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Abstrat

In this paper, we introdue a simple new theory on mixed ompetition between oligopolis-

ti �rms and the ompetitive fringe, assuming a omparative advantage for big �rms and

free entry for small �rms. Oligopolies are de�ned as onglomerates, eah part of whih

bene�ts from joint operations through lower osts. Our theory implies that (i) indus-

tries with a few oligopolies arise as a stable outome of mixed ompetition; (ii) mixed

ompetition di�ers from the monopolisti ompetition of single-produt �rms due to the

underprodution of oligopolisti �rms and di�ers from pure oligopolisti ompetition sine

onstraints on this underprodution are imposed by the ompetitive fringe; (iii) a positive

shok in the market size an strengthen or weaken the ompetitiveness of the eonomy

through the growth of the number of oligopolies.
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1 Introdution

Industries are typially divided into groups of big �rms and a ompetitive fringe of muh smaller

�rms (Porter, 2008; Uslay et al., 2010). Mankiw (2007; Page 348) gives the two following

examples referring to the USA in 2002: (i) three ompanies ontrolled nearly two-thirds of the

able television market; (ii) three big publishers of ollege textbooks aounted for 65% of the

industry. We an ontinue to �nd examples regarding di�erent ountries, industries and years,

inluding the beef/sheep meat proessing industry in Australia in 1987; three oligopolies �

Kelloggs, Sanitarium and Nabiso � held a share of about 90% of the ereal market, and up to

30% of the wine industry was ontrolled by Adsteam and Philipp Morris (Lawrene, 1987).

This onentration of industries in the hands of several oligopolies gives rise to onerns

regarding the e�ieny of the industry itself. However, eonomi theory has investigated the

strategi games of oligopolies and the monopolisti ompetition of the myriad of small �rms

separately. The priniples of the o-existene of large and small �rms is rarely disussed; for

example, Gabszewiz and Vial (1972) introdued an analysis from the perspetive of ooperative

game theory. This gap in the literature has been �lled in reent years (Neary, 2003; Etro, 2008;

Neary, 2010; Shimomura and Thisse, 2012; Parenti, 2017; Kokovin et al., 2017).

We onstrut a new, simple theory on the o-existene of oligopolies and the ompeti-

tive fringe, assuming the omparative advantage of big �rms and free entry for small �rms.

Oligopolies are de�ned as onglomerates, eah part of whih bene�ts from joint operations

thanks to lower osts. This assumption follows the saying by Demsetz (1973): �Under the

pressure of ompetitive rivalry, and in the apparent absene of e�etive barriers to entry, it

would seem that the onentration of an industry's output in a few �rms ould only derive

from their superiority in produing and marketing produts or in the superiority of industry in

whih there are only a few �rms�. We summarize our main �ndings in three points.

1. Industries with a few oligopolies arise as a stable outome of the mixed ompetition between

oligopolisti �rms and the ompetitive fringe.

2. Mixed ompetition di�ers from the monopolisti ompetition of single-produt �rms due to

the underprodution of oligopolisti �rms. It di�ers from pure oligopolisti ompetition due

to the onstraints on underprodution imposed by the ompetitive fringe. Thus, mixed om-

petition looks like �a stage, where every man must play a part�

2

: oligopolies establish their

market power, whereas small �rms restrain it. In ontrast to Shakespeare's haraters, both

sides bene�t from partiipating.

3. A positive shok in the market size strengthens the ompetitiveness of the eonomy through

the growth of the number of oligopolies, if the demand of onsumers is haraterized by

2

W. Shakespeare, The Merhant of Venie
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the dereasing elastiity of substitution between produts. However, the opposite (ounter-

intuitive) response is also possible. We introdue a family of preferenes suh that the number

of oligopolies inreases after a positive shok in the market size.

We model the following framework of the mixed ompetition between small and large �rms.

All �rms produe varieties of a di�erentiated good. Small �rms are single-produt. They have

a loal market power as modeled by Dixit and Stiglitz (1977). Big �rms have global market

power. They produe a range of varieties, behave like monopolists in the market of the varieties

produed by them, and, additionally, a�et the prie index assoiated with the di�erentiated

good. Aording to their deision making, small �rms are prie-index takers, whereas big �rms

are prie index-makers.

We �nd that eah part of a onglomerate is better o� when keeping its omparative advan-

tage, but deviating from the output-priing poliy of the onglomerate in order to behave in line

with the strategy of single-produt �rms. When we introdue a �xed penalty for the deviation,

the deviations are bloked in equilibrium, and the pro�t per variety of big �rms equals this

penalty. The idea of deviation osts is related to the prisoner's dilemma and is extensively used

in the theory of on�its.

The priniples of the oexistene of small and large �rms are derived under the onstant

elastiity of substitution (CES) preferenes of onsumers. Then we verify the general nature

of the derived priniples with unspei�ed separable preferenes. With this type of preferenes,

we assess the market size e�et.

Our paper relates to a wide variety of researh. Dixit and Stiglitz (1977) introdue an

approximation for the number of disrete varieties that altogether onstitute a di�erentiated

good. This approximation works well if eah �rm ontrols a negligible share of the market.

Therefore, by speifying the range of shares between negligible and signi�ant, one an disuss

the behavior of big and small �rms. Yang and Heijdra (1993); d'Aspremont et al. (1996) re�ne

the Dixit�Stigitz approximation, dealing with less negligible but still small �rms. Big �rms

an also be assoiated with multi-produtivity, as analyzed in detail by Bernard et al. (2012);

Dhingra (2013); Mayer et al. (2014); Ekel and Neary (2010); Ushhev (2017) and Feenestra and

Ma (2007), and onsidered to be leaders in the Stakelberg game (see Etro (2008)) or giants in

loal markets that are small on the global market (Neary, 2003). Aording to (Neary, 2010),

�rms an hoose between being large or small in order to maximize their pro�ts.

Reently, groups of authors have expanded the Dixit�Stiglitz approah to model a mixed

market struture with big and negligibly small �rms. From a measure-theoreti point of view,

small �rms were assoiated with points of measure zero on the segment that represents the dif-

ferentiated good, whereas the number of varieties produed by big �rms had a positive measure.

Shimomura and Thisse (2012) takled the ompetition of oligopolies, whih produe a disrete
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set of varieties, and the myriad of negligibly small �rms that form the ompetitive fringe.

These authors investigated how the entrane of additional oligopolies a�ets the eonomy and,

in partiular, the mixed market struture. In the model, the ompetitive fringe behaves as an

additional big �rm. The number of oligopolies is an exogenous parameter; With its growth,

the ompetitive fringe shrinks and �nally disappears. Dixit (1979) predited a blokaded en-

try for a weaker ompetitor in a duopoly setting, however the existene of pure oligopolisti

ompetition in the modeling strategy by Shimomura and Thisse (2012) with an endogenous

number of oligopolies is still unlear. In ontrast to (Shimomura and Thisse, 2012), we avoid

an atomi representation of the output of big �rms in favor of a ontinuous range of varieties

produed by eah oligopoly. Suh a hoie simpli�es the analysis while keeping qualitative

outomes. Assuming the free entry of oligopolies, we estimate their number for di�erent model

parameters.

When there is a more signi�ant omparative advantage, fewer oligopolies operate in the

market, but they ontrol a larger share of the varieties. We �nd an unexpeted absene of equi-

librium within oligopolies under their large omparative advantage. In this ase, the equilibrium

number of oligopolies is less than one and the mixed ompetition beomes unstable.

