
 

 

 

 

 

 

 

 

 

 

V. Gonharenko, D. Pokrovsky, S. Shapoval 

   

 

THE STABLE COEXISTENСE OF 

OLIGOPOLIES AND THE 

COMPETITIVE FRINGE 

 
    

BASIC RESEARCH PROGRAM 

WORKING PAPERS 

 

 
SERIES: ECONOMICS 

WP BRP 196/EC/2018 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

This Working Paper is an output of a research project implemented at the National Research University Higher 

School of Economics (HSE). Any opinions or claims contained in this Working Paper do not necessarily reflect the 

views of HSE  

 



The Stable Coexisten
e of Oligopolies

and the Competitive Fringe

1

V. Gon
harenko

a
, D. Pokrovsky

a
, S. Shapoval

b

a
National Resear
h University Higher S
hool of E
onomi
s (HSE), Russia

b
Laboratory of the Modeling and Control of Complex Systems at the National Resear
h University

Higher S
hool of E
onomi
s (HSE), Russia

Abstra
t

In this paper, we introdu
e a simple new theory on mixed 
ompetition between oligopolis-

ti
 �rms and the 
ompetitive fringe, assuming a 
omparative advantage for big �rms and

free entry for small �rms. Oligopolies are de�ned as 
onglomerates, ea
h part of whi
h

bene�ts from joint operations through lower 
osts. Our theory implies that (i) indus-

tries with a few oligopolies arise as a stable out
ome of mixed 
ompetition; (ii) mixed


ompetition di�ers from the monopolisti
 
ompetition of single-produ
t �rms due to the

underprodu
tion of oligopolisti
 �rms and di�ers from pure oligopolisti
 
ompetition sin
e


onstraints on this underprodu
tion are imposed by the 
ompetitive fringe; (iii) a positive

sho
k in the market size 
an strengthen or weaken the 
ompetitiveness of the e
onomy

through the growth of the number of oligopolies.
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1 Introdu
tion

Industries are typi
ally divided into groups of big �rms and a 
ompetitive fringe of mu
h smaller

�rms (Porter, 2008; Uslay et al., 2010). Mankiw (2007; Page 348) gives the two following

examples referring to the USA in 2002: (i) three 
ompanies 
ontrolled nearly two-thirds of the


able television market; (ii) three big publishers of 
ollege textbooks a

ounted for 65% of the

industry. We 
an 
ontinue to �nd examples regarding di�erent 
ountries, industries and years,

in
luding the beef/sheep meat pro
essing industry in Australia in 1987; three oligopolies �

Kelloggs, Sanitarium and Nabis
o � held a share of about 90% of the 
ereal market, and up to

30% of the wine industry was 
ontrolled by Adsteam and Philipp Morris (Lawren
e, 1987).

This 
on
entration of industries in the hands of several oligopolies gives rise to 
on
erns

regarding the e�
ien
y of the industry itself. However, e
onomi
 theory has investigated the

strategi
 games of oligopolies and the monopolisti
 
ompetition of the myriad of small �rms

separately. The prin
iples of the 
o-existen
e of large and small �rms is rarely dis
ussed; for

example, Gabszewi
z and Vial (1972) introdu
ed an analysis from the perspe
tive of 
ooperative

game theory. This gap in the literature has been �lled in re
ent years (Neary, 2003; Etro, 2008;

Neary, 2010; Shimomura and Thisse, 2012; Parenti, 2017; Kokovin et al., 2017).

We 
onstru
t a new, simple theory on the 
o-existen
e of oligopolies and the 
ompeti-

tive fringe, assuming the 
omparative advantage of big �rms and free entry for small �rms.

Oligopolies are de�ned as 
onglomerates, ea
h part of whi
h bene�ts from joint operations

thanks to lower 
osts. This assumption follows the saying by Demsetz (1973): �Under the

pressure of 
ompetitive rivalry, and in the apparent absen
e of e�e
tive barriers to entry, it

would seem that the 
on
entration of an industry's output in a few �rms 
ould only derive

from their superiority in produ
ing and marketing produ
ts or in the superiority of industry in

whi
h there are only a few �rms�. We summarize our main �ndings in three points.

1. Industries with a few oligopolies arise as a stable out
ome of the mixed 
ompetition between

oligopolisti
 �rms and the 
ompetitive fringe.

2. Mixed 
ompetition di�ers from the monopolisti
 
ompetition of single-produ
t �rms due to

the underprodu
tion of oligopolisti
 �rms. It di�ers from pure oligopolisti
 
ompetition due

to the 
onstraints on underprodu
tion imposed by the 
ompetitive fringe. Thus, mixed 
om-

petition looks like �a stage, where every man must play a part�

2

: oligopolies establish their

market power, whereas small �rms restrain it. In 
ontrast to Shakespeare's 
hara
ters, both

sides bene�t from parti
ipating.

3. A positive sho
k in the market size strengthens the 
ompetitiveness of the e
onomy through

the growth of the number of oligopolies, if the demand of 
onsumers is 
hara
terized by

2

W. Shakespeare, The Mer
hant of Veni
e
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the de
reasing elasti
ity of substitution between produ
ts. However, the opposite (
ounter-

intuitive) response is also possible. We introdu
e a family of preferen
es su
h that the number

of oligopolies in
reases after a positive sho
k in the market size.

We model the following framework of the mixed 
ompetition between small and large �rms.

All �rms produ
e varieties of a di�erentiated good. Small �rms are single-produ
t. They have

a lo
al market power as modeled by Dixit and Stiglitz (1977). Big �rms have global market

power. They produ
e a range of varieties, behave like monopolists in the market of the varieties

produ
ed by them, and, additionally, a�e
t the pri
e index asso
iated with the di�erentiated

good. A

ording to their de
ision making, small �rms are pri
e-index takers, whereas big �rms

are pri
e index-makers.

We �nd that ea
h part of a 
onglomerate is better o� when keeping its 
omparative advan-

tage, but deviating from the output-pri
ing poli
y of the 
onglomerate in order to behave in line

with the strategy of single-produ
t �rms. When we introdu
e a �xed penalty for the deviation,

the deviations are blo
ked in equilibrium, and the pro�t per variety of big �rms equals this

penalty. The idea of deviation 
osts is related to the prisoner's dilemma and is extensively used

in the theory of 
on�i
ts.

The prin
iples of the 
oexisten
e of small and large �rms are derived under the 
onstant

elasti
ity of substitution (CES) preferen
es of 
onsumers. Then we verify the general nature

of the derived prin
iples with unspe
i�ed separable preferen
es. With this type of preferen
es,

we assess the market size e�e
t.

Our paper relates to a wide variety of resear
h. Dixit and Stiglitz (1977) introdu
e an

approximation for the number of dis
rete varieties that altogether 
onstitute a di�erentiated

good. This approximation works well if ea
h �rm 
ontrols a negligible share of the market.

Therefore, by spe
ifying the range of shares between negligible and signi�
ant, one 
an dis
uss

the behavior of big and small �rms. Yang and Heijdra (1993); d'Aspremont et al. (1996) re�ne

the Dixit�Stigitz approximation, dealing with less negligible but still small �rms. Big �rms


an also be asso
iated with multi-produ
tivity, as analyzed in detail by Bernard et al. (2012);

Dhingra (2013); Mayer et al. (2014); E
kel and Neary (2010); Ush
hev (2017) and Feenestra and

Ma (2007), and 
onsidered to be leaders in the Sta
kelberg game (see Etro (2008)) or giants in

lo
al markets that are small on the global market (Neary, 2003). A

ording to (Neary, 2010),

�rms 
an 
hoose between being large or small in order to maximize their pro�ts.

Re
ently, groups of authors have expanded the Dixit�Stiglitz approa
h to model a mixed

market stru
ture with big and negligibly small �rms. From a measure-theoreti
 point of view,

small �rms were asso
iated with points of measure zero on the segment that represents the dif-

ferentiated good, whereas the number of varieties produ
ed by big �rms had a positive measure.

Shimomura and Thisse (2012) ta
kled the 
ompetition of oligopolies, whi
h produ
e a dis
rete

4



set of varieties, and the myriad of negligibly small �rms that form the 
ompetitive fringe.

