Fair Division: Microeconomics meets Computer Science

Hervé Moulin

University of Glasgow and HSE St Petersburg

YANDEX April 11, 2018

formal modeling of fair division starts 70 years ago

• mathematicians: the cake-division model; Steinhaus 1948

• game theorists: axiomatic bargaining: Nash 1950; cooperative games: Shapley 1953

• economists: No Envy and fair competitive trade; Foley 1967, Varian 1974

key issue: equal division is *fair*, but typically *inefficient* (example: 3 toys for 2 children)

differences in individual preferences \Longrightarrow opportunities for mutual benefits above and beyond equal split

how then to define fairness when individual shares must differ?

other important issues

can the elicitation of preferences be incentive compatible?

is our division rule easily computable?

examples

family heirlooms: silverware, paintings

seats in overdemanded classes

family chores

work shifts, teaching loads

divorce, dissolution of a partnership: assets and liabilities

more recent examples: peer to peer Fair Division on the Internet

to share computing resources

to share memory space

online barter for goods and services

the interface of microeconomics and internet science

- about 2000: Algorithmic Mechanism Design and Computational Social Choice
- the ACM *Electronic Commerce* conferences (EC) start in 1999, followed by the *Web and Internet Economics* conferences (WINE) in 2004, and by the *Computational Social Choice* conferences (COMSOC) in 2010
- in 2014 EC becomes the 15th *Economics and Computation* conference
- and the ACM Society launches a new journal: *Transactions on Economics* and *Computation*

Example 1: cake-cutting algorithms

as old as the hills: the Divide and Choose mechanism

• ensures *No Envy* (under any continuous preferences)

requires only one cut and one query (no complicated report)

• efficiency is another matter

Problem: to generalize D&C to more than two agents, under additive utilities

- Selfridge algorithm does this for three agents, with at most 3 cuts and 5 queries
- Brams and Taylor (1995) find a general *crumbly* algorithm, with a potentially unbounded number of cuts
- Aziz and McKenzie (2016) find a bounded algorithm

but those algorithms produce impractical crumbs

while real life applications require topological (connected shares) and geometric (no gerrymandering) constraints

Example 2: dividing complementary inputs

cloud computing is managed by a "dispatcher" distributing CPUs, memory, bandwidth, etc., to simultaneous users

a typical user needs these resources in fixed proportion \Longrightarrow the family of *Leon-tief preferences*

$$u_1(a_1, b_1, c_1) = \min\{\frac{a_1}{3}, \frac{b_1}{5}, \frac{c_1}{2}\}$$

Ivan needs 3 units of CPU (good a) for 1 of Memory (good b)

$$u_I(a_1, b_1) = \min\{\frac{a_1}{3}, b_1\}$$

Dimitri: $u_D(a_2, b_2) = \min\{\frac{a_2}{2}, b_2\}$

Yulia: $u_Y(a_3, b_3) = \min\{a_3, \frac{b_3}{2}\}$

to divide: 6 units of CPU and 4 units of Memory

the Egalitarian solution equalizes the relative utilities

easy to compute: find the critical overdemanded commodity (ies)

in the example it is CPU:

$$\frac{\frac{a_1}{3}}{\min\{\frac{6}{3},4\}} = \frac{\frac{a_2}{2}}{\min\{\frac{6}{2},4\}} = \frac{a_3}{\min\{6,\frac{4}{2}\}} = \frac{3}{7}$$

$$\implies$$
 Ivan: $(\frac{18}{7}, \frac{6}{7})$; Dimitri: $(\frac{18}{7}, \frac{9}{7})$; Yulia: $(\frac{6}{7}, \frac{12}{7})$

with some Memory to spare

this solution is miraculous (Ghodsi et al. 2011, Xue and Li 2013)

- everyone is guaranteed at least $\frac{1}{n}$ -th of the whole cake: Fair Share
- the allocation is Envy-Free
- strategyproofness: nobody ever benefits from reporting incorrect ratios of needs
- ditto if a group of agents try a coordinated misreport
- the solution is easy to compute

Example 3: dividing substitutable goods

dividing assets in a divorce or dissolution of a partnership

contractors with substitutable skills divide a set of desirable jobs with different characteristics: teachers \rightarrow classes, lawyers \rightarrow clients, etc..

additive utilities (preferences): fixed rates of substitution

$$u_1(a_1, b_1, c_1) = 3a_1 + b_1 + \frac{c_1}{2}$$

in practice: each participant must split 1000 points over the different goods

the *Egalitarian* solution still equalizes $\frac{\text{utility of my share}}{\text{my utility for all the resources}}$

it is successfully challenged by

the Competitive solution

give the same budget to each person and find a price (necessarily unique) at which the competitive demands clear the resources