The approah designed by Parenti (2017) is loser to our own. In (Parenti, 2017), as in our

analysis, large multi-produt �rms produe a positive share of varieties. By using the quadrati

utility of onsumers (Ottaviano et al., 2002) disovers that a derease in trade barriers inreases

the number of oligopolisti �rms. In this paper, we establish that typially a similar e�et holds,

that is, in response to a sudden enlargement of the eonomy, industries beome less oligopolisti.

This result is obtained within the framework of a small eonomy and separable unspei�ed

preferenes. In other words, we on�rm a positive market size e�et on the ompetitiveness of

the eonomy. However, we highlight that the opposite e�et is also feasible. The diretion of the

response depends on whether the elastiity of substitution between varieties of the di�erentiated

good is a dereasing funtion.

Following (Parenti, 2017) but not (Gabszewiz and Vial, 1972; d'Aspremont et al., 1990),

we treat all �rms as inome-takers when they neglet the impat that their output deisions

have on the total inome through the distribution of pro�ts.

Kokovin et al. (2017) introdued a mixed market struture of in�nitesimally small single-

produt �rms and big �rms that produe a sope of varieties. In their model, big �rms bene�t

from �hiding� their ability to a�et market aggregates by opying the priing poliy of small

�rms. The existene of a ommon salar aggregate attribute apturing ross-prie e�ets in the

demand system leads to the dilution of the market power of big �rms (Kokovin et al., 2017).

In the ase of homogeneous prodution, the dilution results in an idential priing system and

pro�t equalization. If not, a less suessful �rm will mimi the pries and output of more
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e�ient rivals.

Unlike Kokovin et al. (2017), we explain why only a few oligopolies operate in the market,

relating this phenomenon to their omparative advantage. We posit that being endowed with

a substantial omparative advantage, the existing oligopolies produe a wide range of varieties

preventing the appearane of other suh wide-ranged ompetitors. As soon as oligopolies have

a omparative advantage, their priing poliies di�er from that of the ompetitive fringe. In

ontrast to Kokovin et al. (2017), we posit that oligopolies prefer to exploit their omparative

advantage in spite of onstraints on their market power through the demand system.

The underprodution and omparative advantage of big �rms are related to the literature

regarding the heterogeneity of �rms and total fator produtivity (Melitz, 2003; Bernard et al.,

2007; Redding, 2011; Hottman et al., 2016). Melitz and Redding (2012) laim that more pro-

dutive �rms set higher markups. Our model predits the same onlusion, but the mehanism

is di�erent: the strategi behaviour, meaning the possibility to manipulate the market, leads

to the higher markups of oligopolies. With higher markups, big �rms have enough room for an

ative priing poliy. On the ontrary, tiny markups give small �rms limited room for strategi

adjustments.

Separating workers and managers, we draw on evidene regarding the heterogeneity of the

labor struture with respet to �rm size. Researhers have explored the hierarhial labor

struture of �rms and �nd the determinants a�eting the inequality between workers and man-

agers (Li� and Turner, 1999; Wynarzyk et al., 2016; Delmastro, 2002). We simplify the matter,

�attening the labor struture. Under this simpli�ation, the di�erene in the labor struture

seen for instane with British (Green et al., 2017) and Frenh (Caliendo et al., 2015) data orre-

sponds to the partiipation of �rms in innovations: larger �rms are more likely to be innovative

in many industries and loations, whereas some regions, inluding East Central Italy (Bruso,

1986) and California (Oakey et al., 1998), look like exeptions. Therefore, the majority of

small �rms, whih are not involved in the innovation business, fae no inentives to employ

professional managers (Wynarzyk et al., 2016). The growth of �rm size enlarges the di�erene

between the workers and managers (Green et al., 2017). Thus, assoiating managers only with

large �rms, we remain in line with empirial data.

The rest of the paper is organized in the following way. The eonomy is modelled in Setion 2.

We onstrut an equilibrium and disuss its properties in Setion 3. Setion 4 onludes. All

tehnial parts are plaed into two Appendies.
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2 Model

2.1 Eonomy

We onsider a single-setor eonomy that produes a di�erentiated good. The prodution side

is represented by single and multi-produt �rms. Multi-produt �rms operate as onglomerates

of single-produt �rms. Their pro�ts are shared between all individuals equally. Assoiating

the varieties of the di�erentiated good, whih has the mass N , with the points of segment

[0, N ], we presribe points � that have the measure 0 � to single-produt �rms and segments

� sets of a non-zero measure � to multi-produt �rms. The length of these segments indiate

the sope of the varieties produed by multi-produt �rms. We all the two types of �rms small

and large. When few large �rms operate in the market they are assoiated with oligopolies.

The set of small �rms is frequently referred to as the ompetitive fringe.

Labor is a single prodution fator. Small �rms hire homogeneous workers. The prodution

of big �rms is more ompliated, thus requiring managers in addition to workers. The number

of workers and managers in the eonomy is exogenous. For the sake of simpliity, the wages of

both types of labor fore are assumed to be equal and �xed to 1 as numeraire.

Individuals are homogeneous as onsumers. They are endowed by a separable unspei�ed

utility, whih is another exogenous harateristi of the eonomy.

2.2 Demand

An eonomy is populated by L onsumers with inome Y . A onsumer hooses the quantities

Qx of the varieties x ∈ [0, N ] in order to maximize the utility

U =

∫ N

0

u(Qx) dx → max (1)

under budget onstrains

∫ N

0

pxQx ≤ Y, (2)

where px is the prie for the x-th variety of the di�erentiated good. The �rst order ondition

implies that

u′(Qx) = λpx, (3)

where λ is the Lagrange multiplier orresponding to the optimization problem (1).

We will later show that the optimal demand and general equilibrium are desribed in terms

of

σ(Q) = − u′(Q)

u′′(Q)Q
, (4)

whih is interpreted as the elastiity of substitution between varieties of the di�erentiated good.
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The onsumer's problem as formulated here is standard in monopolisti ompetition theory.

We only note that onsumers are indi�erent to what kind of �rm � large or small � produes

the variety.

2.3 Supply

2.3.1 Small �rm

A small �rm produing the variety x maximizes its pro�t

πS,x = (pS,x − cS,x)qS,x − FS,x → max (5)

where the pries pS,x and the output qS,x are the optimization variables. At the optimum, the

output qS,x = LQS,x is equal to the aggregate demand for the variety x and the pries are

pS =
σScS
σS − 1

, (6)

where the index x is dropped and σS = σ(QS) (Dixit and Stiglitz, 1977).

2.3.2 Big �rm

A large �rm produes a range of varieties (of mass NB > 0) and ompetes with the other �rms.

Its pro�t is

Π =

∫ NB

0

πB,x dx → max (7)

where

πB,x = (pB,x − cB,x)qB,x − FB,x (8)

and qB,x = LQB,x is the aggregate demand for the variety x. As Equations (5) and (8) read,

the pro�t per variety of a large �rm is strutured in the same way as the pro�t of a small �rm.

We reall that a small �rm maximizing its pro�t does not a�et the integral market har-

ateristis. We assume that a big �rm does a�et them. In partiular, the Lagrange multiplier

λ, Equation (3), depends on the range of pries hosen by a large �rm

3

. In the ase of CES

preferenes, the Lagrange multiplier is related to the prie index of the di�erentiated good.

Hene, big �rms behave as prie-index makers, whereas small �rms behave as prie-index tak-

ers. Under monopolisti ompetition, all �rms are prie makers, and the di�erene between

3

Tehnially, the maximization in (7) is performed with respet to the range of pries, i.e. with respet to

the funtion px. When omputing the variation of the pro�t, we involve the Gateaux derivative. The Lagrange

multiplier λ is �hidden� in the aggregate demand qx. Its Gateaux derivative is found with a standard variation

tehnique (see Appendix) whereas this derivative is assumed to be zero for small �rms after Dixit and Stiglitz.
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strategi � large � and non-strategi � small � �rms is observed through their in�uene on

the prie index.