These authors investigated how the entran
e of additional oligopolies a�e
ts the e
onomy and,

in parti
ular, the mixed market stru
ture. In the model, the 
ompetitive fringe behaves as an

additional big �rm. The number of oligopolies is an exogenous parameter; With its growth,

the 
ompetitive fringe shrinks and �nally disappears. Dixit (1979) predi
ted a blo
kaded en-

try for a weaker 
ompetitor in a duopoly setting, however the existen
e of pure oligopolisti



ompetition in the modeling strategy by Shimomura and Thisse (2012) with an endogenous

number of oligopolies is still un
lear. In 
ontrast to (Shimomura and Thisse, 2012), we avoid

an atomi
 representation of the output of big �rms in favor of a 
ontinuous range of varieties

produ
ed by ea
h oligopoly. Su
h a 
hoi
e simpli�es the analysis while keeping qualitative

out
omes. Assuming the free entry of oligopolies, we estimate their number for di�erent model

parameters.

When there is a more signi�
ant 
omparative advantage, fewer oligopolies operate in the

market, but they 
ontrol a larger share of the varieties. We �nd an unexpe
ted absen
e of equi-

librium within oligopolies under their large 
omparative advantage. In this 
ase, the equilibrium

number of oligopolies is less than one and the mixed 
ompetition be
omes unstable.

The approa
h designed by Parenti (2017) is 
loser to our own. In (Parenti, 2017), as in our

analysis, large multi-produ
t �rms produ
e a positive share of varieties. By using the quadrati


utility of 
onsumers (Ottaviano et al., 2002) dis
overs that a de
rease in trade barriers in
reases

the number of oligopolisti
 �rms. In this paper, we establish that typi
ally a similar e�e
t holds,

that is, in response to a sudden enlargement of the e
onomy, industries be
ome less oligopolisti
.

This result is obtained within the framework of a small e
onomy and separable unspe
i�ed

preferen
es. In other words, we 
on�rm a positive market size e�e
t on the 
ompetitiveness of

the e
onomy. However, we highlight that the opposite e�e
t is also feasible. The dire
tion of the

response depends on whether the elasti
ity of substitution between varieties of the di�erentiated

good is a de
reasing fun
tion.

Following (Parenti, 2017) but not (Gabszewi
z and Vial, 1972; d'Aspremont et al., 1990),

we treat all �rms as in
ome-takers when they negle
t the impa
t that their output de
isions

have on the total in
ome through the distribution of pro�ts.

Kokovin et al. (2017) introdu
ed a mixed market stru
ture of in�nitesimally small single-

produ
t �rms and big �rms that produ
e a s
ope of varieties. In their model, big �rms bene�t

from �hiding� their ability to a�e
t market aggregates by 
opying the pri
ing poli
y of small

�rms. The existen
e of a 
ommon s
alar aggregate attribute 
apturing 
ross-pri
e e�e
ts in the

demand system leads to the dilution of the market power of big �rms (Kokovin et al., 2017).

In the 
ase of homogeneous produ
tion, the dilution results in an identi
al pri
ing system and

pro�t equalization. If not, a less su

essful �rm will mimi
 the pri
es and output of more
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e�
ient rivals.

Unlike Kokovin et al. (2017), we explain why only a few oligopolies operate in the market,

relating this phenomenon to their 
omparative advantage. We posit that being endowed with

a substantial 
omparative advantage, the existing oligopolies produ
e a wide range of varieties

preventing the appearan
e of other su
h wide-ranged 
ompetitors. As soon as oligopolies have

a 
omparative advantage, their pri
ing poli
ies di�er from that of the 
ompetitive fringe. In


ontrast to Kokovin et al. (2017), we posit that oligopolies prefer to exploit their 
omparative

advantage in spite of 
onstraints on their market power through the demand system.

The underprodu
tion and 
omparative advantage of big �rms are related to the literature

regarding the heterogeneity of �rms and total fa
tor produ
tivity (Melitz, 2003; Bernard et al.,

2007; Redding, 2011; Hottman et al., 2016). Melitz and Redding (2012) 
laim that more pro-

du
tive �rms set higher markups. Our model predi
ts the same 
on
lusion, but the me
hanism

is di�erent: the strategi
 behaviour, meaning the possibility to manipulate the market, leads

to the higher markups of oligopolies. With higher markups, big �rms have enough room for an

a
tive pri
ing poli
y. On the 
ontrary, tiny markups give small �rms limited room for strategi


adjustments.

Separating workers and managers, we draw on eviden
e regarding the heterogeneity of the

labor stru
ture with respe
t to �rm size. Resear
hers have explored the hierar
hi
al labor

stru
ture of �rms and �nd the determinants a�e
ting the inequality between workers and man-

agers (Li� and Turner, 1999; Wynar
zyk et al., 2016; Delmastro, 2002). We simplify the matter,

�attening the labor stru
ture. Under this simpli�
ation, the di�eren
e in the labor stru
ture

seen for instan
e with British (Green et al., 2017) and Fren
h (Caliendo et al., 2015) data 
orre-

sponds to the parti
ipation of �rms in innovations: larger �rms are more likely to be innovative

in many industries and lo
ations, whereas some regions, in
luding East Central Italy (Brus
o,

1986) and California (Oakey et al., 1998), look like ex
eptions. Therefore, the majority of

small �rms, whi
h are not involved in the innovation business, fa
e no in
entives to employ

professional managers (Wynar
zyk et al., 2016). The growth of �rm size enlarges the di�eren
e

between the workers and managers (Green et al., 2017). Thus, asso
iating managers only with

large �rms, we remain in line with empiri
al data.

The rest of the paper is organized in the following way. The e
onomy is modelled in Se
tion 2.

We 
onstru
t an equilibrium and dis
uss its properties in Se
tion 3. Se
tion 4 
on
ludes. All

te
hni
al parts are pla
ed into two Appendi
es.
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2 Model

2.1 E
onomy

We 
onsider a single-se
tor e
onomy that produ
es a di�erentiated good. The produ
tion side

is represented by single and multi-produ
t �rms. Multi-produ
t �rms operate as 
onglomerates

of single-produ
t �rms. Their pro�ts are shared between all individuals equally. Asso
iating

the varieties of the di�erentiated good, whi
h has the mass N , with the points of segment

[0, N ], we pres
ribe points � that have the measure 0 � to single-produ
t �rms and segments

� sets of a non-zero measure � to multi-produ
t �rms. The length of these segments indi
ate

the s
ope of the varieties produ
ed by multi-produ
t �rms. We 
all the two types of �rms small

and large. When few large �rms operate in the market they are asso
iated with oligopolies.

The set of small �rms is frequently referred to as the 
ompetitive fringe.

Labor is a single produ
tion fa
tor. Small �rms hire homogeneous workers. The produ
tion

of big �rms is more 
ompli
ated, thus requiring managers in addition to workers. The number

of workers and managers in the e
onomy is exogenous. For the sake of simpli
ity, the wages of

both types of labor for
e are assumed to be equal and �xed to 1 as numeraire.

Individuals are homogeneous as 
onsumers. They are endowed by a separable unspe
i�ed

utility, whi
h is another exogenous 
hara
teristi
 of the e
onomy.

2.2 Demand

An e
onomy is populated by L 
onsumers with in
ome Y . A 
onsumer 
hooses the quantities

Qx of the varieties x ∈ [0, N ] in order to maximize the utility

U =

∫ N

0

u(Qx) dx → max (1)

under budget 
onstrains

∫ N

0

pxQx ≤ Y, (2)

where px is the pri
e for the x-th variety of the di�erentiated good. The �rst order 
ondition

implies that

u′(Qx) = λpx, (3)

where λ is the Lagrange multiplier 
orresponding to the optimization problem (1).

We will later show that the optimal demand and general equilibrium are des
ribed in terms

of

σ(Q) = − u′(Q)

u′′(Q)Q
, (4)

whi
h is interpreted as the elasti
ity of substitution between varieties of the di�erentiated good.

7



The 
onsumer's problem as formulated here is standard in monopolisti
 
ompetition theory.

We only note that 
onsumers are indi�erent to what kind of �rm � large or small � produ
es

the variety.

2.3 Supply

2.3.1 Small �rm

A small �rm produ
ing the variety x maximizes its pro�t

πS,x = (pS,x − cS,x)qS,x − FS,x → max (5)

where the pri
es pS,x and the output qS,x are the optimization variables. At the optimum, the

output qS,x = LQS,x is equal to the aggregate demand for the variety x and the pri
es are

pS =
σScS
σS − 1

, (6)

where the index x is dropped and σS = σ(QS) (Dixit and Stiglitz, 1977).

