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1 Introduction

Consider the following dynamic game with perfect information.

Ann

N . & B

0; 0 Bob

R. & A

�2; 0 Ann

P . & I

�1;�3 1; 1

Ann can try to Bribe Bob, a public o¢ cer, or Not. If she does,

Bob can Accept or Report her, so that Ann loses two utils. If Bob

accepts, Ann can Implement her plan, achieving the Pareto domi-

nating outcome, or repent (P ) and speak with a prosecutor, harming

both Bob and herself.

Suppose that Ann is rational1 and, at the beginning of the game,

believes with probability 1 that Bob would play R after B. I call this

belief "(�rst-order belief) restriction". Then, she plays N . Suppose

1 i.e. subjective expected utility maximizer given her beliefs at every infor-
mation set.
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that Bob believes that Ann is rational and that the restriction holds.

Then, he expects Ann to play N . So, what would he believe after

observing B? He cannot believe at the same time that Ann is ratio-

nal and that the restriction holds: the two things are at odds given

B. Which of the two beliefs will Bob keep? This is the epistemic

priority issue. Suppose that he keeps the belief that the restriction

holds. So, he drops the belief that Ann is rational. Then, he can also

expect Ann to play P after (B;A) and thus play R. If Ann believes

that Bob reasons in this way, she can keep her restriction and play

N .

These lines of strategic reasoning are captured by Strong-�-Ratio-

nalizability (Battigalli, [4]; Battigalli and Siniscalchi, [10]). In this

reasoning process, the faith in the restrictions is so strong that Bob

is ready to deem Ann irrational after the bribing attempt. This

could be the case if, for instance, the belief that Bob would report

Ann is induced by a commonly known social convention that always

holds in context of the game (see Battigalli and Friedenberg [5]).

Suppose instead that, in the context of the game, public o¢ cers are

not commonly believed to be incorruptible. However, Bob declares

that he would play R after B. If Bob observes that Ann plays B

anyway, he might think that Ann has not taken his words seriously,

rather than thinking that Ann is irrational. Then, he would expect

Ann to play I after A, hence he would play A instead of R. If Ann

believes that Bob is rational and keeps believing that she is rational
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after B, she must believe that Bob will play A, di¤erently than what

the restriction suggests. Hence, under this reasoning scheme, such

restriction to �rst-order beliefs cannot hold.

Note that opposite conclusions were reached without any uncer-

tainty about payo¤s: the two situations do not represent di¤erent

types of Bob, but only di¤erent strengths of the belief that he would

report Ann.

In Section 3, I construct an elimination procedure, Selective Ra-

tionalizability, that captures these instances of forward induction

reasoning in all dynamic games with perfect recall and countably

many conditioning events,2 although for notational simplicity the

formal analysis focuses on �nite games with complete information.

Selective Rationalizability re�nes a notion of Extensive-Form Ra-

tionalizability (Pearce [29], Battigalli [2], Battigalli and Siniscalchi

[9]), which I will call "Rationalizability" for brevity. Thus, Selective

Rationalizability represents a natural way for players to re�ne their

beliefs through (possibly partial) coordination and consequent for-

ward induction considerations when lone strategic reasoning about

rationality does not pin down a unique plan of actions. As above, Se-

lective Rationalizability delivers an empty set when the "tentative"

�rst-order belief restrictions of a player are at odds with strate-

gic reasoning. Strong-�-Rationalizability, instead, does not re�ne

2For instance, in�nitely repeated games with a �nite stage game, or games
with uncountably many available actions only at preterminal histories.
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Rationalizability: in the example, N is not a rationalizable out-

come.3 It is worth noting that Selective Rationalizability can also

be seen as an instance of Strong-�-Rationalizability, where the re-

strictions are the conjunction of the exogenous theories and the ratio-

nalizable �rst-order beliefs. However, keeping the two separate has

both conceptual and technical advantages. The separation allows

to investigate the epistemic priority issue between the two di¤erent

sources of beliefs, and to compare Strong-�-Rationalizability and

Selective Rationalizability for the same restrictions. It turns out

that Strong-�-Rationalizability and Selective Rationalizability are

outcome-equivalent when the restrictions correspond to the belief

in a speci�c path of play.4 In general, one could expect Selective

Rationalizability to always yield a (possibly empty) subset of the

strongly-�-rationalizable outcomes. A counterexample in the Dis-

cussion Section shows that, opposite to the example above, Selective

Rationalizability can yield non-empty predictions when Strong-�-

Rationalizability rejects the �rst-order belief restrictions; a coun-

terexample in the Appendix shows that Selective Rationalizability

3The game has no simultaneous moves and no relevant ties. Therefore, as
shown by Battigalli [3] �rst and Chen and Micali [16], Heifetz and Perea [22],
and Perea [30] later, extensive-form rationalizability (in all its variants, including
the one of this paper) delivers the unique backward induction outcome.