For the sake of simpliity, we imply a symmetri setting among both types of �rms. In

partiular, the osts cS,x and FS,x are independent of x. The �rst order ondition of a large

�rm's problem relates the prie pB,x being harged by this �rm to its variable osts cB,x and

output QB. Further simplifying the optimization problem, we look for the symmetrial priing

poliy of eah large �rm: the pries pB,x = pB do not depend on x. Then

4

the �rst order

ondition leads to

pB =
σBcB
σB − 1

· 1

1− pBNBQB

, (9)

where σB = σ(QB); see Lemma 5. Equation (9) di�ers from (6) by the multiplier 1/(1−pNBQB),

where pNBQB is the share of the inome spent by the onsumer on the total output of the large

�rm. This multiplier shifts the solution pB of Equation (9) up. The orresponding growth of the

optimal demand QB keeps pBNBQB separated from 1. Hene, by a�eting the prie index, large

�rms derease their output and harge higher pries. In Lemma 6 in the Appendix, we establish

that the solution pB of Equation (9) satis�es the seond order onditions and, therefore, does

maximize the pro�t Π.

2.3.3 Priing poliies of large and small �rms

Eonomi fores stand behind the existene of large �rms. We do not model this proess,

aepting it as it is. However, following Demsetz (1973) among others, we assume that large

�rms have a omparative advantage in osts: cB < cS, FB = FS = F . A model with di�erent

�xed osts leads to similar qualitative onlusions. We set the simplest dependene of the

variable osts on the �rm size. Namely, if a variety is produed by a large �rm instead of a

small �rm, then the marginal prodution osts are redued from cS to cB
5

.

Aording to Equations (6) and (9), the priing poliies of large and small �rms are di�erent.

Indeed, in ontrast to small �rms, a large �rm a�ets market aggregates and, as a result,

dereases their output harging higher pries. More preisely, if a small �rm faed the same

osts as large �rms do, it would set a lower prie, Equation (6) vs. (9). Endowed by a larger

market power, large �rms produe less and harge higher pries than single-produt �rms do.

In other words, the strategy of large �rms is more monopolisti than that of small �rms. We

emphasis that an oligopoly is tempted to behave less monopolistially and set lower pries in

4

Tehnially, onstant funtions are substituted into the �rst order ondition written with the Gateaux

derivatives; see the details in the Appendix.

5

If the size of a �rm is 0, its osts are cB; if the size is positive then they are cS ; the value of cB does not

depend on the positive �rm size.
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order to fore the exit of the ompetitive fringe that operates at zero pro�t. However, suh a

strategy only renews the ompetitive fringe keeping it in the market under free entry.

Under idential osts, large and small �rms should deide upon their prie and output

identially in equilibrium: pS = pB; otherwise, a less pro�table rival opies the strategy of

the ompetitors. This auses the onglomerate of small �rms to be unstable. Any part of a

onglomerate an be separated without any impat on individual agents or the whole eonomy.

2.4 Balanes

2.4.1 Aeptane to agglomerates and free entry

The proess of �rm formation is beyond our sope. Our model is stati. Considering a large �rm

as a onglomerate of in�nitesimally small single-produt parts, we emphasize that eah part

has inentives to deeive by deviating from the �rm's strategi prie-output poliy. Bene�ting

from the omparative advantage in osts, a single-produt part maximizes its pro�ts when

produing more and harging less for its output in line with (5). However, the deviation has to

be subjet to penalties up to being exluded from the onglomerate. Simplifying this proess

and following the literature on lub formation, see, for example, (Alesina and Spolaore, 1997;

Bolton and Roland, 1997), we onsider these penalties as the deviation ost, to whih the value

ϕ ≥ 0 is assigned. Then, the pro�t of a large �rm per variety πB,x, where x belongs to the sope

of the large �rm, is equal to ϕ in equilibrium, as ϕ is the largest admissible pro�t that rules

out deviations. We also assume that large �rms are idential, and n denotes their number.

Small �rms are free to enter the market. Therefore, their pro�t is zero πS,x = 0 in equilib-

rium; x labels the varieties produed by small �rms.

2.4.2 Labor market learane

The shares θW and θM of workers and managers in the eonomy are assumed to be given.

Conjeturing that managers are employed only by large �rms, we follow the literature that

�nds a signi�ant di�erene in the labor market struture of large and small �rms; see, f. i.,

(Wynarzyk et al., 2016). Under suh an assumption, the �xed osts F oinide with the

number of managers in a large �rm, and the total number of managers θML is equal to

θML = nNBF. (10)
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3 Equilibrium

3.1 De�nition

The variables θM , θW , L, u(·), cS, cB, F , ϕ are exogenous in the model. We aim at �nding the

other harateristis of the eonomy. The set of the idential pries p̂S = p̂S,x and p̂B = p̂B,x,

outputs Q̂ = Q̂x (all of them are independent of x), the mass of small �rms N̂S, the mass N̂B

of eah large �rm, and the number n̂ of large �rms is alled an equilibrium if the following

onditions hold.

First, the demand Q̂ solves the onsumer's optimization problem (1), (2) with Y = 1 +

n̂N̂Bϕ/L, N = N̂S + n̂N̂B, px = p̂S if the variety x is produed by a small �rm and px = p̂B

otherwise.

Seond, �rms solve their optimization problems. Namely, given N = N̂S + n̂N̂B, the output

qx is related to the pries px for this variety by solving the onsumer's problem and is onsidered

as a funtion of the pries in the small or large �rm's optimization problem: Equation (5) or (7).

The pries p̂S,x and p̂B,x = p̂B give the maximum of the pro�ts (5) and (7), respetively. These

pries enter into the pro�ts diretly and indiretly through qx.

Third, balanes (2), turned to the equality, and (10) hold with non-negative NS and NB.

Forth, all large �rms have the same mass N̂B.

Aording to this de�nition, the equilibrium variables solve the system of equations (2), (3),

(6), (9), and (10). We drop the diaritial markˆfrom the notation in what follows.

3.2 Existene and uniqueness

The existene of the equilibrium requires the following assumption.

Assumption 1. The funtion σ(Q) is assumed to satisfy the following inequalities:

σ(Q) > 1, (11)

σ′(Q) ≤ 0, (12)

1− θMσ(Q)

θM
(

σ(Q)− 1
) >

ϕ

F
. (13)

We highlight a speial ase of preferenes satisfying the inequalities (11) and (12). It is

represented by the CES utility funtions

u(Q) = qρ, ρ ∈ (0, 1) σ(Q) = 1− ρ = const.

These funtions u indiate the frontier between the two lasses of utilities that have inreasing

and dereasing elastiity of substitution as a funtion of Q. Inequality (12) means that we
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onsider utilities from one of these lasses as Krugman (1979) has done. Inequality (11) is

tehnial.

Inequality (13) provides the labor market balane. If it is violated, then the number of

managers is too big; under the balane of the labor market, large �rms are fored to produe

more produts than onsumers demand even if small �rms are absent. Eventually, labor market

equilibrium ontradits the balane between supply and demand.

Proposition 1. Let Assumption 1 hold. Then equilibrium exists. Under CES preferenes,

equilibrium is unique.