2.3.2 Big �rm

A large �rm produ
es a range of varieties (of mass NB > 0) and 
ompetes with the other �rms.

Its pro�t is

Π =

∫ NB

0

πB,x dx → max (7)

where

πB,x = (pB,x − cB,x)qB,x − FB,x (8)

and qB,x = LQB,x is the aggregate demand for the variety x. As Equations (5) and (8) read,

the pro�t per variety of a large �rm is stru
tured in the same way as the pro�t of a small �rm.

We re
all that a small �rm maximizing its pro�t does not a�e
t the integral market 
har-

a
teristi
s. We assume that a big �rm does a�e
t them. In parti
ular, the Lagrange multiplier

λ, Equation (3), depends on the range of pri
es 
hosen by a large �rm

3

. In the 
ase of CES

preferen
es, the Lagrange multiplier is related to the pri
e index of the di�erentiated good.

Hen
e, big �rms behave as pri
e-index makers, whereas small �rms behave as pri
e-index tak-

ers. Under monopolisti
 
ompetition, all �rms are pri
e makers, and the di�eren
e between

3

Te
hni
ally, the maximization in (7) is performed with respe
t to the range of pri
es, i.e. with respe
t to

the fun
tion px. When 
omputing the variation of the pro�t, we involve the Gateaux derivative. The Lagrange

multiplier λ is �hidden� in the aggregate demand qx. Its Gateaux derivative is found with a standard variation

te
hnique (see Appendix) whereas this derivative is assumed to be zero for small �rms after Dixit and Stiglitz.
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strategi
 � large � and non-strategi
 � small � �rms is observed through their in�uen
e on

the pri
e index.

For the sake of simpli
ity, we imply a symmetri
 setting among both types of �rms. In

parti
ular, the 
osts cS,x and FS,x are independent of x. The �rst order 
ondition of a large

�rm's problem relates the pri
e pB,x being 
harged by this �rm to its variable 
osts cB,x and

output QB. Further simplifying the optimization problem, we look for the symmetri
al pri
ing

poli
y of ea
h large �rm: the pri
es pB,x = pB do not depend on x. Then

4

the �rst order


ondition leads to

pB =
σBcB
σB − 1

· 1

1− pBNBQB

, (9)

where σB = σ(QB); see Lemma 5. Equation (9) di�ers from (6) by the multiplier 1/(1−pNBQB),

where pNBQB is the share of the in
ome spent by the 
onsumer on the total output of the large

�rm. This multiplier shifts the solution pB of Equation (9) up. The 
orresponding growth of the

optimal demand QB keeps pBNBQB separated from 1. Hen
e, by a�e
ting the pri
e index, large

�rms de
rease their output and 
harge higher pri
es. In Lemma 6 in the Appendix, we establish

that the solution pB of Equation (9) satis�es the se
ond order 
onditions and, therefore, does

maximize the pro�t Π.

2.3.3 Pri
ing poli
ies of large and small �rms

E
onomi
 for
es stand behind the existen
e of large �rms. We do not model this pro
ess,

a

epting it as it is. However, following Demsetz (1973) among others, we assume that large

�rms have a 
omparative advantage in 
osts: cB < cS, FB = FS = F . A model with di�erent

�xed 
osts leads to similar qualitative 
on
lusions. We set the simplest dependen
e of the

variable 
osts on the �rm size. Namely, if a variety is produ
ed by a large �rm instead of a

small �rm, then the marginal produ
tion 
osts are redu
ed from cS to cB
5

.

A

ording to Equations (6) and (9), the pri
ing poli
ies of large and small �rms are di�erent.

Indeed, in 
ontrast to small �rms, a large �rm a�e
ts market aggregates and, as a result,

de
reases their output 
harging higher pri
es. More pre
isely, if a small �rm fa
ed the same


osts as large �rms do, it would set a lower pri
e, Equation (6) vs. (9). Endowed by a larger

market power, large �rms produ
e less and 
harge higher pri
es than single-produ
t �rms do.

In other words, the strategy of large �rms is more monopolisti
 than that of small �rms. We

emphasis that an oligopoly is tempted to behave less monopolisti
ally and set lower pri
es in

4

Te
hni
ally, 
onstant fun
tions are substituted into the �rst order 
ondition written with the Gateaux

derivatives; see the details in the Appendix.

5

If the size of a �rm is 0, its 
osts are cB; if the size is positive then they are cS ; the value of cB does not

depend on the positive �rm size.
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order to for
e the exit of the 
ompetitive fringe that operates at zero pro�t. However, su
h a

strategy only renews the 
ompetitive fringe keeping it in the market under free entry.

Under identi
al 
osts, large and small �rms should de
ide upon their pri
e and output

identi
ally in equilibrium: pS = pB; otherwise, a less pro�table rival 
opies the strategy of

the 
ompetitors. This 
auses the 
onglomerate of small �rms to be unstable. Any part of a


onglomerate 
an be separated without any impa
t on individual agents or the whole e
onomy.

2.4 Balan
es

2.4.1 A

eptan
e to agglomerates and free entry

The pro
ess of �rm formation is beyond our s
ope. Our model is stati
. Considering a large �rm

as a 
onglomerate of in�nitesimally small single-produ
t parts, we emphasize that ea
h part

has in
entives to de
eive by deviating from the �rm's strategi
 pri
e-output poli
y. Bene�ting

from the 
omparative advantage in 
osts, a single-produ
t part maximizes its pro�ts when

produ
ing more and 
harging less for its output in line with (5). However, the deviation has to

be subje
t to penalties up to being ex
luded from the 
onglomerate. Simplifying this pro
ess

and following the literature on 
lub formation, see, for example, (Alesina and Spolaore, 1997;

Bolton and Roland, 1997), we 
onsider these penalties as the deviation 
ost, to whi
h the value

ϕ ≥ 0 is assigned. Then, the pro�t of a large �rm per variety πB,x, where x belongs to the s
ope

of the large �rm, is equal to ϕ in equilibrium, as ϕ is the largest admissible pro�t that rules

out deviations. We also assume that large �rms are identi
al, and n denotes their number.

Small �rms are free to enter the market. Therefore, their pro�t is zero πS,x = 0 in equilib-

rium; x labels the varieties produ
ed by small �rms.

2.4.2 Labor market 
learan
e

The shares θW and θM of workers and managers in the e
onomy are assumed to be given.

Conje
turing that managers are employed only by large �rms, we follow the literature that

�nds a signi�
ant di�eren
e in the labor market stru
ture of large and small �rms; see, f. i.,

(Wynar
zyk et al., 2016). Under su
h an assumption, the �xed 
osts F 
oin
ide with the

number of managers in a large �rm, and the total number of managers θML is equal to

θML = nNBF. (10)
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3 Equilibrium

3.1 De�nition

The variables θM , θW , L, u(·), cS, cB, F , ϕ are exogenous in the model. We aim at �nding the

other 
hara
teristi
s of the e
onomy. The set of the identi
al pri
es p̂S = p̂S,x and p̂B = p̂B,x,

outputs Q̂ = Q̂x (all of them are independent of x), the mass of small �rms N̂S, the mass N̂B

of ea
h large �rm, and the number n̂ of large �rms is 
alled an equilibrium if the following


onditions hold.

First, the demand Q̂ solves the 
onsumer's optimization problem (1), (2) with Y = 1 +

n̂N̂Bϕ/L, N = N̂S + n̂N̂B, px = p̂S if the variety x is produ
ed by a small �rm and px = p̂B

otherwise.

Se
ond, �rms solve their optimization problems. Namely, given N = N̂S + n̂N̂B, the output

qx is related to the pri
es px for this variety by solving the 
onsumer's problem and is 
onsidered

as a fun
tion of the pri
es in the small or large �rm's optimization problem: Equation (5) or (7).

The pri
es p̂S,x and p̂B,x = p̂B give the maximum of the pro�ts (5) and (7), respe
tively. These

pri
es enter into the pro�ts dire
tly and indire
tly through qx.

Third, balan
es (2), turned to the equality, and (10) hold with non-negative NS and NB.

Forth, all large �rms have the same mass N̂B.

A

ording to this de�nition, the equilibrium variables solve the system of equations (2), (3),

(6), (9), and (10). We drop the dia
riti
al markˆfrom the notation in what follows.

3.2 Existen
e and uniqueness

The existen
e of the equilibrium requires the following assumption.

