alexander S. Poznyak. Solving the Pareto front for multiobjective Markov chains using the minimum Euclidean distance gradient-based optimization method. Mathematics and Computers in Simulation. Volume 119, January 2016, Pages 142–160.
- Julio B. Clempner and **Alexander S. Poznyak**. Constructing the Pareto front for multi-objective Markov chains handling a strong Pareto policy approach. Comp. Appl. Math. DOI 10.1007/s40314-016-0360-6.
- Julio B. Clempner, **Alexander S. Poznyak**. Multiobjective Markov chains optimization problem with strong Pareto frontier: Principles of decision making. Expert Systems With Applications 68 (2017) 123–135.
- J. Clempner and A. Poznyak. Analyzing An Optimistic Attitude For The Leader Firm In Duopoly Models: A Strong Stackelberg Equilibrium Based On A Lyapunov Game Theory Approach. Economic Computation And Economic Cybernetics Studies And Research. 4 (2017), 50, 41-60.

イロト イヨト イヨト

1-st Lecture Day

Basic Notions on Controllable Markov Chains Models. **Decision Making** and Production Optimization Problem

Alexander S. Poznyak (Cinvestav, Mexico)

Markov Chain Models

April 2017 10 / 59

PART 1: MARKOV CHAINS AND DECISION MAKING

Definition

A stochastic dynamic system satisfies **the Markov property**, as it is accepted to say (this definition was introduced by A.A.Markov in 1906), "*if the probable (future) state of the system at any time* t > s *is independent of the (past) behavior of the system at times* t < s, given the present state at time s".

This property can be nicely illustrated by considering a classical movement of a particle which trajectory after time s depends only on its coordinates (position) and velocity at time s, so that its behavior before time s has no absolutely any affect to its dynamic after time s.

Alexander S. Poznyak (Cinvestav, Mexico)

Markov Chain Models

Markov Processes

Stochastic process: rigorous mathematical definition

Definition

 $x(t, \omega) \in \mathbb{R}^n$ is said to be a stochastic process defined on the probability space $(\Omega, \mathcal{F}, \mathsf{P})$ with state space \mathbb{R}^n and the index time-set $J := [t_0, \mathcal{T}] \subseteq [0, \infty)$. Here

- $\omega \in \Omega$ is an individual trajectory of the process, Ω a set of elementary events;
- ${\mathcal F}$ is the collection (σ algebra) of all possible events arrising from Ω ;
- P is a probabilistic measure (probability) defined for any event $A \in \mathcal{F}$.

The time set *J* may be - *discrete*, i.e., $J = [t_0, t_1, ..., t_n, ...)$ - then we talk on a **discrete-time stochastic process** $x(t_n, \omega)$; - *continuous*, i.e., $J = [t_0, T)$ - then we talk on a **continuos-time stochastic process** $x(t, \omega)$

Markov Processes

Stochastic process: illustrative figures

Markov property

Definition

 $\{x(t,\omega)\}_{t\in J}$ is called a **Markov process (MP)**, if the following **Markov property** holds: for any $t_0 \leq \tau \leq t \leq T$ an all $A \in \mathcal{B}^n$

$$\mathsf{P}\left\{x\left(t,\omega\right)\in\mathsf{A}\mid\mathcal{F}_{\left[t_{0},\tau\right]}\right\}\stackrel{a.s.}{=}\mathsf{P}\left\{x\left(t,\omega\right)\in\mathsf{A}\mid x\left(\tau,\omega\right)\right\}$$

3 1 4

Main definition

Let the *phase space* of a Markov process $\{x(t, \omega)\}_{t \in T}$ be *discrete*, that is,

$$\begin{split} x\left(t,\omega\right) \in \mathcal{X} &:= \{(1,2,...,N) \text{ or } \mathbb{N} \cup \{0\}\}\\ \mathbb{N} = &1,2,... \text{ is a countable set, or finite} \end{split}$$

Definition

A Markov process $\{x(t, \omega)\}_{t \in T}$ with a discrete phase space X is said to be a Markov chain (or Finite Markov Chain if \mathbb{N} is finite)

a) in continuous time if

$$\mathcal{T}:=[t_0,\,T)$$
 , $\,\,T$ is admitted to be ∞

b) in discrete time if

 $\mathcal{T}:=\{\mathit{t}_{0},\mathit{t}_{1},...,\mathit{t}_{\mathcal{T}}\}$, T is admitted to be ∞

Markov property for Markov Chains

Corollary

The main Markov property for this particular case looks as follows:

• in continuose time: for any $i, j \in \mathcal{X}$ and any $s_1 < \cdots < s_m < s \le t \in \mathcal{T}$

$$\mathsf{P}\left\{x\left(t,\omega\right)=j\mid x\left(s_{1},\omega\right)=i_{i},...,x\left(s_{m},\omega\right)=i_{m},x\left(s,\omega\right)=i\right\}$$
$$\stackrel{\mathsf{a.s.}}{=}\mathsf{P}\left\{x\left(t,\omega\right)=j\mid x\left(s,\omega\right)=i\right\}$$