To simplify the notation, we put σS = σ(QS), σB = σ(QB). In equilibrium, the outputs qS

and qB of small and large �rms are respetively equal to

qS =
F (σS − 1)

cS
, (14)

qB =
F + ϕ

cB
·
(

σB − 1

2
− 1

2

√

1 + 4σB(σB − 1)m
)

· 2

1 +
√

1 + 4σB(σB − 1)m
, (15)

where m = NB(F+ϕ)/L onsists of the wages NBF/L of a large �rm's managers, as normalized

by the total mass of individuals and the ontribution NBϕ/L of a large �rm's shares to the

inome of eah individual; see Lemma 8. In Lemma 8 we establish that m solves the equation

m =

(

1− (σS − 1)σB

σS(σB − 1)
· cB
cS

u′(QS)

u′(QB)

)(

1− σS − 1

σS

cB
cS

u′(QS)

u′(QB)

)

. (16)

We have disussed the mehanism of the underprodution of large �rms in setion 2.3.3.

Based on Equation (15), whih the output qB satis�es, we rigorously establish the underpro-

dution rigorously in Lemma 11.

The introdution of large �rms ompliates the standard rigorous analysis of the equilibrium

equations. In partiular, instead of the single Equation (14), whih gives the output of small

�rms, the (losed) system of two Equations (15), (16) is required to expose the equilibrium

harateristi of large �rms. We establish the existene of equilibrium by exploring this system.

3.3 Mass of small �rms

The budget onstraint and the balane of money re-written with equilibrium variables turn into

σSFNS +
2σB(F + ϕ)NBn

1 +
√

1 + 4σB(σB − 1) (F+ϕ)NB

L

= L+ nNBϕ. (17)

The mass NS of small �rms is omputed with Equation (17), and, in general, an be negative.

In this ase, large �rms push the ompetitive fringe out of the market. This e�et is in line

12



with the theoretial preditions made by Dixit (1979). Our approah an also desribe the

market without small �rms, but size asymmetry between oligopolies should be allowed. To

avoid the asymmetry of oligopolies within this paper, we introdue ondition (13) that keeps

the ompetitive fringe in equilibrium. Sine the square root is positive, the inequality

1 + θM
ϕ

F
− σ(QB)θM

(

1 +
ϕ

F

)

≥ 0 (18)

together with (10) leads to NS ≥ 0; see (17). Inequality (18) follows from (13).

Aording to (13), three small quantities � the share of managers θM , the pro�t ϕ/F of

large �rms normalized by the �xed osts, and the elastiity of substitution σ(·) � stay in favor

of the ompetitive fringe. A limited number of managers restrits the expansion of large �rms,

whereas low pro�ts derease their attrativeness. The inverse elastiity of substitution, 1/σ,

represents the inlination of onsumers to the diversity of the di�erentiated good. The market

reates a nihe for the ompetitive fringe when onsumers prefer diversity.

3.4 The ase of half a large �rm

When onstruting a model with a ontinuous set of �rms, we an ignore the fat that the

derived number of oligopolies is frational until it exeeds 1. However, if the omparative

advantage of a large �rm is signi�ant, then its sope is so huge that mathematial routine

results in the value n, whih is less than 1. This means that even a single oligopoly fails to �nd

enough managers to run its prodution. Therefore, the expansion of a single large �rm involves

training additional managers.

3.5 the number of large �rms

Aording to (10) and the de�nition of m, the number of large �rms is given by n = θM (1 +

ϕ/F )m−1
. Sine the number of �rms n is at least 1, the quantity m should be small. The

latter holds if both brakets in (16) are lose to zero; in partiular, if the ratio cB/cS is lose

to 1 and ϕ is negligible with respet to F . We assoiate the omparative advantage of large

�rms with the parameter ε, de�ned as ε = 1 − cB/cS. If ε is small, the approximate solution

of Equation (16) an be found through the expansion of its right-hand side into a series. This

leads to an approximate formula for the number of �rms.

We need another tehnial assumption to estimate the number of �rms. The funtion

rf (κ) = −f ′′(κ)κ/f ′(κ) is assigned to the arbitrary funtion f(κ).

Assumption 2. Let

ru′(QB) < 2. (19)

13
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Figure 1: The number of �rms found with Equation (20), ϕ = 0, θM = 0.25, and three values of σ; the

horizontal dashed line indiates 1.

We note that CES preferenes satisfy Assumption (2).

Proposition 2. Under CES preferenes the number of large �rms is

n ≈ θM(F + ϕ)

F





(

σ3

2

)1/2
(

1− cB
cS

+
ϕ

(σ − 1)F

)

−1/2

− σ

2
+ 1

+O

(

(

1− cB
cS

+
ϕ

F

)1/2
))

(20)

Let an unspei�ed utility satisfy Assumptions 1 and 2. Then the number n of large �rms as a

funtion of εϕ = 1− cB/cS + ϕ/F behaves in the following way:

n ≈ θM (F + ϕ)

F

(

σ3(QB)(1− ru(QB))

2(2− ru′(QB))

)1/2(

1− cB
cS

+
ϕ

(σ(QB)− 1)F

)

−1/2

+O(1). (21)

where O-big term is taken with respet to εϕ at the point εϕ = 0.

The number of oligopolies positively orrelates with the share of managers θM , the pro�t of

large �rms per variety normalized by the �xed osts ϕ/F , and the elastiity of substitution σ.

Figure 1 illustrates Equation (20). This Figure gives evidene that the model generates

an eonomy with a few oligopolisti �rms for adequate values of the elastiity of substitution

σ ∈ [2, 5].

The approximation (21) obtained for the eonomy with an unspei�ed utility is less aurate

than (20), sine only the main term with respet to 1/εϕ is found, but the seond term, a

14



onstant, is skipped. One would expet that the expansion into the Taylor series would result

in the leading term being proportional to ε−1
in Equation (21). Nevertheless, the number of

large �rms inreases as the square root of ε−1/2
does, as the latter tends towards 0. This growth

is relatively small; a market with a few oligopolisti �rms an be observed with a wide range

of omparative advantages. Namely the dependene on εϕ is explored by Equation (21) rather

than the preise value observed with a �xed εϕ, sine O(1) has the order of the onstant. We

stress that the (1− cB/cS)
−1/2

-growth of n is a general harateristi of the model eonomy.

3.6 Comparative statis

In order to assess the market size e�et we work with the unspei�ed utilities (1). We introdue

an additional tehnial assumption about the utility.

Assumption 3. Let ru′(Q) be a dereasing funtion of Q.

When modeling monopolisti ompetition beyond CES, researh uses examples of prefer-

enes, inluding the CARA utilities, whih satisfy Assumption 3 (Behrens and Murata, 2012).

Proposition 3. Let Assumptions 1�3 hold. Then approximation (21) to the number of large

�rms inreases in L.

A shok in the market size a�ets large �rms in a natural way. With the inrease of

individuals, the demand for produt diversity enlarges. This shrinks the market power of

eah �rm. It implies that a large �rm is more restrited in larger markets when exploiting its

omparative advantage. In other words, the omparative advantage in osts loses its signi�ane

in larger markets. Therefore, by responding to a positive shok in the market size, large �rms

derease their sope. The share of their varieties beomes smaller. As the number of managers

is assumed to be independent of L, Equation (10) implies that the number of onglomerates is

greater in larger markets.

We �nd the equilibrium variables by solving numerially the underlying equations for a

spei� family of utilities in order to illustrate Proposition 3. This family is given by the

elastiity of substitution

σ(κ) = A

(

1 +
1

κ + 1

)

, A ≥ 1. (22)

where A ≥ 1 is a parameter. The utility

6

is expressed through hypergeometri funtions

disussed in detail, for example by Whittaker and Watson (1990); Abadir (1999). Figure 2,

left, exhibits the response of the eonomy to a shok in the market size, under the elastiity of

substitution de�ned by equation (22).