Assumption 1. The fun
tion σ(Q) is assumed to satisfy the following inequalities:

σ(Q) > 1, (11)

σ′(Q) ≤ 0, (12)

1− θMσ(Q)

θM
(

σ(Q)− 1
) >

ϕ

F
. (13)

We highlight a spe
ial 
ase of preferen
es satisfying the inequalities (11) and (12). It is

represented by the CES utility fun
tions

u(Q) = qρ, ρ ∈ (0, 1) σ(Q) = 1− ρ = const.

These fun
tions u indi
ate the frontier between the two 
lasses of utilities that have in
reasing

and de
reasing elasti
ity of substitution as a fun
tion of Q. Inequality (12) means that we
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onsider utilities from one of these 
lasses as Krugman (1979) has done. Inequality (11) is

te
hni
al.

Inequality (13) provides the labor market balan
e. If it is violated, then the number of

managers is too big; under the balan
e of the labor market, large �rms are for
ed to produ
e

more produ
ts than 
onsumers demand even if small �rms are absent. Eventually, labor market

equilibrium 
ontradi
ts the balan
e between supply and demand.

Proposition 1. Let Assumption 1 hold. Then equilibrium exists. Under CES preferen
es,

equilibrium is unique.

To simplify the notation, we put σS = σ(QS), σB = σ(QB). In equilibrium, the outputs qS

and qB of small and large �rms are respe
tively equal to

qS =
F (σS − 1)

cS
, (14)

qB =
F + ϕ

cB
·
(

σB − 1

2
− 1

2

√

1 + 4σB(σB − 1)m
)

· 2

1 +
√

1 + 4σB(σB − 1)m
, (15)

where m = NB(F+ϕ)/L 
onsists of the wages NBF/L of a large �rm's managers, as normalized

by the total mass of individuals and the 
ontribution NBϕ/L of a large �rm's shares to the

in
ome of ea
h individual; see Lemma 8. In Lemma 8 we establish that m solves the equation

m =

(

1− (σS − 1)σB

σS(σB − 1)
· cB
cS

u′(QS)

u′(QB)

)(

1− σS − 1

σS

cB
cS

u′(QS)

u′(QB)

)

. (16)

We have dis
ussed the me
hanism of the underprodu
tion of large �rms in se
tion 2.3.3.

Based on Equation (15), whi
h the output qB satis�es, we rigorously establish the underpro-

du
tion rigorously in Lemma 11.

The introdu
tion of large �rms 
ompli
ates the standard rigorous analysis of the equilibrium

equations. In parti
ular, instead of the single Equation (14), whi
h gives the output of small

�rms, the (
losed) system of two Equations (15), (16) is required to expose the equilibrium


hara
teristi
 of large �rms. We establish the existen
e of equilibrium by exploring this system.

3.3 Mass of small �rms

The budget 
onstraint and the balan
e of money re-written with equilibrium variables turn into

σSFNS +
2σB(F + ϕ)NBn

1 +
√

1 + 4σB(σB − 1) (F+ϕ)NB

L

= L+ nNBϕ. (17)

The mass NS of small �rms is 
omputed with Equation (17), and, in general, 
an be negative.

In this 
ase, large �rms push the 
ompetitive fringe out of the market. This e�e
t is in line

12



with the theoreti
al predi
tions made by Dixit (1979). Our approa
h 
an also des
ribe the

market without small �rms, but size asymmetry between oligopolies should be allowed. To

avoid the asymmetry of oligopolies within this paper, we introdu
e 
ondition (13) that keeps

the 
ompetitive fringe in equilibrium. Sin
e the square root is positive, the inequality

1 + θM
ϕ

F
− σ(QB)θM

(

1 +
ϕ

F

)

≥ 0 (18)

together with (10) leads to NS ≥ 0; see (17). Inequality (18) follows from (13).

A

ording to (13), three small quantities � the share of managers θM , the pro�t ϕ/F of

large �rms normalized by the �xed 
osts, and the elasti
ity of substitution σ(·) � stay in favor

of the 
ompetitive fringe. A limited number of managers restri
ts the expansion of large �rms,

whereas low pro�ts de
rease their attra
tiveness. The inverse elasti
ity of substitution, 1/σ,

represents the in
lination of 
onsumers to the diversity of the di�erentiated good. The market


reates a ni
he for the 
ompetitive fringe when 
onsumers prefer diversity.

3.4 The 
ase of half a large �rm

When 
onstru
ting a model with a 
ontinuous set of �rms, we 
an ignore the fa
t that the

derived number of oligopolies is fra
tional until it ex
eeds 1. However, if the 
omparative

advantage of a large �rm is signi�
ant, then its s
ope is so huge that mathemati
al routine

results in the value n, whi
h is less than 1. This means that even a single oligopoly fails to �nd

enough managers to run its produ
tion. Therefore, the expansion of a single large �rm involves

training additional managers.

3.5 the number of large �rms

A

ording to (10) and the de�nition of m, the number of large �rms is given by n = θM (1 +

ϕ/F )m−1
. Sin
e the number of �rms n is at least 1, the quantity m should be small. The

latter holds if both bra
kets in (16) are 
lose to zero; in parti
ular, if the ratio cB/cS is 
lose

to 1 and ϕ is negligible with respe
t to F . We asso
iate the 
omparative advantage of large

�rms with the parameter ε, de�ned as ε = 1 − cB/cS. If ε is small, the approximate solution

of Equation (16) 
an be found through the expansion of its right-hand side into a series. This

leads to an approximate formula for the number of �rms.

We need another te
hni
al assumption to estimate the number of �rms. The fun
tion

rf (κ) = −f ′′(κ)κ/f ′(κ) is assigned to the arbitrary fun
tion f(κ).

Assumption 2. Let

ru′(QB) < 2. (19)

13
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Figure 1: The number of �rms found with Equation (20), ϕ = 0, θM = 0.25, and three values of σ; the

horizontal dashed line indi
ates 1.

We note that CES preferen
es satisfy Assumption (2).

Proposition 2. Under CES preferen
es the number of large �rms is

n ≈ θM(F + ϕ)

F





(

σ3

2

)1/2
(

1− cB
cS

+
ϕ

(σ − 1)F

)

−1/2

− σ

2
+ 1

+O

(

(

1− cB
cS

+
ϕ

F

)1/2
))

(20)

Let an unspe
i�ed utility satisfy Assumptions 1 and 2. Then the number n of large �rms as a

fun
tion of εϕ = 1− cB/cS + ϕ/F behaves in the following way:

n ≈ θM (F + ϕ)

F

(

σ3(QB)(1− ru(QB))

2(2− ru′(QB))

)1/2(

1− cB
cS

+
ϕ

(σ(QB)− 1)F

)

−1/2

+O(1). (21)

where O-big term is taken with respe
t to εϕ at the point εϕ = 0.

The number of oligopolies positively 
orrelates with the share of managers θM , the pro�t of

large �rms per variety normalized by the �xed 
osts ϕ/F , and the elasti
ity of substitution σ.

Figure 1 illustrates Equation (20). This Figure gives eviden
e that the model generates

an e
onomy with a few oligopolisti
 �rms for adequate values of the elasti
ity of substitution

σ ∈ [2, 5].

The approximation (21) obtained for the e
onomy with an unspe
i�ed utility is less a

urate

than (20), sin
e only the main term with respe
t to 1/εϕ is found, but the se
ond term, a

14




onstant, is skipped. One would expe
t that the expansion into the Taylor series would result

in the leading term being proportional to ε−1
in Equation (21). Nevertheless, the number of

large �rms in
reases as the square root of ε−1/2
does, as the latter tends towards 0. This growth

is relatively small; a market with a few oligopolisti
 �rms 
an be observed with a wide range

of 
omparative advantages. Namely the dependen
e on εϕ is explored by Equation (21) rather

than the pre
ise value observed with a �xed εϕ, sin
e O(1) has the order of the 
onstant. We

stress that the (1− cB/cS)
−1/2

-growth of n is a general 
hara
teristi
 of the model e
onomy.

3.6 Comparative stati
s

In order to assess the market size e�e
t we work with the unspe
i�ed utilities (1). We introdu
e

an additional te
hni
al assumption about the utility.

Assumption 3. Let ru′(Q) be a de
reasing fun
tion of Q.

When modeling monopolisti
 
ompetition beyond CES, resear
h uses examples of prefer-

en
es, in
luding the CARA utilities, whi
h satisfy Assumption 3 (Behrens and Murata, 2012).