• in discrete time: for any $i, j \in \mathcal{X}$ and any n = 0, 1, 2, ...

$$\mathsf{P} \{ x (t_{n+1}, \omega) = j \mid x (t_0, \omega) = i_0, ..., x (t_m, \omega) = i_m, x (t_n, \omega) = i \}$$

=
$$\mathsf{P} \{ x (t_{n+1}, \omega) = j \mid x (t_n, \omega) = i \} := \pi_{j|i} (n)$$

(Stationary) Markov Chains

Homogeneous

Definition

A Markov Chain is said to be Homogeneous **(Stationary)** if the transition probabilities are constant, that is,

$$\pi_{j|i}\left(n
ight) =\pi_{j|i}= ext{const}$$
 for all $n=$ 0, 1, 2, ...

• Transition matrix Π :

$$\Pi = \begin{bmatrix} \pi_{1|1} & \pi_{2|1} & \cdots & \pi_{N|1} \\ \pi_{1|2} & \pi_{2|2} & \cdots & \pi_{N|2} \\ \vdots & \vdots & \ddots & \vdots \\ \pi_{1|N} & \pi_{2|N} & \cdots & \pi_{N|N} \end{bmatrix} = [\pi_{j|i}]_{i,j=1,\dots,N}$$

• Stochastic property

$$\boxed{\sum\limits_{j=1}^{N}\pi_{j\mid i}=1 ext{ for all } i=1,...,N}$$

Dynamic Model of Finite Markov Chains

By the Bayes formula

$$\mathsf{P}\left\{A\right\} = \sum_{i} \mathsf{P}\left\{A \mid B_{i}\right\} \mathsf{P}\left\{B_{i}\right\}$$

it follows

$$P\left\{x\left(t_{n+1},\omega\right)=j\right\} = \sum_{i=1}^{N} \underbrace{P\left\{x\left(t_{n+1},\omega\right)=j \mid x\left(t_{n},\omega\right)=i\right\}}_{\pi_{j|i}} P\left\{x\left(t_{n},\omega\right)=i\right\}}_{\pi_{j|i}}$$

Defining $p_i(n) := P\{x(t_n, \omega) = i\}$, we can write the Dynamic Model of Finite Markov Chain as

$$p_{j}(n+1) = \sum_{i=1}^{N} \pi_{j|i} p_{i}(n)$$

Dynamic Model of Finite Markov Chains: the vector format

In the vector format, Dynamic Model of Finite Markov Chain can be represented as follows

$$p(n+1) = \Pi^{\mathsf{T}} p(n)$$
, $p(n) := (p_1(n), ..., p_N(n))^{\mathsf{T}}$

Iteration back implies

$$p(n+1) = \Pi^{T} p(n) = (\Pi^{T})^{n+1} p(0)$$

Definition

A Markov Chain is called ergodic if all its states are returnable.

The result below shows that homogeneos ergodic Markov chains posses some additional property:

after a long time such chains "forget" the initial states from which they have started.

Ergodic Theorem

Theorem (the ergodic theorem)

Let for some state $j_0 \in X$ of a homogeneous Markov chain and some $n_0 > 0$, $\delta \in (0, 1)$ for all $i \in (1, ..., N)$

$$(\Pi^{n_0})_{j_0|i} \ge \delta > 0$$

i.e., after n₀-times multiplications Π by itself at least one column of the matrix Π^{n_0} has all nonzero elements. Then for any initial state distribution $P\{x(t_0, \omega) = i\}$ and for any $i, j \in (1, ..., N)$ there exists the limit

$$p_j^* := \lim_{n \to \infty} (\Pi^n)_{j|i} > 0$$

such that for any $t \geq 0$ this limit is reachable with an exponential rate, namely,

$$\left| (\Pi^n)_{j|i} - p_j^* \right| \le (1 - \delta)^{[t_n/n_0]} = e^{-\alpha [t_n/n_0]}, \alpha := |\ln (1 - \delta)|$$

Finite Markov Chains Ergodic property: example

Show that the Finite Markov Chain with the transition matrix

$$\Pi := \left[egin{array}{ccccc} 0 & 0.3 & 0 & 0.7 \ 1 & 0 & 0 & 0 \ 0.1 & 0 & 0.9 & 0 \ 0 & 1 & 0 & 0 \end{array}
ight]$$

is *ergodic*. Indeed, after 2 steps $(n_0 = 2)$

$$\Pi^{2} = \begin{bmatrix} 0.3 & 0.7 & 0 & 0 \\ 0 & 0.3 & 0 & 0.7 \\ 0.09 & 0.03 & 0.81 & 0.07 \\ 1.0 & 0 & 0 & 0 \end{bmatrix}, \Pi^{3} = \begin{bmatrix} 0.7 & 0.09 & 0 & 0.21 \\ 0.3 & 0.7 & 0 & 0 \\ 0.111 & 0.097 & 0.729 & 0.063 \\ 0 & 0.3 & 0 & 0.7 \end{bmatrix}$$

 $\Pi^3 = \Pi^{1+n_0}$ contains the column j = 2 with strictly positive elements.