6u(κ) is equal to

A

2(A−1)

(

κ(κ + 2)
)

A−1

A

2F1

(

1, 2− 2
A
; 2− 1

A
;−κ

2

)

, if A > 1, and ln
(

κ + 1 +
√
κ2 + 2κ

)

, if

A = 1, where 2F1(a, b; c; z) is a standard notation for hypergeometri funtions.
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Figure 2: The number of large �rms as a funtion of the population size related to the utility with a dereasing

(left) and inreasing (right) elastiity of substitution; cs = 1, cb = 0.99, F = 1, ϕ = 0, θ = 0.3.

We also show how n depends on the market size L, if the elastiity of substitution σ(·) is
represented by the family of inreasing funtions

7

: σ(κ) = A

(

2− 1

κ + 1

)

, where A ≥ 1 is a

parameter. In this ase, fewer oligopolies operate within a larger eonomy, Figure 2.

4 Conluding Remarks

We have onstruted a simple theory of mixed ompetition between oligopolies and a myriad of

small �rms. Several issues, however, are worth developing further. In many examples, a large

�rm ats more like an indivisible unit than a onglomerate of weakly dependent parts. Suh an

oligopoly is free to optimize its sope. In other words, oligopolies gain an additional dimension

of market power that leads to a drop in sope. This reates a fore that inreases the number

of oligopolies.

We note that an indivisible �rm an extend its sope when expansion dereases its pro�t

per variety beause the maximization of the pro�t Π and its average Π/NB with respet to the

sope NB learly di�er. An oligopoly an further enlarge its sope even if it dereases the total

pro�t. Assume that the prodution of a new variety is still pro�table for a small �rm. This

attrats new small �rms to enter the market. The appearane of a new small �rm harms a

large �rm more than its own expansion, sine expansion allows the �rm to ompensate a loss

in demand by �piking up� the positive pro�t that omes from launhing a new variety. In this

ase, oligopolies exhibit a kind of annibalism. The annibalism reates an eonomi fore that

7

The orresponding utility u(κ) is

A

A−1κ
1− 1

A (2κ + 1)1+
1

2A 2F1

(

1, 2− 1
2A ; 2− 1

A
;−2κ

)

if A > 1 and

2
√
2κ + 1 + ln

√

2κ+1−1
√

2κ+1+1
if A = 1.
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leaves behind fewer oligopolies.

Our analysis unovers the inentives of oligopolies to deviate from a symmetrial output�

priing poliy. We relate these inentives to the possibility of the seession of part of a �rm.

Alternatively, we ould think about the asymmetrial poliy of an indivisible oligopoly. This

requires more sophistiated mathematis to takle the orresponding optimization problem.

A Constrution of Equilibrium

We prove the existene of general equilibrium and its uniqueness in the ase of CES preferenes,

as stated in Proposition 1. The proof is performed in several lemmas presented one-by-one with

brief omments regarding their ontent. The lemmas are integrated into the rigorous proof of

Proposition 1 at the end of this Appendix.

The �rst lemma solves the onsumer's optimization problem.

Lemma 1. Let a onsumer faing varieties x ∈ [0, N ] traded at pries px maximizes her

pro�t (1) under the budget onstrain

∫ N

0

pxQx ≤ Y. (23)

Then the optimal demand sought among interior solutions satis�es to the budget onstrain (23)

written as the equality, Equation (3), and

λ =
1

Y

∫ N

0

u′(Qx)Qx dx. (24)

Proof. The �rst order ondition of the maximization problem leads to (3). Substituting Equa-

tion (3) to the budget (23), whih is understood as the equality, we obtain Equation (24).

We turn to a �rm's optimization. Its solution involves the variation of the aggregate and

individual demands, qB,x and QB,x, with respet to the pries. To simplify notation, we drop

index B in the proof.

Small �rms ontrol only their own pries. Therefore, the partial derivative represents the

variation with respet to these pries. Large �rms hoose various pries; they are given by a

funtion. In this ase, the Gateaux derivative haraterizes the variation. We limit ourselves

by the symmetrial priing poliies: large �rms harge idential pries for their produts. This

allows us to move from the Gateaux to the partial derivative. One an do it immediately,

di�erentiating (3) with respet to px, where both of the multipliers of the right-hand side

depend on the pries. Instead, we prefer to elaborate a general ase, Lemmas 2�4, in hope of

enlarging the toolkit of the monopolisti ompetition theory.
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Lemma 2. The �rst order ondition of optimization problem (7) is given by

(pB,x − cB,x)
δqB,x[px]

δpx
+ q(pB,x) = 0 ∀x ∈ [0, NB], (25)

where quantities inside the square brakets indiate the (funtional) variables of the outer fun-

tions.

Proof. Reall, the Gateaux derivative of the funtion Φ, Φ : X → Y is de�ned in two steps.

First,

δΦ = lim
t→0

d

dt

Φ(x+ th)− Φ(x)

t
.

If δΦ = G(x)h, then the mapping G(x) is alled the Gateaux derivative denoted by

δPhi
δx

= G.

The variation of the pro�t Π is

δΠ = lim
t→0

1

t

∫ NB

0

(

px · (qx[px + thx]− qx[px])+ thx · q[px + thx]− cx(qx[px + thx]− qx[px])
)

dx =

∫ NB

0

(

px
δqx[px]

δpx
hx + hxq[px]− cx

δqx[px]

δpx
hx

)

dx =

∫ NB

0

(

(px − cx)
δqx[px]

δp
+ q[px]

)

hx dx.

Sine the variation of the pro�t is zero for any feasible

8

funtion hx, we end up with (25).

We are going to vary the optimal demand QB,x with respet to the pries pB,x. As an

auxiliary omputation, Lemma 3 represents the variation of the Lagrange multiplier λ.

Lemma 3. The Gateaux derivative of λ, as determined by Equation (24) with respet to the

pries p(x) for varieties x ∈ [0, NB], is the linear operator

δλ

δp
h =

∫ NB

0

K(px)hx dx,

where

K(px) =
1

Y

(

u′′(Qx(px))Qx(px) + u′(Qx(px))
)δQx

δp
hx.

Proof.

δpλ(px, hx) = lim
t→0

1

t

λ(p+ th)− λ(p)

t
=

lim
t→0

1

t

1

Y

∫ NB

0

(

u′(Qx(px + thx))Qx(px + thx)− u′(Qx(px))Qx(px)
)

dx,

where the funtion hx is zero outside the interval [0, NB]. Simplifying, we get:

δpλ(px, hx) = lim
t→0

1

t

1

Y

∫ NB

0

(

u′(Qx(px + thx))− u′(Qx(px))
)

Qx(px + thx)+

u′(Qx(px))
(

Qx(px + thx)−Qx(px)
)

dx.

8

We avoid the desription of the funtional spaes required for a rigorous formulation of the large �rm's

optimization problem.
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δpλ(px, hx) =
1

Y

∫ NB

0

(

u′′(Qx(px)) lim
t→0

1

t

(

Qx(px + thx)−Qx(px)
)

Qx(px)+

u′(Qx(px)) lim
t→0

1

t
(Qx(px + thx)−Qx(px))

)

dx.

δpλ(px, hx) =
1

Y

∫ NB

0

(

u′′(Qx(px))Qx(px) + u′(Qx(px))
)δQx

δp
hx dx.

Let

K(px) =
1

Y

(

u′′(Qx(px))Qx(px) + u′(Qx(px))
)δQx

δp
hx.

Then the Gateaux derivative is the linear operator that maps the funtion h to R, as stated in

the Equation:

δλ

δp
h =

∫ NB

0

K(px)hx dx.

Based on Lemma 3, we derive an integral equation with respet to δQ/δp in the following

Lemma.