Proposition 3. Let Assumptions 1�3 hold. Then approximation (21) to the number of large

�rms in
reases in L.

A sho
k in the market size a�e
ts large �rms in a natural way. With the in
rease of

individuals, the demand for produ
t diversity enlarges. This shrinks the market power of

ea
h �rm. It implies that a large �rm is more restri
ted in larger markets when exploiting its


omparative advantage. In other words, the 
omparative advantage in 
osts loses its signi�
an
e

in larger markets. Therefore, by responding to a positive sho
k in the market size, large �rms

de
rease their s
ope. The share of their varieties be
omes smaller. As the number of managers

is assumed to be independent of L, Equation (10) implies that the number of 
onglomerates is

greater in larger markets.

We �nd the equilibrium variables by solving numeri
ally the underlying equations for a

spe
i�
 family of utilities in order to illustrate Proposition 3. This family is given by the

elasti
ity of substitution

σ(κ) = A

(

1 +
1

κ + 1

)

, A ≥ 1. (22)

where A ≥ 1 is a parameter. The utility

6

is expressed through hypergeometri
 fun
tions

dis
ussed in detail, for example by Whittaker and Watson (1990); Abadir (1999). Figure 2,

left, exhibits the response of the e
onomy to a sho
k in the market size, under the elasti
ity of

substitution de�ned by equation (22).

6u(κ) is equal to

A

2(A−1)

(

κ(κ + 2)
)

A−1

A

2F1

(

1, 2− 2
A
; 2− 1

A
;−κ

2

)

, if A > 1, and ln
(

κ + 1 +
√
κ2 + 2κ

)

, if

A = 1, where 2F1(a, b; c; z) is a standard notation for hypergeometri
 fun
tions.
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Figure 2: The number of large �rms as a fun
tion of the population size related to the utility with a de
reasing

(left) and in
reasing (right) elasti
ity of substitution; cs = 1, cb = 0.99, F = 1, ϕ = 0, θ = 0.3.

We also show how n depends on the market size L, if the elasti
ity of substitution σ(·) is
represented by the family of in
reasing fun
tions

7

: σ(κ) = A

(

2− 1

κ + 1

)

, where A ≥ 1 is a

parameter. In this 
ase, fewer oligopolies operate within a larger e
onomy, Figure 2.

4 Con
luding Remarks

We have 
onstru
ted a simple theory of mixed 
ompetition between oligopolies and a myriad of

small �rms. Several issues, however, are worth developing further. In many examples, a large

�rm a
ts more like an indivisible unit than a 
onglomerate of weakly dependent parts. Su
h an

oligopoly is free to optimize its s
ope. In other words, oligopolies gain an additional dimension

of market power that leads to a drop in s
ope. This 
reates a for
e that in
reases the number

of oligopolies.

We note that an indivisible �rm 
an extend its s
ope when expansion de
reases its pro�t

per variety be
ause the maximization of the pro�t Π and its average Π/NB with respe
t to the

s
ope NB 
learly di�er. An oligopoly 
an further enlarge its s
ope even if it de
reases the total

pro�t. Assume that the produ
tion of a new variety is still pro�table for a small �rm. This

attra
ts new small �rms to enter the market. The appearan
e of a new small �rm harms a

large �rm more than its own expansion, sin
e expansion allows the �rm to 
ompensate a loss

in demand by �pi
king up� the positive pro�t that 
omes from laun
hing a new variety. In this


ase, oligopolies exhibit a kind of 
annibalism. The 
annibalism 
reates an e
onomi
 for
e that

7

The 
orresponding utility u(κ) is

A

A−1κ
1− 1

A (2κ + 1)1+
1

2A 2F1

(

1, 2− 1
2A ; 2− 1

A
;−2κ

)

if A > 1 and

2
√
2κ + 1 + ln

√

2κ+1−1
√

2κ+1+1
if A = 1.
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leaves behind fewer oligopolies.

Our analysis un
overs the in
entives of oligopolies to deviate from a symmetri
al output�

pri
ing poli
y. We relate these in
entives to the possibility of the se
ession of part of a �rm.

Alternatively, we 
ould think about the asymmetri
al poli
y of an indivisible oligopoly. This

requires more sophisti
ated mathemati
s to ta
kle the 
orresponding optimization problem.

A Constru
tion of Equilibrium

We prove the existen
e of general equilibrium and its uniqueness in the 
ase of CES preferen
es,

as stated in Proposition 1. The proof is performed in several lemmas presented one-by-one with

brief 
omments regarding their 
ontent. The lemmas are integrated into the rigorous proof of

Proposition 1 at the end of this Appendix.

The �rst lemma solves the 
onsumer's optimization problem.

Lemma 1. Let a 
onsumer fa
ing varieties x ∈ [0, N ] traded at pri
es px maximizes her

pro�t (1) under the budget 
onstrain

∫ N

0

pxQx ≤ Y. (23)

Then the optimal demand sought among interior solutions satis�es to the budget 
onstrain (23)

written as the equality, Equation (3), and

λ =
1

Y

∫ N

0

u′(Qx)Qx dx. (24)

Proof. The �rst order 
ondition of the maximization problem leads to (3). Substituting Equa-

tion (3) to the budget (23), whi
h is understood as the equality, we obtain Equation (24).

We turn to a �rm's optimization. Its solution involves the variation of the aggregate and

individual demands, qB,x and QB,x, with respe
t to the pri
es. To simplify notation, we drop

index B in the proof.

Small �rms 
ontrol only their own pri
es. Therefore, the partial derivative represents the

variation with respe
t to these pri
es. Large �rms 
hoose various pri
es; they are given by a

fun
tion. In this 
ase, the Gateaux derivative 
hara
terizes the variation. We limit ourselves

by the symmetri
al pri
ing poli
ies: large �rms 
harge identi
al pri
es for their produ
ts. This

allows us to move from the Gateaux to the partial derivative. One 
an do it immediately,

di�erentiating (3) with respe
t to px, where both of the multipliers of the right-hand side

depend on the pri
es. Instead, we prefer to elaborate a general 
ase, Lemmas 2�4, in hope of

enlarging the toolkit of the monopolisti
 
ompetition theory.
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Lemma 2. The �rst order 
ondition of optimization problem (7) is given by

(pB,x − cB,x)
δqB,x[px]

δpx
+ q(pB,x) = 0 ∀x ∈ [0, NB], (25)

where quantities inside the square bra
kets indi
ate the (fun
tional) variables of the outer fun
-

tions.

Proof. Re
all, the Gateaux derivative of the fun
tion Φ, Φ : X → Y is de�ned in two steps.

First,

δΦ = lim
t→0

d

dt

Φ(x+ th)− Φ(x)

t
.

If δΦ = G(x)h, then the mapping G(x) is 
alled the Gateaux derivative denoted by

δPhi
δx

= G.

The variation of the pro�t Π is

δΠ = lim
t→0

1

t

∫ NB

0

(

px · (qx[px + thx]− qx[px])+ thx · q[px + thx]− cx(qx[px + thx]− qx[px])
)

dx =

∫ NB

0

(

px
δqx[px]

δpx
hx + hxq[px]− cx

δqx[px]

δpx
hx

)

dx =

∫ NB

0

(

(px − cx)
δqx[px]

δp
+ q[px]

)

hx dx.

Sin
e the variation of the pro�t is zero for any feasible

8

fun
tion hx, we end up with (25).

We are going to vary the optimal demand QB,x with respe
t to the pri
es pB,x. As an

auxiliary 
omputation, Lemma 3 represents the variation of the Lagrange multiplier λ.

Lemma 3. The Gateaux derivative of λ, as determined by Equation (24) with respe
t to the

pri
es p(x) for varieties x ∈ [0, NB], is the linear operator

δλ

δp
h =

∫ NB

0

K(px)hx dx,

where

K(px) =
1

Y

(

u′′(Qx(px))Qx(px) + u′(Qx(px))
)δQx

δp
hx.

Proof.

δpλ(px, hx) = lim
t→0

1

t

λ(p+ th)− λ(p)

t
=

lim
t→0

1

t

1

Y

∫ NB

0

(

u′(Qx(px + thx))Qx(px + thx)− u′(Qx(px))Qx(px)
)

dx,

where the fun
tion hx is zero outside the interval [0, NB]. Simplifying, we get:

δpλ(px, hx) = lim
t→0

1

t

1

Y

∫ NB

0

(

u′(Qx(px + thx))− u′(Qx(px))
)

Qx(px + thx)+

u′(Qx(px))
(

Qx(px + thx)−Qx(px)
)

dx.