Ergodicity coefficient

Corollary

If for a homogeneous finite Markov chain with transition matrix Π the **ergodicity coefficient** $k_{erg}(n_0)$ is strictly positive, that is,

$$k_{erg}(n_{0}) := 1 - \frac{1}{2} \max_{i,j=1,\dots,N} \sum_{m=1}^{N} \left| (\Pi^{n_{0}})_{m|i} - (\Pi^{n_{0}})_{m|j} \right| > 0$$

then this chain is ergodic.

Th following simple estimate holds

$$k_{erg}\left(n_{0}\right) \geq \min_{i=1,\ldots,N} \max_{j=1,\ldots,N} \left(\Pi^{n_{0}}\right)_{j\mid i} := k_{erg}^{-}\left(n_{0}\right)$$

Corollary

Si, if $k_{erg}^{-}\left(n_{0}\right)>0$, then the chain is ergodic.

Main Ergodic property

Corollary

For any $j \in (1, 2, ..., N)$ of an ergodic homogeneous finite Markov chain the components p_j^* of the stationary distribution, satisfy the following ergodicity relations

$$\left. \begin{array}{c} p_{j}^{*} = \sum\limits_{i \in \mathcal{X}} \pi_{j|i} \, p_{i}^{*} \\ \sum\limits_{i \in \mathcal{X}} p_{i}^{*} = 1, \, p_{i}^{*} > 0 \ (i = 1, 2, ..., N) \end{array} \right\}$$

or equivalently, in the vector format

$$p^* = \Pi^{\mathsf{T}} p^*, \qquad p^* := (p_1^*, ..., p_N^*), \quad \Pi := \left\| \pi_{j|i} \right\|_{i,j=1,...,N}$$

that is, the positive vector p^* is the eigenvector of the matrix $\Pi^{\intercal}(t)$ corresponding to its eigenvalue equal to 1.

Alexander S. Poznyak (Cinvestav, Mexico)

Markov Chain Models

Transition matrices for controllable Finite Markov Chain processes

Let $\Pi_{k}(n) := \left\|\pi_{j|i,k}(n)\right\|_{i,j=1,...,N}$ be the transition matrix with the elements

$$\left|\pi_{j|i,k}(n):=P\left\{x\left(t_{n+1},\omega\right)=j\mid x\left(t_{n},\omega\right)=i, \ a\left(t_{n},\omega\right)=k\right\}, k=1,...,K\right\}$$

where the variable $a(t_n, \omega)$ is associated with a control action (decision making) from the given set of possible controls (1, ..., K). Each control action $a(t_n, \omega) = k$ may be selected (realized) in state $x(t_n, \omega) = i$ with the probability

$$d_{ki}(n) := P\left\{a\left(t_{n}, \omega\right) = k \mid x\left(t_{n}, \omega\right) = i\right\}$$

fulfilling the stochastic constraints

$$d_{ki}\left(n
ight)\geq0,\sum_{k=1}^{N}d_{ki}\left(n
ight)=1 ext{ for all }i=1,...,N$$

イロト イポト イヨト イヨト

What are control strategies (decision making) for Finite Markov Chain processes?

Definitions

A sequence $\{d(0), d(1), ...\}$ of a stochastic matrices

$$d(n) := \|d_{ki}(n)\|_{i=1,\ldots,N;k=1,\ldots,K}$$

with the elements satisfying the stochastic constrains is called **a control strategy** or **decision making process.**

If d(n) = d is a constant stochastic matrix such startegy is named **stationary** one.

Pure and mixed strategies

Definition

If each row of the matrix d contains one element equal to 1 and others equal to zero, i.e., $d_{ki} = d_{k_0i}\delta_{k,k_0}$ where δ_{k,k_0} is the Kronecker symbol $\delta_{k,k_0} := \begin{cases} 1 & \text{if } k = k_0 \\ 0 & \text{if } k \neq k_0 \end{cases}$, then the strategy is referred to as **pure**, if at least in one row this is not true, then strategy is called **mixed**.

Example

Structure of a controllable Markov Chain

Figure: Structure of a controllable Markov Chain.