Lemma 4. Let

I2 =

∫ NB

0

u′′(Q[p])Q[p]
δQ

δp
h dx.

Then

(

1− 1

Y

∫ NB

0

pQ[p] dx

)

I2 =

∫ NB

0

λhQ[p] dx+
1

Y

∫ NB

0

pQ[p] dx

∫ NB

0

u′(Q[p])
δQ

δp
h dx. (26)

Proof. We are going to vary Equation (3) established in Lemma 1 with respet to the pries px

harged by a single big �rm and, therefore, de�ned on [0, NB]. Initially, we substitute px + thx

for px and drop the dependene on x:

u′(Q[p+ th]) = λ[p+ th](p+ th).

Adding and subtrating λ[p](p+ th), we have:

u′(Q[p + th]) = (λ[p+ th]− λ[p])(p+ th) + λ[p]p+ λ[p]th, (27)

Subtrating (3) from (27) we get:

u′′(Q[p])δQ[p]th = λ[p]th + (δλ[p])(p+ th).

By using Lemma 3, we tend t to zero:

u′′(Q)
δQ

δp
h = λh+

p

Y

∫ NB

0

(

u′′(Q(p))Q(p) + u′(Q(p))
)δQ

δp
h dx,
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where all funtionals are de�ned in p. Multiplying by Q and integrating both parts of the last

inequality over the interval [0, NB], we have

I2 =

∫ NB

0

λhQ[p] dx+
1

Y

∫ NB

0

pQ[p] dx

(

I2 +

∫ NB

0

u′(Q[p])
δQ

δp
h dx

)

.

From now on, we limit ourselves to the onsideration of the symmetrial ase: large �rms

hoose idential pries on eah variety of their sopes. Aording to the following lemma, this

assumption drastially simpli�es Equation (26) whih determines the variation of the optimal

demand with respet to pries. As a result, we �nd the optimal prie that maximizes the pro�ts

of a large �rm.

Lemma 5. Let NB be the total mass of varieties produed by a single large �rm. We assume

that the pries of its varieties are symmetrial: pB,x = pB = const. Then

pB − cB
pB

=
1

σB

+
pBNBQ

Y

σB − 1

σB

. (28)

Proof. We drop the index B to simplify notation. Let px = const, Qx = const, hx = 1. Then the

symbol δ of the variation an be hanged to ∂, whih stays for the partial derivative. From (26)

it follows that

u′′(Q)Q
∂Q

∂p

(

1− pQNB

Y

)

= λQ +
pQNB

Y
u′(Q)

∂Q

∂p
.

With the de�nition (4) of σ(Q) and the expression (3) for λ, the last equation implies that

(

1 +
pQNB(σ − 1)

Y

)

∂Q

∂p
= −σQ

p
. (29)

From (25) and equation q = NBQ, it follows that ∂Q/∂p = −Q/(p − c). Combining this

observation with (29), we have (28).

Lemma 6. We onsider a pro�t Π of a large �rm as a funtion of pries pB. These pries does

not depend on the variety type. The variation of Π with respet to the pries is hanged to the

partial derivative. Let Assumption 1 hold. Then ∂2Π/∂p2B < 0 at a point that satis�es the �rst

order ondition (9).

Proof. Simplifying the notation of the proof, we drop the index B and let p = pB, Q = QB,

N = NB. As derivatives substitute variations, the seond derivative of the pro�t is given by

Π′′ = NBL
∂Q

∂p

(

2 + (p− c)
∂2Q/∂p2

∂Q/∂p

)

. (30)
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We �nd the seond derivative of the demand by omputing the derivatives of both sides of

Equation (3) and by using the derivative of λ given by Lemma 3:

∂Q

∂p
= −σQ

p

1

1 +NpQ(σ − 1)/Y
. (31)

The alternative way of getting this equation is to simplify (26) with p = const and h = 1. Then

taking the logarithm and omputing the derivative of both sides of the obtained equation, we

have:

∂2Q/∂p2

∂Q/∂p2
= −

(

σ′

σ
+

1

Q

)

∂Q

∂p
+

1

p
+

N

Y +NpQ(σ − 1)

(

Q(σ − 1) + p(σ − 1)
∂Q

∂p
+ pQσ′

∂Q

∂p

)

. (32)

Understanding symbol ∼ as proportionality and substituting (32) into (30), we have:

−Π′′ ∼ 2− (p− c)

(

σ′

σ
+

1

Q

)

∂Q

∂p
+

(p− c)Np(σ − 1 +Qσ′)

Y +NpQ(σ − 1)

∂Q

∂p
+

p− c

p
+

(p− c)NQ(σ − 1)

Y +NpQ(σ − 1)
.

Taking into aount (28), we sum up the last two terms on the right-hand side and get:

−Π′′ ∼ 2− (p− c)

(

σ′

σ
+

1

Q

)

∂Q

∂p
+

(p− c)Np(σ − 1 +Qσ′)

Y +NpQ(σ − 1)

∂Q

∂p
+

Y + 2NpQ(σ − 1)

σ
.

With a large �rm's �rst order ondition

∂Q
∂p

= − Q
p−c

, whih follows from (25), we simplify Π′′
to

−Π′′ ∼ 2 +

(

σ′

σ
+

1

Q

)

Q− Np(σ − 1 +Qσ′)Q

Y +NpQ(σ − 1)
+

1 + 2NpQ(σ − 1)/Y

σ
.

We group the terms in the following way:

Π′′ =

(

2 +
σ′Q

σ

)

+

(

1− NpQ(σ − 1)

Y +NpQ(σ − 1)
+

1 + 2NpQ(σ − 1)/Y

σ

)

+

(

Np(−σ′)Q2

Y +NpQ(σ − 1)

)

.

The ondition (12) provides that the �rst and third brakets are positive. Establishing that the

seond braket is positive, we put t = NpQ(σ − 1)/Y and prove the inequality

2t2 − (σ − 3)t+ 1

(1 + t)σ
+ 1 > 0.

Sine σ > 1, it is enough to prove that 2t2 + 3t+ 2 > 0. The latter is evident.

Lemma 7. The output of a small �rm under the free entry (πS = 0) is given by Equation (14).

The proof of the Lemma is well known.
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Lemma 8. Under the zero pro�t ondition for a large �rm, its pries and outputs are given by

the following equations

pB = cBσB
2

2σB − 1−
√

1 + 4σB(σB − 1)m
, (33)

QB =
(F + ϕ)(σB − 1)

LcB
·
σB − 1

2
− 1

2

√

1 + 4σB(σB − 1)m

σB − 1
· 2

1 +
√

1 + 4σB(σB − 1)m
, (34)

where m solves Equation (16).

Proof. Equalizing the pro�t (8) per variety of a large �rm to ϕ we get

QB =
F + ϕ

pBL

(

1− cB
pB

)

−1

=
F + ϕ

(pB − cB)L
(35)

Substituting (35) into (28), we get the equation

pB

(

1− pB(F + ϕ)NB

pB − cB

)

=
σBcB
σB − 1

,

whih is quadrati with respet to pB. By dividing both sides by pB and transforming, we

obtain

1− σB

σB − 1

cB
pB

=
pB(F + ϕ)NB

(pB − cB)L
;

and

(

1− cB
pB

)(

1− σB

σB − 1

cB
pB

)

=
(F + ϕ)NB

L
. (36)

The solution of this equation with respet to pB is given by

pB =
cB

1− 1
2σB

−
√

(F+ϕ)NB

L
σB−1
σB

+ 1
4σ2

B

.