8

We avoid the des
ription of the fun
tional spa
es required for a rigorous formulation of the large �rm's

optimization problem.
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δpλ(px, hx) =
1

Y

∫ NB

0

(

u′′(Qx(px)) lim
t→0

1

t

(

Qx(px + thx)−Qx(px)
)

Qx(px)+

u′(Qx(px)) lim
t→0

1

t
(Qx(px + thx)−Qx(px))

)

dx.

δpλ(px, hx) =
1

Y

∫ NB

0

(

u′′(Qx(px))Qx(px) + u′(Qx(px))
)δQx

δp
hx dx.

Let

K(px) =
1

Y

(

u′′(Qx(px))Qx(px) + u′(Qx(px))
)δQx

δp
hx.

Then the Gateaux derivative is the linear operator that maps the fun
tion h to R, as stated in

the Equation:

δλ

δp
h =

∫ NB

0

K(px)hx dx.

Based on Lemma 3, we derive an integral equation with respe
t to δQ/δp in the following

Lemma.

Lemma 4. Let

I2 =

∫ NB

0

u′′(Q[p])Q[p]
δQ

δp
h dx.

Then

(

1− 1

Y

∫ NB

0

pQ[p] dx

)

I2 =

∫ NB

0

λhQ[p] dx+
1

Y

∫ NB

0

pQ[p] dx

∫ NB

0

u′(Q[p])
δQ

δp
h dx. (26)

Proof. We are going to vary Equation (3) established in Lemma 1 with respe
t to the pri
es px


harged by a single big �rm and, therefore, de�ned on [0, NB]. Initially, we substitute px + thx

for px and drop the dependen
e on x:

u′(Q[p+ th]) = λ[p+ th](p+ th).

Adding and subtra
ting λ[p](p+ th), we have:

u′(Q[p + th]) = (λ[p+ th]− λ[p])(p+ th) + λ[p]p+ λ[p]th, (27)

Subtra
ting (3) from (27) we get:

u′′(Q[p])δQ[p]th = λ[p]th + (δλ[p])(p+ th).

By using Lemma 3, we tend t to zero:

u′′(Q)
δQ

δp
h = λh+

p

Y

∫ NB

0

(

u′′(Q(p))Q(p) + u′(Q(p))
)δQ

δp
h dx,
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where all fun
tionals are de�ned in p. Multiplying by Q and integrating both parts of the last

inequality over the interval [0, NB], we have

I2 =

∫ NB

0

λhQ[p] dx+
1

Y

∫ NB

0

pQ[p] dx

(

I2 +

∫ NB

0

u′(Q[p])
δQ

δp
h dx

)

.

From now on, we limit ourselves to the 
onsideration of the symmetri
al 
ase: large �rms


hoose identi
al pri
es on ea
h variety of their s
opes. A

ording to the following lemma, this

assumption drasti
ally simpli�es Equation (26) whi
h determines the variation of the optimal

demand with respe
t to pri
es. As a result, we �nd the optimal pri
e that maximizes the pro�ts

of a large �rm.

Lemma 5. Let NB be the total mass of varieties produ
ed by a single large �rm. We assume

that the pri
es of its varieties are symmetri
al: pB,x = pB = const. Then

pB − cB
pB

=
1

σB

+
pBNBQ

Y

σB − 1

σB

. (28)

Proof. We drop the index B to simplify notation. Let px = const, Qx = const, hx = 1. Then the

symbol δ of the variation 
an be 
hanged to ∂, whi
h stays for the partial derivative. From (26)

it follows that

u′′(Q)Q
∂Q

∂p

(

1− pQNB

Y

)

= λQ +
pQNB

Y
u′(Q)

∂Q

∂p
.

With the de�nition (4) of σ(Q) and the expression (3) for λ, the last equation implies that

(

1 +
pQNB(σ − 1)

Y

)

∂Q

∂p
= −σQ

p
. (29)

From (25) and equation q = NBQ, it follows that ∂Q/∂p = −Q/(p − c). Combining this

observation with (29), we have (28).

Lemma 6. We 
onsider a pro�t Π of a large �rm as a fun
tion of pri
es pB. These pri
es does

not depend on the variety type. The variation of Π with respe
t to the pri
es is 
hanged to the

partial derivative. Let Assumption 1 hold. Then ∂2Π/∂p2B < 0 at a point that satis�es the �rst

order 
ondition (9).

Proof. Simplifying the notation of the proof, we drop the index B and let p = pB, Q = QB,

N = NB. As derivatives substitute variations, the se
ond derivative of the pro�t is given by

Π′′ = NBL
∂Q

∂p

(

2 + (p− c)
∂2Q/∂p2

∂Q/∂p

)

. (30)
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We �nd the se
ond derivative of the demand by 
omputing the derivatives of both sides of

Equation (3) and by using the derivative of λ given by Lemma 3:

∂Q

∂p
= −σQ

p

1

1 +NpQ(σ − 1)/Y
. (31)

The alternative way of getting this equation is to simplify (26) with p = const and h = 1. Then

taking the logarithm and 
omputing the derivative of both sides of the obtained equation, we

have:

∂2Q/∂p2

∂Q/∂p2
= −

(

σ′

σ
+

1

Q

)

∂Q

∂p
+

1

p
+

N

Y +NpQ(σ − 1)

(

Q(σ − 1) + p(σ − 1)
∂Q

∂p
+ pQσ′

∂Q

∂p

)

. (32)

Understanding symbol ∼ as proportionality and substituting (32) into (30), we have:

−Π′′ ∼ 2− (p− c)

(

σ′

σ
+

1

Q

)

∂Q

∂p
+

(p− c)Np(σ − 1 +Qσ′)

Y +NpQ(σ − 1)

∂Q

∂p
+

p− c

p
+

(p− c)NQ(σ − 1)

Y +NpQ(σ − 1)
.

Taking into a

ount (28), we sum up the last two terms on the right-hand side and get:

−Π′′ ∼ 2− (p− c)

(

σ′

σ
+

1

Q

)

∂Q

∂p
+

(p− c)Np(σ − 1 +Qσ′)

Y +NpQ(σ − 1)

∂Q

∂p
+

Y + 2NpQ(σ − 1)

σ
.

With a large �rm's �rst order 
ondition

∂Q
∂p

= − Q
p−c

, whi
h follows from (25), we simplify Π′′
to

−Π′′ ∼ 2 +

(

σ′

σ
+

1

Q

)

Q− Np(σ − 1 +Qσ′)Q

Y +NpQ(σ − 1)
+

1 + 2NpQ(σ − 1)/Y

σ
.

We group the terms in the following way:

Π′′ =

(

2 +
σ′Q

σ

)

+

(

1− NpQ(σ − 1)

Y +NpQ(σ − 1)
+

1 + 2NpQ(σ − 1)/Y

σ

)

+

(

Np(−σ′)Q2

Y +NpQ(σ − 1)

)

.

The 
ondition (12) provides that the �rst and third bra
kets are positive. Establishing that the

se
ond bra
ket is positive, we put t = NpQ(σ − 1)/Y and prove the inequality

2t2 − (σ − 3)t+ 1

(1 + t)σ
+ 1 > 0.

Sin
e σ > 1, it is enough to prove that 2t2 + 3t+ 2 > 0. The latter is evident.

Lemma 7. The output of a small �rm under the free entry (πS = 0) is given by Equation (14).

The proof of the Lemma is well known.
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Lemma 8. Under the zero pro�t 
ondition for a large �rm, its pri
es and outputs are given by

the following equations

pB = cBσB
2

2σB − 1−
√

1 + 4σB(σB − 1)m
, (33)

QB =
(F + ϕ)(σB − 1)

LcB
·
σB − 1

2
− 1

2

√

1 + 4σB(σB − 1)m

σB − 1
· 2

1 +
√

1 + 4σB(σB − 1)m
, (34)

where m solves Equation (16).