Alexander S. Poznyak (Cinvestav, Mexico)

Markov Chain Models

April 2017 29 / 59

Transition matrix for controllable Markov Chains

Again by the Bayes formula
$$P \{A\} = \sum_{i} P \{A \mid B_i\} P \{B_i\}$$
 we have

$$\pi_{j|i}(n) := P \{x(t_{n+1}, \omega) = j \mid x(t_n, \omega) = i\} = \sum_{k=1}^{N} \underbrace{P \{x(t_{n+1}) = j \mid x(t_n) = i, a(t_n) = k\}}_{\pi_{j|i,k}(n)} \underbrace{P \{a(t_n) = k \mid x(t_n) = i\}}_{d_{k|i}(n)}$$

so,

$$\pi_{j|i}(n) = \sum_{k=1}^{N} \pi_{j|i,k}(n) d_{k|i}(n)$$

For homogenous Finite Markov models and stationary under stationary strategies $d_{k|i}(n) = d_{k|i}$ one has

$$\pi_{j|i}\left(d\right) = \sum_{k=1}^{N} \pi_{j|i,k} d_{k|i}$$

Dynamics of state probabilities

For stationary startegy $d = \|d_{ki}\|_{i=1,\dots,N;k=1,\dots,K}$ we have

$$p_{j}(n+1) := P\{x(t_{n}, \omega) = i\} = \sum_{i=1}^{N} \pi_{j|i}(d) p_{i}(n)$$
$$= \sum_{i=1}^{N} \left(\sum_{k=1}^{N} \pi_{j|i,k} d_{k|i}\right) p_{i}(n)$$

which represents the Dynamic Model of Controllable Finite Markov Chain under a stationary starategy d. If for each d the chain is ergodic, then $p_j(n) \xrightarrow[n \to \infty]{} p_j$ satisfying

$$p_j = \sum_{i=1}^N \sum_{k=1}^N \pi_{j|i,k} d_{k|i} p_i$$

or

Convergence illustration

Figure: Convergence to stationary distribution.

Dynamics of state probabilities: the vector form

In the vector form the *Dynamic Model* of Controllable Finite Markov Chain (or Decision Making process) under a stationary strategy *d* looks as

$$p = \Pi^{\mathsf{T}}\left(d
ight) p$$
 $\Pi\left(d
ight) = \left\|\sum_{k=1}^{N} \pi_{j|i,k} d_{ki}
ight\|_{i=1,...,N;j=1,...,N}$

Fact

So, the final distribution p depends also on the strategy d, that is, p = p(d), so that

$$p(d) = \Pi^{\intercal}(d) p(d)$$

Alexander S. Poznyak (Cinvestav, Mexico)

April 2017 33 / 59

PART 2: Simplest Production Optimization Problem

Suppose that some company obtains for the transition

$$x(t_n, \omega) = i$$
, $a(t_n, \omega) = k \rightarrow x(t_{n+1}, \omega) = j$

from state i to the state j, applying the control k, the following *income*

$$W_{j|i,k}$$
, $i, j = 1, ..., n, k = 1, ..., K$

Then the average income of this company in stationary state is

$$J(d) := \sum_{i=1}^{N} \sum_{j=1}^{N} W_{j|i,k} \left(\sum_{k=1}^{N} \pi_{j|i,k} d_{k|i} \right) p_{i} = \sum_{i=1}^{N} \sum_{k=1}^{K} \sum_{j=1}^{N} W_{j|i,k} \pi_{j|i,k} d_{k|i} p_{i}$$

where the components p_i satisfies the ergodicity condition

$$p_{j}(d) = \sum_{i=1}^{N} \sum_{k=1}^{N} \pi_{j|i,k} d_{k|i} p_{i}(d)$$

The rigorous mathematical problem formulation is as follows:

Problem

$$J(d) = \sum_{i=1}^{N} \sum_{k=1}^{K} \sum_{j=1}^{N} W_{j|i,k} \pi_{j|i,k} d_{k|i} p_i(d) \to \max_{d \in \mathcal{D}_{adm}} under the constrains$$
$$\mathcal{D}_{adm} := \left\{ d_{k|i} : p_j(d) = \sum_{i=1}^{N} \sum_{k=1}^{N} \pi_{j|i,k} d_{k|i} p_i(d), j = 1, ...N \right\}$$
$$d_{k|i} \ge 0, \sum_{k=1}^{N} d_{k|i} = 1, i = 1, ...N \right\}$$

Simplest Production Optimization Problem

Best-reply strategy

Definition

Alexander S. Poznya

The matrix d^{br} is called the **best-reply strategy** if

$$d_{\beta|\alpha}^{br} = \begin{cases} 1 & \text{if} \quad \sum_{j=1}^{N} W_{j|\alpha,\beta} \pi_{j|\alpha,\beta} \ge \sum_{j=1}^{N} W_{j|i,k} \pi_{j|i,k} \\ 0 & \text{if} & \text{not} \end{cases}$$

Indeed, the upper bound for $J\left(d
ight)$ can be estimated as

$$J(d) = \sum_{i=1}^{N} \sum_{k=1}^{K} \sum_{j=1}^{N} W_{j|i,k} \pi_{j|i,k} d_{k|i} p_i(d) \le \sum_{i=1}^{N} \max_{k} \left(\sum_{j=1}^{N} W_{j|i,k} \pi_{j|i,k} \right) p_i(d)$$

which is reachable for $d_{k|i}^{br} = d_{k|i}^{br}$. It is **optimal** if and only if

$$\max_{k} \left(\sum_{i=1}^{N} W_{j|i,k} \pi_{j|i,k} \right) = \max_{k} \left(\sum_{i=1}^{N} W_{j|s,k} \pi_{j|s,k} \right) = \forall i, s \in \{1, \dots, k\}$$