Ivan views 3 units of good a as equivalent to 1 of good b:

$$u_I(a_1,b_1) = a_1 + 3b_1$$

Dimitri:
$$u_D(a_2, b_2) = a_2 + 2b_2$$

Yulia:
$$u_Y(a_3,b_3) = a_3 + b_3$$

to divide: 40 unpopular goods (type a) and 80 popular ones (type b)

note: differences in tastes/preferences are subjective, agents held responsible for own tastes

Competitive division

		a (40)	<i>b</i> (80)		price	1	1	
utilities	lvan	1	3	allocation	lvan	0	40	budget 10
	Dima	1	2		Dima	0	40	budget 40
	Yulia	1	1		Yulia	40	0	

Egalitarian division

		a (40)	<i>b</i> (80)			a	b
utilities	lvan	1	3	(rounded) allocation	Ivan	0	36
	Dima	1	2	(rounded) allocation	Dima	0	38
	Yulia	1	1		Yulia	40	6

→ Ivan envies Dimitri

— easy misreport of one's preferences: increase the relative worth of the good you do not get (nobody can misreport at the C solution, *for this particular example*)

→ No Envy at the C division is a weak form of incentive compatibility

the amazing Competitive solution

- maximizes the Nash product of utilities

 essentially unique and easy to compute for any problem size
- picks an *Envy-free* allocation
- everyone benefits when the pile of goods increases (not true for EG)
- if a good becomes more attractive to me, I receive (weakly) more of this good (not true for EG)
- it is not strategyproof but no reasonable efficient rule can be

Example 4: dividing substitutable bads

family chores: cleaning, baby sitting, shopping

partners with substitutable skills divide a set of undesirable tasks with different characteristics: teachers \rightarrow classes, lawyers \rightarrow clients, etc..

additive **dis**utilities:

$$u_1(a_1, b_1, c_1) = 3a_1 + b_1 + \frac{c_1}{2}$$

To divide 40 popular bads (type a) and 80 unpopular ones (type b)

Ivan views 3 units of bad a as equivalent to 1 of bad b:

$$u_I(a_1,b_1) = a_1 + 3b_1$$

Dimitri: $u_D(a_2, b_2) = a_2 + 2b_2$

Yulia: $u_Y(a_3, b_3) = a_3 + b_3$

Egalitarian division

		a (40)	<i>b</i> (80)			a	b
utilities	lvan	1	3	(rounded) allocation	Ivan	40	14
	Dima	1	2	(rounded) allocation	Dima	0	30
	Yulia	1	1		Yulia	0	36

where again there is Envy andagents have easy misreporting strategies

there are now two Competitive divisions !!

$$\begin{array}{c} a & (40) & b (80) \\ \text{disutilities} & \begin{array}{c} \text{Ivan} & 1 & 3 \\ \text{Dima} & 1 & 2 \\ \text{Yulia} & 1 & 1 \end{array} \\ \\ \text{allocation} & 1 & \begin{array}{c} \text{price} & 1 & 1 \\ \text{Ivan} & 40 & 0 \\ \text{Dima} & 40 & 0 \\ \text{Yulia} & 0 & 40 \end{array} \\ \\ \text{budget} & 40 \\ \\ \text{Yulia} & 0 & 40 \end{array}$$

the Competitive solution is very appealing to divide goods

but when dividing chores (bads) the multiplicity issue is not an anomaly, and can be very severe

⇒ we do not know a normatively compelling single-valued competitive division of chores

in fact every single-valued efficient and envy-free division rule will be discontinuous in the utility parameters

(Bogomolnaia, Moulin, Sandomirskiy and Yanovskaya (2017))

current research in Fair Division

- the case of indivisible goods or bads: dividing the family heirlooms: table, bicycle, Ipad, stuffed parrot, · · · : how to approximate the desirable properties when the manna is divisible (Fair Share, No Envy, Competitive)
- the assignment problem: where each person must get a fixed total quantity of the items, goods or bads

Conclusion

- fair division methods eschews the need for property rights and direct bargaining or markets

 they are centralized allocation rules with zero transaction costs
- implementation: free websites offering *provably fair* solutions: SPLIDDIT, Adjusted Winner
- currently limited to a handful of "iconic" division problems: sharing the rent between flatmates; sharing a taxi ride; distributing credit in a joint project;

abstract answers have the power of their normative properties

but only the adoption of these rules by real participants for real problems can vindicate them

Thank You