The last equation is equivalent to (33). Substituting (33) to (35), we have

QB =
F + ϕ

cBL

(

2σB

2σB − 1−
√

1 + 4σB(σB − 1)m
− 1

)

−1

. (37)

Equations (34) and (37) are equivalent. If we assigned the seond root of Equation (36) to pB,

then the output found with (35) would be negative.

Now we derive Equation (16). We ombine Equations (3) faed by small and large �rms to:

u′(QB)

u′(QS)
=

pB
pS

.

Then expressing pB from the last equation and using Equation (6), we obtain

pB =
u′(QB)

u′(QS)

cSσS

σS − 1
.

With this pB, Equation (36) is transformed to (16).
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Lemma 9. Let σ(Q) be a dereasing funtion. Then the equation

QB =
F + ϕ

cBL

(

1

1− 1
2σB

−
√

1
4σ2

B

+
(

1− 1
σB

)

m
− 1

)

−1

(38)

onsidered with respet to QB for any �xed m ∈ [0, 1) has a unique solution. This solution

QB = QB(m) is a dereasing funtion of m.

Proof. We put r(Q) = 1/σ(Q) and re-write Equation (38) as

QB =
F + ϕ

cBL





1

1− 1
2
rB −

√

1
4
r2B + (1− rB)m

− 1





−1

.

We de�ne an auxiliary funtion h(r) = 1
2
r+
√

1
4
r2 + (1− r)m, where m ∈ [0, 1) is a parameter,

and establish its growth in r. Computing

h′(r) =
1

2
+

1
2r

−m

2
√

1
4
r2 + (1− r)m

,

we onlude that the inequality h′(r) > 0 is equivalent to the inequality

1 >
m− r/2

√

1
4
r2 + (1− r)m

.

If 2m− r < 0, then the last inequality holds. If 2m− r ≤ 0, the last inequality an be written

as

1

4
r2 + (1− r)m > m2 −mr +

1

4
r2 or m > m2,

whih is evident. Sine σ′ < 0, it follows that r′ > 0 and h(r(Q)) is an inreasing funtion of

Q. Then the right-hand side (rhs) of Equation (38) is a dereasing funtion of QB, whereas

the left-hand side (lhs) is an inreasing funtion. Sine the lhs varies from 0 to +∞ and the

rhs is positive, their unique intersetion exists. Investigating the rhs expliitly, we laim that

it dereases in m. Then the solution QB(m) dereases as a funtion of m.

Lemma 10. We assume that QB is de�ned as the solution of Equation (38) and is substituted

into Equation (16). Let σ′ < 0. Then, a solution m of Equation (16) exists. Seond, the

di�erene of the right and left-hand sides of (16) hanges its sign from plus to minus at the

minimal m∗
, whih solves Equation (16). If the solution m is unique, it also has this property.

Proof. We plan to show that the rhs of (16) inreases in m. The funtion u′(QB) is positive

and dereasing. Therefore, the seond braket in (16) is dereasing in QB. The �rst braket
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is also dereasing beause u′(QB)(σ(QB)− 1)/σ(QB) = u′(QB)(1− 1/σ(QB)) dereases in QB.

Thus, the rhs dereases in QB but inreases in m.

The lhs of (16) inreases from 0 to +∞. If m = 0 then the equations determining QB and

QS oinides and, as a result, QB = QS. Then rhs(0) = (1 − cB/cS)
2 ∈ (0, 1). Sine the rhs

is bounded by 1 from above, the intersetion of the left and right-hand sides exists. Let m∗
be

the minimal m that satis�es (16). Then the di�erene of the right and left-hand sides of (16)

hanges its sign from plus to minus at m∗
.

Lemma 11. Let Q̃B solves the equation Q = (F + ϕ)(σ(Q) − 1)/(cBL); q̃B = Q̃BL. Then

qB < q̃B in equilibrium.

Proof. A simple algebra gives evidene that the produt of the seond and the third fration

on the right-hand side of Equation (34) is less than 1. As a result, from (34), it follows that

QB < (F +ϕ)(σB − 1)/(cBL). Aording to Assumption 1, the right-hand side of the obtained

inequality dereases in Q. Therefore, QB < Q̃B.

Proof of Proposition 1. Following the de�nition of equilibrium, we solve the onsumer's op-

timization problem, then the �rm's optimization problem and �nally add all of the balanes.

Lemma 1 introdues a new variable, whih is the Lagrange multiplier λ, and relates the optimal

demand and the Lagrange multiplier to the other equilibrium variables, Equations (3) and (24).

We turn to the large �rm's problem. The �rst order onditions are given by Equation (25),

Lemma 2. In omparison with the �rst order onditions of the small �rm's problem, the Gateaux

derivative substitutes the partial derivative with respet to pries. This ours beause a large

�rm deides upon a range of pries represented by the funtion px.

In the next step, we vary the output with respet to the pries by proeeding with Equa-

tion (25) and exluding the Lagrange multiplier; see Lemma 4. Both operations are done due

to Equation (3). The variation of the output involves the variation of the Lagrange multiplier

performed in Lemma 3. This variation is zero for the small �rm's optimization problem. Re-

striting ourselves to symmetrial solutions with respet to x, we redue Equation (26), whih

obtained in Lemma 4, to (9); see Lemma 5.

Lemma 6 veri�es the seond order ondition of the large �rm's optimization problem and

establishes that the pries given by (9) do maximize pro�ts.

Taking into the onsideration the free entry ondition, Lemma 8 �nds simple equations that

the optimal demand and pries satisfy. At this moment, the system of the equilibrium equations

is split into parts. Equation (14) expliitly determines the optimal demand Qs. Indeed, the

di�erene between the left-hand side qS = QSL and the right-hand side (whih ontains a

dereasing funtion σ(QS)) inreases and has a unique intersetion with zero.
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The system of Equations (34) and (16) impliitly determines the optimal demand QB for

the varieties of large �rms and the number m divided by the total population L. In fat, the

question of the existene and uniqueness of equilibrium is redued to the analysis of this system

of the two equations. Lemmas 9 and (10) and establish that a solution to this system exists

under Assumption (1). The uniqueness is evident under CES preferenes.

B Approximation to the Number of large Firms

We start with the following tehnial result.

Lemma 12. Let T1 and T2 denote the seond and third frations in Equation (34):

T1 =
σB − 1

2
− 1

2

√

1 + 4σB(σB − 1)m

σB − 1
T2 =

2

1 +
√

1 + 4σB(σB − 1)m
(39)

Then the expansion of the produt T1T2 into series up the m3
-term is given by

T1T2 ≈ 1− σ2
Bm+ 2σ3

B(σB − 1)m2 − σ3
B(σB − 1)2(4σB + 1)m3. (40)

Proof. We onsequently expand the square root, fration T1, and fration T2 into series. The

square root is:

√

1 + 4σB(σB − 1)m ≈ 1 + 2σB(σB − 1)m− 2σ2
B(σB − 1)2m2 + 4σ3

B(σB − 1)3m3.

The fator T1:

T1 ≈ 1− σBm+ σ2
B(σB − 1)m2 − 2σ3

B(σB − 1)2m3.

The fator T2:

T2 ≈
1

1 + σB(σB − 1)m− σ2
B(σB − 1)2m2 + 2σ3

B(σB − 1)3m3
.

T2 = 1−σB(σB −1)m+σ2
B(σB −1)2m2−2σ3

B(σB −1)3m3+σ2
B(σB −1)2m2−2σ3

B(σB −1)3m3

= 1− σB(σB − 1)m+ 2σ2
B(σB − 1)2m2 − 4σ3

B(σB − 1)3m3.

Then Equation (40) gives the produt T1T2.