Simplest Production Optimization Problem

State and action spaces interpretation (1)

Example (State and action spaces interpretation)

Let

- the state $x(t_n, \omega) = i$ be associated with a number of working unites (staff places);
- the action $a(t_n, \omega) = k$ is related with the financial schedule (possible wage increase, decreasing or no changes): k = (-1, 0, 1);
- the incomes for these actions may be calculated as

$$W_{j|i,k} = \left[v_0 - \left(v + \Delta vk\right) - v_1\right](j-i)$$

where v_0 the price of the product, produced by a single working unit with the salary v, its Δv adjustment and the production costs v_1 supporting this process.

< □ > < ---->

→ Ξ →

Example (State and action spaces interpretation (continuation-1))

For example, for N = 3, i = (10, 20, 30) and $v_0 = 400, 000.00$, $v_1 = 20,000.00$, v = 80,000.00, $\Delta v = 5,000.00$ we have

	Γ 0	3050, 000.00	6100,000.00]
$\left\ W_{j i,k=-1} \right\ =$	-3050,000.00	0	3050, 000.00
	-6100,000.00	-3050, 000.00	0
$\left\ W_{j i,k=0} \right\ = \int$	- 0	3000, 000.00	6000,000.00
	-3000, 000.00	0	3000,000.00
	-6000, 000.00	-3000, 000.00	0
$\left\ W_{j i,k=1} \right\ = $	0	2950, 000.00	5900,000.00]
	-2950, 000.00	0	2950,000.00
	-5900, 000.00	-2950, 000.00	0]

Image: Image:

Example (State and action spaces interpretation (continuation-2))

Let the transition matrices $\|\pi_{j|i,k}\|$ be as follows:

$$\underbrace{\left[\begin{array}{cccc} 0.5 & 0.3 & 0.2 \\ 0 & 0.5 & 0.5 \\ 0 & 0.5 & 0.5 \end{array}\right]}_{k=-1}, \underbrace{\left[\begin{array}{cccc} 0 & 0.1 & 0.9 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{array}\right]}_{k=0}, \underbrace{\left[\begin{array}{cccc} 0.5 & 0.2 & 0.3 \\ 0 & 0.25 & 0.75 \\ 1 & 0 & 0 \end{array}\right]}_{k=1}$$

Simplest Production Optimization Problem

State and action spaces interpretation (4)

Example (State and action spaces interpretation (continuation-3))

Then the matrix $\left\|\sum_{j=1}^{N} W_{j|i,k} \pi_{j|i,k}\right\|$, participating in the average income, is

N		2745000	5 700 000	2 360 000
$\left\ \sum W_{j i,k}\pi_{j i,k}\right\ $	$= \parallel$	1525000	3 000 000	2 212 500
$ \overline{j=1} $		-1525000	0	-5 900 000

and the best reply strategy is (it is non-optimal)

$$d_{br} = \left| egin{array}{ccc} 0 & 1 & 0 \ 0 & 1 & 0 \ 0 & 1 & 0 \ \end{array}
ight|$$

So, no changes are recommended since $k^* = 0$ for all states *i*.

Problem formulation with additional constrains

Problem

$$J(d) = \sum_{i=1}^{N} \sum_{k=1}^{K} \sum_{j=1}^{N} W_{j|i,k} \pi_{j|i,k} d_{k|i} p_i(d) \to \max_{d \in \mathcal{D}_{adm}}$$

under the constrains
$$\mathcal{D}_{adm} := \left\{ d_{k|i} : p_j(d) = \sum_{i=1}^{N} \sum_{k=1}^{N} \pi_{j|i,k} d_{k|i} p_i(d), j = 1, ..., N \right\}$$
$$d_{k|i} \ge 0, \sum_{k=1}^{N} d_{k|i} = 1, i = 1, ..., N$$
$$\sum_{i=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{N} A_{j|i,k}^{(l)} \pi_{j|i,k} \right) d_{k|i} p_i(d) \le b_l, l = 1, ..., L \right\}$$

The additional constrains may be interpreted as some financial limitations.

What can we do in this complex situation?

Fact

• The best reply strategy in general is non optimal: it may not satisfy condition (1) and the additional constrans.

The functional

$$J(d) = \sum_{i=1}^{N} \sum_{k=1}^{K} \sum_{j=1}^{N} W_{j|i,k} \pi_{j|i,k} d_{k|i} p_{i}(d)$$

as well as the constrains

$$p_{j}(d) = \sum_{i=1}^{N} \sum_{k=1}^{N} \pi_{j|i,k} d_{k|i} p_{i}(d), \sum_{i=1}^{N} \sum_{k=1}^{K} \sum_{j=1}^{N} A_{j|i,k}^{(l)} \pi_{j|i,k} d_{k|i} p_{i}(d) \le b_{l}$$

are extremely nonlinear functions of d.