Proof. Equalizing the pro�t (8) per variety of a large �rm to ϕ we get

QB =
F + ϕ

pBL

(

1− cB
pB

)

−1

=
F + ϕ

(pB − cB)L
(35)

Substituting (35) into (28), we get the equation

pB

(

1− pB(F + ϕ)NB

pB − cB

)

=
σBcB
σB − 1

,

whi
h is quadrati
 with respe
t to pB. By dividing both sides by pB and transforming, we

obtain

1− σB

σB − 1

cB
pB

=
pB(F + ϕ)NB

(pB − cB)L
;

and

(

1− cB
pB

)(

1− σB

σB − 1

cB
pB

)

=
(F + ϕ)NB

L
. (36)

The solution of this equation with respe
t to pB is given by

pB =
cB

1− 1
2σB

−
√

(F+ϕ)NB

L
σB−1
σB

+ 1
4σ2

B

.

The last equation is equivalent to (33). Substituting (33) to (35), we have

QB =
F + ϕ

cBL

(

2σB

2σB − 1−
√

1 + 4σB(σB − 1)m
− 1

)

−1

. (37)

Equations (34) and (37) are equivalent. If we assigned the se
ond root of Equation (36) to pB,

then the output found with (35) would be negative.

Now we derive Equation (16). We 
ombine Equations (3) fa
ed by small and large �rms to:

u′(QB)

u′(QS)
=

pB
pS

.

Then expressing pB from the last equation and using Equation (6), we obtain

pB =
u′(QB)

u′(QS)

cSσS

σS − 1
.

With this pB, Equation (36) is transformed to (16).
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Lemma 9. Let σ(Q) be a de
reasing fun
tion. Then the equation

QB =
F + ϕ

cBL

(

1

1− 1
2σB

−
√

1
4σ2

B

+
(

1− 1
σB

)

m
− 1

)

−1

(38)


onsidered with respe
t to QB for any �xed m ∈ [0, 1) has a unique solution. This solution

QB = QB(m) is a de
reasing fun
tion of m.

Proof. We put r(Q) = 1/σ(Q) and re-write Equation (38) as

QB =
F + ϕ

cBL





1

1− 1
2
rB −

√

1
4
r2B + (1− rB)m

− 1





−1

.

We de�ne an auxiliary fun
tion h(r) = 1
2
r+
√

1
4
r2 + (1− r)m, where m ∈ [0, 1) is a parameter,

and establish its growth in r. Computing

h′(r) =
1

2
+

1
2r

−m

2
√

1
4
r2 + (1− r)m

,

we 
on
lude that the inequality h′(r) > 0 is equivalent to the inequality

1 >
m− r/2

√

1
4
r2 + (1− r)m

.

If 2m− r < 0, then the last inequality holds. If 2m− r ≤ 0, the last inequality 
an be written

as

1

4
r2 + (1− r)m > m2 −mr +

1

4
r2 or m > m2,

whi
h is evident. Sin
e σ′ < 0, it follows that r′ > 0 and h(r(Q)) is an in
reasing fun
tion of

Q. Then the right-hand side (rhs) of Equation (38) is a de
reasing fun
tion of QB, whereas

the left-hand side (lhs) is an in
reasing fun
tion. Sin
e the lhs varies from 0 to +∞ and the

rhs is positive, their unique interse
tion exists. Investigating the rhs expli
itly, we 
laim that

it de
reases in m. Then the solution QB(m) de
reases as a fun
tion of m.

Lemma 10. We assume that QB is de�ned as the solution of Equation (38) and is substituted

into Equation (16). Let σ′ < 0. Then, a solution m of Equation (16) exists. Se
ond, the

di�eren
e of the right and left-hand sides of (16) 
hanges its sign from plus to minus at the

minimal m∗
, whi
h solves Equation (16). If the solution m is unique, it also has this property.

Proof. We plan to show that the rhs of (16) in
reases in m. The fun
tion u′(QB) is positive

and de
reasing. Therefore, the se
ond bra
ket in (16) is de
reasing in QB. The �rst bra
ket
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is also de
reasing be
ause u′(QB)(σ(QB)− 1)/σ(QB) = u′(QB)(1− 1/σ(QB)) de
reases in QB.

Thus, the rhs de
reases in QB but in
reases in m.

The lhs of (16) in
reases from 0 to +∞. If m = 0 then the equations determining QB and

QS 
oin
ides and, as a result, QB = QS. Then rhs(0) = (1 − cB/cS)
2 ∈ (0, 1). Sin
e the rhs

is bounded by 1 from above, the interse
tion of the left and right-hand sides exists. Let m∗
be

the minimal m that satis�es (16). Then the di�eren
e of the right and left-hand sides of (16)


hanges its sign from plus to minus at m∗
.

Lemma 11. Let Q̃B solves the equation Q = (F + ϕ)(σ(Q) − 1)/(cBL); q̃B = Q̃BL. Then

qB < q̃B in equilibrium.

Proof. A simple algebra gives eviden
e that the produ
t of the se
ond and the third fra
tion

on the right-hand side of Equation (34) is less than 1. As a result, from (34), it follows that

QB < (F +ϕ)(σB − 1)/(cBL). A

ording to Assumption 1, the right-hand side of the obtained

inequality de
reases in Q. Therefore, QB < Q̃B.

Proof of Proposition 1. Following the de�nition of equilibrium, we solve the 
onsumer's op-

timization problem, then the �rm's optimization problem and �nally add all of the balan
es.

Lemma 1 introdu
es a new variable, whi
h is the Lagrange multiplier λ, and relates the optimal

demand and the Lagrange multiplier to the other equilibrium variables, Equations (3) and (24).

We turn to the large �rm's problem. The �rst order 
onditions are given by Equation (25),

Lemma 2. In 
omparison with the �rst order 
onditions of the small �rm's problem, the Gateaux

derivative substitutes the partial derivative with respe
t to pri
es. This o

urs be
ause a large

�rm de
ides upon a range of pri
es represented by the fun
tion px.

In the next step, we vary the output with respe
t to the pri
es by pro
eeding with Equa-

tion (25) and ex
luding the Lagrange multiplier; see Lemma 4. Both operations are done due

to Equation (3). The variation of the output involves the variation of the Lagrange multiplier

performed in Lemma 3. This variation is zero for the small �rm's optimization problem. Re-

stri
ting ourselves to symmetri
al solutions with respe
t to x, we redu
e Equation (26), whi
h

obtained in Lemma 4, to (9); see Lemma 5.

Lemma 6 veri�es the se
ond order 
ondition of the large �rm's optimization problem and

establishes that the pri
es given by (9) do maximize pro�ts.

Taking into the 
onsideration the free entry 
ondition, Lemma 8 �nds simple equations that

the optimal demand and pri
es satisfy. At this moment, the system of the equilibrium equations

is split into parts. Equation (14) expli
itly determines the optimal demand Qs. Indeed, the

di�eren
e between the left-hand side qS = QSL and the right-hand side (whi
h 
ontains a

de
reasing fun
tion σ(QS)) in
reases and has a unique interse
tion with zero.
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The system of Equations (34) and (16) impli
itly determines the optimal demand QB for

the varieties of large �rms and the number m divided by the total population L. In fa
t, the

question of the existen
e and uniqueness of equilibrium is redu
ed to the analysis of this system

of the two equations. Lemmas 9 and (10) and establish that a solution to this system exists

under Assumption (1). The uniqueness is evident under CES preferen
es.

B Approximation to the Number of large Firms

We start with the following te
hni
al result.

Lemma 12. Let T1 and T2 denote the se
ond and third fra
tions in Equation (34):

T1 =
σB − 1

2
− 1

2

√

1 + 4σB(σB − 1)m

σB − 1
T2 =

2

1 +
√

1 + 4σB(σB − 1)m
(39)

Then the expansion of the produ
t T1T2 into series up the m3
-term is given by

T1T2 ≈ 1− σ2
Bm+ 2σ3

B(σB − 1)m2 − σ3
B(σB − 1)2(4σB + 1)m3. (40)

Proof. We 
onsequently expand the square root, fra
tion T1, and fra
tion T2 into series. The

square root is:

√

1 + 4σB(σB − 1)m ≈ 1 + 2σB(σB − 1)m− 2σ2
B(σB − 1)2m2 + 4σ3

B(σB − 1)3m3.

The fa
tor T1:

T1 ≈ 1− σBm+ σ2
B(σB − 1)m2 − 2σ3

B(σB − 1)2m3.

The fa
tor T2:

T2 ≈
1

1 + σB(σB − 1)m− σ2
B(σB − 1)2m2 + 2σ3

B(σB − 1)3m3
.