Proof of Proposition 2. The proof is based on the expansion of the right-hand side of Equa-

tion (16) into series. We seek the funtion m as a series with respet to εγ, where ε = 1− cB/cS

and γ is an appropriate exponent. The following diret omputation gives evidene that m is

the leading term in the right-hand side of Equation (16). Then m goes o� both sides, and the

leading terms remaining in the equation are m2
and ε. This suggests that γ = 1/2 and the
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expansion of m is in powers of ε1/2. We will justify that the representation m = Bε1/2 required

for Equation (21) involves the expansion of (16) to order x2
. A more detailed expansion to

order x3
enables us to obtain the representation m = Bε1/2+Cε and eventually Equation (20).

Under unspei�ed preferenes, the expansion to order x3
is too ompliated to be exposed with

simple terms. We turn to algebra, dropping the most omputational part.

Initially, we perform the expansion under the CES setting and later we repeat the arguments

under unspei�ed preferenes. Under the CES setting, u′(QB)/u
′(QS) = (QS/QB)

1/σ
, we are

able to expand the right-hand side up to the seond order term using the form:

u′(QS)

u′(QB)
= 1−

(

cB
cS

)
σ−1

σ
(

1 +
ϕ

F

)

−
1

σ

(T1T2)
1

σ .

By using (40), we have

(T1T2)
1

σ = 1− σm+
3

2
σ2(σ − 1)m2 − σ2(σ − 1)2(2σ + 1)m3.

Now we return to Equation (16), written in the form:

m =

(

1−
(

cB
cS

)
σ−1

σ
(

1 +
ϕ

F

)

−
1

σ

(T1T2)
1

σ

)(

1− σ − 1

σ

(

cB
cS

)
σ−1

σ
(

1 +
ϕ

F

)

−
1

σ

(T1T2)
1

σ

)

(41)

Put,

ε̃ = 1−
(

cB
cS

)
σ−1

σ
(

1 +
ϕ

F

)

−
1

σ

.

Then Equation (41) beomes

0 =
ε̃

σ
− 1

2
σ(σ − 1)m2 + (2σ − 3)ε̃m− σ(σ − 1)3m3.

We seek m as a funtion of ε̃ in a form m = Bε̃γ + Cε̃2γ + . . ., γ > 0, B,C ∈ R, B 6= 0. Then

γ = 1/2, m ≈ B
√
ε̃+ Cε̃, and the fators B and C an be found equalizing the oe�ients at

the same powers of ε̃. Equalizing the oe�ients multiplied by ε̃, we have

1

σ
− 1

2
σ(σ − 1)B2 = 0,

and

B =
1

σ

√

2

σ − 1
.

Equalizing the oe�ients multiplied by ε̃3/2, we have

−1

2
σ(σ − 1)2BC + (2σ − 3)B = σ(σ − 1)3B3.

This turns to

C =
σ − 2

σ2(σ − 1)
.
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We onlude that

m ≈ 1

σ

√

2

σ − 1

√
ε̃+

σ − 2

σ2(σ − 1)
ε̃.

Let ε = 1− cB/cS. Then the expression for ε̃ is expanded into ε̃ ≈ σ−1
σ
ε+ ϕ

σF
, and

m ≈
√
2

σ3/2(σ − 1)1/2

(

(σ − 1)ε+
ϕ

F

)1/2

+
σ − 2

σ3(σ − 1)

(

(σ − 1)ε+
ϕ

F

)

. (42)

Inverting the last equation, we have:

m−1 ≈ σ3/2(σ − 1)1/2√
2

(

(σ − 1)
(

1− cB
cS

)

+
ϕ

F

)

−1/2

− σ

2
+ 1.

Now Equation (20) follows from (10).

We return to Equation (21), intending to solve Equation (16) and prove the approximation

m2 ≈ 2r3u(2− ru′)

1− ru

(

ε+
ruϕ

(1− ru)F

)

. (43)

In Equation (43) and in the rest of the proof, the funtions ru and ru′
are taken at the point

QB. Auxiliary omputation gives evidene that

(ru)
′ =

ru
Q
(1 + ru − ru′), (ru′)′ =

ru′

Q
(1 + ru′ − ru′′), (44)

(ru)
′′ =

ru
Q2

(2ru + 2r2u − 2ru′ − 3ruru′ + ru′ru′′), (45)

The following expansion into series holds:

σS − 1

σB − 1
≈ 1 − 1 + ru − ru′

1− ru

(

QS

QB
− 1

)

+
1 + ru − ru′ + r2u′ − 1

2
ruru′ − 1

2
ru′ru′′

1− ru

(

QS

QB
− 1

)2

.

(46)

We laim that the equation

σS − 1

σB − 1

cB
cS

=
QS

QB

T1T2

(

1 +
ϕ

F

)

, (47)

when onsidered with respet to QS/QB, has the solution

QS

QB

− 1 ≈ − 1− ru
2− ru′

(

ε− ϕ

F

)

+
1− ru

(2− ru′)r2u
m+K2m

2
(48)

up to ō(m2), where

K2 =
1 + ru − ru′ + r2u′ − 1

2
ruru′ − 1

2
ru′ru′′

2− ru′

(1− ru)
2

(2− ru′)2r4u
− 2(1− ru)

2

(2− ru′)r4u
+

(1− ru)
2

(2− ru′)2r4u
.

We evaluate the ratio u′′

S/u
′′

B as

u′′

S

u′′

B

≈ 1− ru′

(

QS

QB

− 1

)

+
1

2
ru′ru′′

(

QS

QB

− 1

)

. (49)
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Aording to (15), (14), (39), and the de�nition of σ, Equation (16) turns into

m =

(

1−
(

QS

QB

)2
u′′

S

u′′

B

(

1− ϕ

F

)

T1T2

)(

1− σB − 1

σB

(

QS

QB

)2
u′′

S

u′′

B

(

1− ϕ

F

)

T1T2

)

(50)

Inside this proof, S1 and S2 denote the �rst and the seond brakets of the right-hand side of

Equation (50). We simplify the �rst braket (a routine algebra is skipped here):

S1 ≈ (1− ru)ε+
ruϕ

F
+

m

ru
+

(

(1− ru)

r3u
+

(1− ru)
2

2(2− ru′)r3u
m2

)

.

The seond braket S2 is S2 = 1− (1−ru)(1−S1) = ru+(1−ru)S1. Sine S
2
1 = m2/r2u+ ō(m2),

it follows that S1S2 ≈ ruS1 + (1− ru)S
2
1 and Equation (50) is redued to

m ≈ ru(1− ru)ε+
r2uϕ

F
+m− ru

(

(1− ru)

r3u
+

(1− ru)
2

2(2− ru′)r3u

)

m2 − (1− ru)m
2

r2u
.

Simplifying, we get (43).

Proof of Proposition 3. If ru inreases and ru′
dereases, then the fration (1 − ru)/(2 − ru′)

dereases and the right-hand side of Equation (43) inreases in QB.

Let the population inrease from L1 to L2 > L1. We turn to Equation (34) with the �old�

m1 = m(L1) but the new L = L2. Due to the hange in L, the right-hand side of (34) dereases,

and the solution of this equation also dereases: QB(m1, L2) < QB(m1, L1). Substituting

this QB(m1, L2) into Equation (43) we �nd that its right-hand side (rhs), as an inreasing

funtion in QB, has dereased and m1 > rhs
(

QB(m1, L2)
)

. Sine QB(·, L2) dereases with

the �rst argument (see Lemma 9), rhs also dereases in m. Therefore, hanging m from m1

downward, we derease the left-hand side m2
of (43) and inrease the right-hand side. Sine

0 < rhs
(

QB(0, L2)
)

, there is a new solution m2 loated to the left of m1. The number of large

�rms, being inverse to m, inreases.
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