The question is: what can we do in this complex situation?

Alexander S. Poznyak (Cinvestav, Mexico)

Markov Chain Models

What can we do in this complex situation? Answer: c-variables!

Definition

Define new variables

$$c_{ik}:=d_{k|i}p_{i}\left(d
ight)$$

Then the Production Optimization Problem can be express as a Linear **Programming Problem** solved by standard Matlab Toolbox:

$$J(d) = \sum_{i=1}^{N} \sum_{k=1}^{K} \underbrace{\sum_{j=1}^{N} W_{j|i,k} \pi_{j|i,k}}_{W_{ik}^{\pi}} \underbrace{d_{k|i}p_{i}(d)}_{c_{ik}} = \sum_{i=1}^{N} \sum_{k=1}^{K} W_{ik}^{\pi} c_{ik} := J(c) \to \min_{c \in \mathcal{C}_{adm}}$$
$$\mathcal{C}_{adm} := \left\{ c_{ik} : \sum_{k=1}^{N} c_{jk} = \sum_{i=1}^{N} \sum_{k=1}^{K} \pi_{j|i,k} c_{ik}, j = \overline{1, N}, c_{ik} \ge 0, \sum_{i=1}^{N} \sum_{k=1}^{K} c_{ik} = 1, \\ \sum_{i=1}^{N} \sum_{k=1}^{K} \left(\sum_{j=1}^{N} A_{j|i,k}^{(l)} \pi_{j|i,k} \right) c_{ik} \le b_{l}, l = \overline{1, L} \right\}$$

Important properties of c-variables

Corollary

For **c-variables** defined as $c_{ik} := d_{k|i}p_i(d)$ and found as the solution c^* of the LPP above

1) we can recuperate the state distribution $p_i(d^*)$ as

$$p_i\left(d^*
ight) = \sum_{k=1}^{K} c^*_{ik} > 0$$
 (by the ergodicity property)

2) and the optimal control strategy (or decision making) $d_{k|i}^*$ can be recuperated as

$$\left| \, d^*_{k|i} = rac{c^*_{ik}}{p^*_i\left(d
ight)} = rac{c^*_{ik}}{\sum\limits_{k=1}^K c^*_{ik}} \,$$

$$c_{ik}^{*} = \begin{bmatrix} 0.0001 & 0.0001 & 0.0001 \\ 0.0001 & 0.0001 & 0.3996 \\ 0.5996 & 0.0001 & 0.0002 \end{bmatrix}$$
$$p_{i}^{*}(d) = (0.0003, 0.3998, 0.5999)$$
$$d_{k|i}^{*} = \begin{bmatrix} 0.3333 & 0.3333 & 0.3333 \\ 0.0002 & 0.0003 & 0.9995 \\ 0.9995 & 0.0002 & 0.0003 \end{bmatrix}$$

Alexander S. Poznyak (Cinvestav, Mexico)

Image: Image:

Definition

A controllable continuous-time Markov chain is a 4-tuple $CTMC = (S, A, \mathbb{K}, Q)$ where S is the finite state space $\{s_{(1)}, ..., s_{(N)}\}$, A is the set of actions: for each $s \in S$, $A(s) \subset A$ is the non-empty set of admissible actions at state $s \in S$, $\mathbb{K} = \{(s, a) | s \in S, a \in A(s)\}$ is the class of admissible state-action pairs and Q = is the **transition rates** $\left[q_{(j|i,k)}\right]$ with the elements defined as

$$q_{(j|i,k)} = \begin{cases} q_{(i|i,k)} = -\sum_{\substack{i \neq j \\ i \neq j}}^{N} q_{(j|i,k)} \le 0 & \text{if } i = j \\ \ge 0 & \text{if } i \neq j \end{cases}$$

Properties of the the transition rates

Fact

For each fixed k the matrix of the transition rates is assumed to be conservative, i.e., from the definition above it follows that $\sum_{j=1}^{N} q_{(j|i,k)} = 0$ and stable, which means that $q_{(i)} := \max_{a_{(k)} \in A(s_{(i)})} q_{(j|i,k)} < \infty \quad \forall i$.

Example

	-0.5366	0.0888	0.0611	0.1893	0.1409]
$q_{(j i,k=1)} =$	0.0416	-0.5689	0.0588	0.1331	0.0942
	0.2358	0.1929	-0.3784	0.1878	0.2084
	0.0942	0.1929	0.1244	-0.5963	0.0570
	0.1649	0.0942	0.1342	0.0861	-0.5005