T2 = 1−σB(σB −1)m+σ2
B(σB −1)2m2−2σ3

B(σB −1)3m3+σ2
B(σB −1)2m2−2σ3

B(σB −1)3m3

= 1− σB(σB − 1)m+ 2σ2
B(σB − 1)2m2 − 4σ3

B(σB − 1)3m3.

Then Equation (40) gives the produ
t T1T2.

Proof of Proposition 2. The proof is based on the expansion of the right-hand side of Equa-

tion (16) into series. We seek the fun
tion m as a series with respe
t to εγ, where ε = 1− cB/cS

and γ is an appropriate exponent. The following dire
t 
omputation gives eviden
e that m is

the leading term in the right-hand side of Equation (16). Then m goes o� both sides, and the

leading terms remaining in the equation are m2
and ε. This suggests that γ = 1/2 and the
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expansion of m is in powers of ε1/2. We will justify that the representation m = Bε1/2 required

for Equation (21) involves the expansion of (16) to order x2
. A more detailed expansion to

order x3
enables us to obtain the representation m = Bε1/2+Cε and eventually Equation (20).

Under unspe
i�ed preferen
es, the expansion to order x3
is too 
ompli
ated to be exposed with

simple terms. We turn to algebra, dropping the most 
omputational part.

Initially, we perform the expansion under the CES setting and later we repeat the arguments

under unspe
i�ed preferen
es. Under the CES setting, u′(QB)/u
′(QS) = (QS/QB)

1/σ
, we are

able to expand the right-hand side up to the se
ond order term using the form:

u′(QS)

u′(QB)
= 1−

(

cB
cS

)
σ−1

σ
(

1 +
ϕ

F

)

−
1

σ

(T1T2)
1

σ .

By using (40), we have

(T1T2)
1

σ = 1− σm+
3

2
σ2(σ − 1)m2 − σ2(σ − 1)2(2σ + 1)m3.

Now we return to Equation (16), written in the form:

m =

(

1−
(

cB
cS

)
σ−1

σ
(

1 +
ϕ

F

)

−
1

σ

(T1T2)
1

σ

)(

1− σ − 1

σ

(

cB
cS

)
σ−1

σ
(

1 +
ϕ

F

)

−
1

σ

(T1T2)
1

σ

)

(41)

Put,

ε̃ = 1−
(

cB
cS

)
σ−1

σ
(

1 +
ϕ

F

)

−
1

σ

.

Then Equation (41) be
omes

0 =
ε̃

σ
− 1

2
σ(σ − 1)m2 + (2σ − 3)ε̃m− σ(σ − 1)3m3.

We seek m as a fun
tion of ε̃ in a form m = Bε̃γ + Cε̃2γ + . . ., γ > 0, B,C ∈ R, B 6= 0. Then

γ = 1/2, m ≈ B
√
ε̃+ Cε̃, and the fa
tors B and C 
an be found equalizing the 
oe�
ients at

the same powers of ε̃. Equalizing the 
oe�
ients multiplied by ε̃, we have

1

σ
− 1

2
σ(σ − 1)B2 = 0,

and

B =
1

σ

√

2

σ − 1
.

Equalizing the 
oe�
ients multiplied by ε̃3/2, we have

−1

2
σ(σ − 1)2BC + (2σ − 3)B = σ(σ − 1)3B3.

This turns to

C =
σ − 2

σ2(σ − 1)
.
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We 
on
lude that

m ≈ 1

σ

√

2

σ − 1

√
ε̃+

σ − 2

σ2(σ − 1)
ε̃.

Let ε = 1− cB/cS. Then the expression for ε̃ is expanded into ε̃ ≈ σ−1
σ
ε+ ϕ

σF
, and

m ≈
√
2

σ3/2(σ − 1)1/2

(

(σ − 1)ε+
ϕ

F

)1/2

+
σ − 2

σ3(σ − 1)

(

(σ − 1)ε+
ϕ

F

)

. (42)

Inverting the last equation, we have:

m−1 ≈ σ3/2(σ − 1)1/2√
2

(

(σ − 1)
(

1− cB
cS

)

+
ϕ

F

)

−1/2

− σ

2
+ 1.

Now Equation (20) follows from (10).

We return to Equation (21), intending to solve Equation (16) and prove the approximation

m2 ≈ 2r3u(2− ru′)

1− ru

(

ε+
ruϕ

(1− ru)F

)

. (43)

In Equation (43) and in the rest of the proof, the fun
tions ru and ru′
are taken at the point

QB. Auxiliary 
omputation gives eviden
e that

(ru)
′ =

ru
Q
(1 + ru − ru′), (ru′)′ =

ru′

Q
(1 + ru′ − ru′′), (44)

(ru)
′′ =

ru
Q2

(2ru + 2r2u − 2ru′ − 3ruru′ + ru′ru′′), (45)

The following expansion into series holds:

σS − 1

σB − 1
≈ 1 − 1 + ru − ru′

1− ru

(

QS

QB
− 1

)

+
1 + ru − ru′ + r2u′ − 1

2
ruru′ − 1

2
ru′ru′′

1− ru

(

QS

QB
− 1

)2

.

(46)

We 
laim that the equation

σS − 1

σB − 1

cB
cS

=
QS

QB

T1T2

(

1 +
ϕ

F

)

, (47)

when 
onsidered with respe
t to QS/QB, has the solution

QS

QB

− 1 ≈ − 1− ru
2− ru′

(

ε− ϕ

F

)

+
1− ru

(2− ru′)r2u
m+K2m

2
(48)

up to ō(m2), where

K2 =
1 + ru − ru′ + r2u′ − 1

2
ruru′ − 1

2
ru′ru′′

2− ru′

(1− ru)
2

(2− ru′)2r4u
− 2(1− ru)

2

(2− ru′)r4u
+

(1− ru)
2

(2− ru′)2r4u
.

We evaluate the ratio u′′

S/u
′′

B as

u′′

S

u′′

B

≈ 1− ru′

(

QS

QB

− 1

)

+
1

2
ru′ru′′

(

QS

QB

− 1

)

. (49)
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A

ording to (15), (14), (39), and the de�nition of σ, Equation (16) turns into

m =

(

1−
(

QS

QB

)2
u′′

S

u′′

B

(

1− ϕ

F

)

T1T2

)(

1− σB − 1

σB

(

QS

QB

)2
u′′

S

u′′

B

(

1− ϕ

F

)

T1T2

)

(50)

Inside this proof, S1 and S2 denote the �rst and the se
ond bra
kets of the right-hand side of

Equation (50). We simplify the �rst bra
ket (a routine algebra is skipped here):

S1 ≈ (1− ru)ε+
ruϕ

F
+

m

ru
+

(

(1− ru)

r3u
+

(1− ru)
2

2(2− ru′)r3u
m2

)

.

The se
ond bra
ket S2 is S2 = 1− (1−ru)(1−S1) = ru+(1−ru)S1. Sin
e S
2
1 = m2/r2u+ ō(m2),

it follows that S1S2 ≈ ruS1 + (1− ru)S
2
1 and Equation (50) is redu
ed to

m ≈ ru(1− ru)ε+
r2uϕ

F
+m− ru

(

(1− ru)

r3u
+

(1− ru)
2

2(2− ru′)r3u

)

m2 − (1− ru)m
2

r2u
.

Simplifying, we get (43).

Proof of Proposition 3. If ru in
reases and ru′
de
reases, then the fra
tion (1 − ru)/(2 − ru′)

de
reases and the right-hand side of Equation (43) in
reases in QB.

Let the population in
rease from L1 to L2 > L1. We turn to Equation (34) with the �old�

m1 = m(L1) but the new L = L2. Due to the 
hange in L, the right-hand side of (34) de
reases,

and the solution of this equation also de
reases: QB(m1, L2) < QB(m1, L1). Substituting

this QB(m1, L2) into Equation (43) we �nd that its right-hand side (rhs), as an in
reasing

fun
tion in QB, has de
reased and m1 > rhs
(

QB(m1, L2)
)

. Sin
e QB(·, L2) de
reases with

the �rst argument (see Lemma 9), rhs also de
reases in m. Therefore, 
hanging m from m1

downward, we de
rease the left-hand side m2
of (43) and in
rease the right-hand side. Sin
e

0 < rhs
(

QB(0, L2)
)

, there is a new solution m2 lo
ated to the left of m1. The number of large

�rms, being inverse to m, in
reases.
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