Transition probabilities

Definition

Let $X_s := \{i \in \mathcal{X} : \mathsf{P} \{x (s, \omega) = i\} \neq 0, s \in \mathcal{T}\}$. For $s \leq t (s, t \in \mathcal{T})$ and $i \in X_s$, $k \in A, j \in X$ define the conditional probabilities

$$\pi_{j\mid i,k}\left(\mathbf{s},t\right):=\mathsf{P}\left\{x\left(t,\omega\right)=j\mid x\left(\mathbf{s},\omega\right)=i,\ \mathbf{a}\left(\mathbf{s}\right)=k\right\}$$

which we will call the transition probabilities of a given Markov chain defining the conditional probability for a process $\{x(t, \omega)\}_{t \in T}$ to be in the state j at time t under the condition that it was in the state i at time s < t and in the same tame the decision a(s) = k was done. The transition probabilities to be in the state j at time t under the condition that it was in the state i at time s < t

$$\pi_{ij}(s,t \mid d) := \sum_{k=1}^{K} \pi_{j|i,k}(s,t) \underbrace{\mathsf{P}\left\{a(s) = k \mid x(s,\omega) = i\right\}}_{d_{k|i}} = \sum_{k=1}^{K} \pi_{j|i,k}(s,t) d_{k|i}$$

Properties of Transition probabilities

The function $\pi_{ij}(s, t \mid d)$ for any $i \in X_s$, $j \in X$ and any $s \leq t$ $(s, t \in T)$ should satisfy the following *four conditions*:

- 1) $\pi_{ij}(s, t \mid d)$ is a conditional probability, and hence, is nonnegative, that is, $\pi_{i,j}(s, t) \ge 0$.
- 2) starting from any state $i \in X_s$ the Markov chain will obligatory occur in some state $j \in X_t$, i.e., $\sum_{j \in \mathcal{X}_t} \pi_{ij} (s, t \mid d) = 1$.
- 3) if no transitions, the chain remains to in its starting state with probability one, that is, $\pi_{ij}(s, s \mid d) = \delta_{ij}$ for any $i, j \in X_s, j \in X$ and any $s \in T$;
- 4) the chain can occur in the state $j \in X_t$ passing through any intermediate state $k \in X_u$ ($s \le u \le t$), i.e.,

$$\pi_{ij}\left(s,t\mid d\right) = \sum_{k\in\mathcal{X}_{u}}\pi_{ik}\left(s,u\mid d\right)\pi_{kj}\left(u,t\mid d\right)$$

This relation is known as the Markov (or Chapman-Kolmogorov) equation.

Properties of Transition probabilities for homogeneous Markov chains

Corollary

Since for **homogeneous Markov** chains the transition probabilities $\pi_{i,j}(s, t)$ depend only on the difference (t - s), below we will use the notation

$$\pi_{ij}\left(s-t\mid d\right) := \pi_{ij}\left(s,t\mid d\right)$$
(2)

In this case the Markov equation becomes

$$\pi_{i,j}\left(h_{1}+h_{2}\mid d\right)=\sum_{k\in\mathcal{X}}\pi_{i,k}\left(h_{1}\mid d\right)\pi_{k,j}\left(h_{2}\mid d\right)$$

valid for any h_1 , $h_2 \ge 0$.

Distribution function of the time just before changing the current state

- Consider now the time τ (after the time s) just before changing the current state i, i.e., τ > s.
- By the homogeneity property it follows that distribution function of the time τ_1 (after the time $s_1 := s + u$, $x(s + u, \omega) = i$) is the same as for the τ (after the time s, $x(s, \omega) = i$) that leads to the following identity

$$P \{\tau > v \mid x (s, \omega) = i\} = P \{\tau_1 > v \mid x (s_1, \omega) = i\}$$
$$P \{\tau > v + u \mid x (s + u, \omega) = i\} =$$
$$P \{\tau > u + v \mid x (s, \omega) = i, \tau > u \ge s\}$$

since the event $\{x (s, \omega) = i, \tau > u\}$ includes as a subset the event $\{x (s + u, \omega) = i\}$.

Lemma on the expectation time before changing a state

Lemma

The expectation time τ (of the homogenous Markov chain $\{x(t, \omega)\}_{t \in T}$ with a discrete phase space X) to be in the current state $x(s, \omega) = i$ before its changing has the exponential distribution

$$\mathsf{P}\left\{\tau > v \mid x\left(s,\omega\right) = i\right\} = e^{-\lambda_{i}v} \tag{4}$$

where λ_i is a nonnegative constant which inverse value characterizes **the** average expectation time before the changing the state $x(s, \omega) = i$, namely,

$$\frac{1}{\lambda_{i}} = \mathsf{E}\left\{\tau \mid x\left(s,\omega\right) = i\right\}, \ \lambda_{i} = \left|q_{\left(i\mid i,k\right)}\right| = \sum_{i\neq j}^{N} q_{\left(j\mid i,k\right)}$$
(5)

The constant λ_i is usually called the **"exit density"**.

Continuous-time controllable Markov chains Ideas of the proof (1)

Proof.

Define the function $f_i(u)$ as $f_i(u) := P\{\tau > u \mid x(s, \omega) = i\}$. By the Bayes formula

$$f_{i}(u + v) := P \{\tau > u + v \mid x(s, \omega) = i\} = P \{\tau > u + v \mid x(s, \omega) = i, \tau > u\} P \{\tau > u \mid x(s, \omega) = i\} = P \{\tau > u + v \mid x(s, \omega) = i, \tau > u\} P \{\tau > u \mid x(s, \omega) = i\}$$

By the homogeneous property one has

$$f_i(u+v) := P\{\tau > u+v \mid x(s,\omega) = i\} = P\{\tau > v \mid x(s,\omega) = i\} f_i(u) = f_i(v) f_i(u)$$

which means that

$$\ln f_i (u + v) = \ln f_i (u) + \ln f_i (v) f_i (\tau = 0) = P \{ \tau > 0 \mid x (s, \omega) = i \} = 1$$

Alexander S. Poznyak (Cinvestav, Mexico)

Markov Chain Models

Continuous-time controllable Markov chains Ideas of the proof (2)

Proof.

[Continuation of the proof] Differentiation the logarithmic identity by u gives $\frac{f'_i(u+v)}{f_i(u+v)} = \frac{f'_i(u)}{f_i(u)}$ which for u = 0 becomes

$$f_{i\left(v
ight)}^{\prime\left(\prime
ight)} = rac{f_{i}^{\prime\left(0
ight)}}{f_{i}\left(0
ight)} = f_{i}^{\prime}\left(0
ight) := -\lambda_{i}
ightarrow f_{i}\left(v
ight) = e^{-\lambda_{i}v}$$

To prove (5) it is sufficient to notice that

$$\mathsf{E}\left\{\tau \mid x\left(s,\omega\right)=i\right\}=\int_{t=0}^{\infty}td\left[-f_{i}\left(t\right)\right]=$$

$$\left[-te^{-\lambda_i t}\right]_{t=0}^{\infty} - \int_{t=0}^{\infty} \left[-e^{-\lambda_i t}\right] dt = \int_{t=0}^{\infty} e^{-\lambda_i t} dt = \lambda_i^{-1}$$

Lemma is proven.

The Kolmogorov forward equations

For homogenous Markov chains $\pi_{ij}(s, t \mid d) = \pi_{ij}(t - s \mid d)$ and stationary strategies P $\{a(s) = k \mid x(s, \omega) = i\} = d_{k|i}$ the Markov equation becomes (taking s = 0)

$$\frac{d}{dt}\pi_{ij}\left(t\mid d\right) = -\left(\sum_{i}^{N} q_{(j\mid i,k)}\right)\pi_{ij}\left(t\mid d\right) + q_{(j\mid i,k)}\pi_{il}\left(t\mid d\right)$$

can be written as the matrix differential equation as follows:

$$\Pi'(t \mid d) = \Pi(t \mid d)Q(d); \quad \Pi(0) = I_{N \times N}$$
$$\Pi(t \mid d) = \|\pi_{i,k}(t \mid d)\| \in \mathbb{R}^{N \times N}, \ Q(d) = \left\|\sum_{k=1}^{K} q_{(j|i,k)}d_{k|i}\right\|$$

This system can be solved by

$$\Pi(t \mid d) = \Pi(0)e^{Q(d)t} = e^{Qt} := \sum_{t=0}^{\infty} \frac{t^n Q^n(d)}{n!}$$
(6)

Stationary distribution

At the stationary state, the probability transition matrix is

$$\Pi(d) = \lim_{t \to \infty} \Pi(t \mid d)$$

Definition

The vector
$$P \in R^N \left(\sum_{i=1}^N P_i = 1 \right)$$
 is called **the stationary distribution vector** if $\Pi^\top (d) P = P$

Claim

This vector can be seen as the long run proportion of time that the process is in state $s_{(i)} \in S$.

Alexander S. Poznyak (Cinvestav, Mexico)

Markov Chain Models

Additional linear constraint

Theorem (Xianping Guo, Onesimo Hernandez Lerma, 2009)

The the stationary distribution vector P satisfies the linear equation

$$Q^{ op}\left(d
ight) P=0$$

Fact

The Production Optimization Problem, described by a continuous-time controllable Markov chain in stationary states, is the same Linear programming problem (LPP) as for a discrete-time model but with the additional linear constraint (7).

(7

1-st Lecture Day: Basic Notions on Controllable Markov Chains Models, Decision Making and Production Optimization Problem.

• Markov Processes: Classical Definition (Markov), Mathematical Definition (Kolmogorov), Markov property in a general format

• Finite Markov Chains: Main definition, Homogeneous (Stationary) Markov Chains, Transition matrix, Dynamic Model of Finite Markov Chains, Ergodic Markov Chains, Ergodic Theorem, Ergodicity coefficient.

• Controllable Markov Chains: Transition matrices for controllable Finite Markov Chain processes, Pure and mixed strategies.

• Simplest Production Optimization Problem: c-variables, Linear Programming Problem.

• Continuous-time controllable Markov chains: Distribution function of the time just before changing the current state, the transition rates, expectation time, Additional linear constraint and LPP problem.

Next Lecture Day: The Mean-Variance Customer Portfolio Problem: Bank Credit Policy Optimization.

Thank you for your attention! See you soon!