4The proof of this result is rather sophisticated and it is presented in [15],
where the focus is on the algorithms and not on their epistemic foundations.
The proof cannot be performed if Selective Rationalizability is formalized as a
special case of Strong-�-Rationalizability.
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and Strong-�-Rationalizability can even yield non-empty disjoint

predictions.

In Section 4, I clarify with an epistemic characterization the

strategic reasoning hypotheses that motivate Selective Rationaliz-

ability. Selective Rationalizability captures the behavior of rational

players who restrict their beliefs about opponents�behavior for some

exogenous reason. Moreover, at the beginning of the game, players

believe that opponents are rational and have their own restrictions;

that opponents believe that everyone else is rational and has the own

restrictions; and so on. These beliefs are tentative because at some

information set of a player, the observed behavior of one opponent

may be incompatible, say, with the opponent being rational and, at

the same time, having beliefs in her restricted set. In this case, our

player will drop the belief that the opponent has such restrictions,

rather than dropping the belief that the opponent is rational. More

generally, players always keep all orders of belief in rationality that

are per se compatible with the observed behavior, and drop all orders

of belief in the restrictions that are at odds with them. I call this

choice epistemic priority to rationality. Strong-�-Rationalizability

predicts instead the behavior of players who assign epistemic priority

to the beliefs in the restrictions, and drop the incompatible beliefs

in rationality. Thus, Selective Rationalizability captures a version

of Common Strong Belief in Rationality (Battigalli and Siniscalchi,

[9]), whereas Strong-�-Rationalizability does not. However, both
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solution concepts capture all orders of belief in rationality and in

the restrictions along the induced paths, if non-empty. Since the

epistemic priority issue materializes only o¤-path, it is hard to grasp

why Strong-�-Rationalizability and Selective Rationalizability can

yield radically di¤erent predictions. A deeper look into their epis-

temic characterizations and the Discussion Section will clarify how

the epistemic priority a¤ects predictions.

In Section 5, I extend the analysis to �ner epistemic priority

orderings. Each player can have multiple theories, say two, about

opponents�behavior: a weaker theory and a stronger theory (in the

sense of more restrictive). Players reason according to everyone�s

weaker theory like under Selective Rationalizability. On top of this,

as long as compatible with strategic reasoning about the weaker

theories, players reason according to the stronger theories. So, when

a player displays behavior which is not compatible with strategic

reasoning about both theories, the opponents keep believing that

the player is reasoning according to the weaker theories, and drop

the belief that the opponent is reasoning according to the stronger

ones.5 When the two theories correspond to an equilibrium path

and an equilibrium strategy pro�le, a surprising connection with

strategic stability (Kohlberg and Mertens [23]) can be established.

5By non-monotonicity of strong belief, strategic reasoning about the stronger
theories can potentially lead to behavior that cannot be rationalized under the
weaker theories. For this reason, the epistemic priority issue arises.
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In Section 5 I provide an example and I lay the foundations of this

bridge with an extended version of Selective Rationalizability, which

encompasses nested restrictions in an epistemic priority order.

Since players�theories of opponents�behavior are assumed to be

commonly known, the most natural application of Selective Ratio-

nalizability is probably explicit pre-play coordination among players.

A non-binding agreement is purely cheap talk; hence, if a player dis-

plays behavior which is not compatible with rationality and belief in

the agreement, the opponents are, in my view, more likely to aban-

don the belief that the player believes in the agreement, rather than

the belief that the player is rational. Or, as in the example, the

source of belief restrictions can be a public announcement.6 Thus,

Selective Rationalizability seems to be an appropriate tool to com-

bine strategic reasoning and equilibrium play, especially when the

motivation for equilibrium is explicit coordination. The application

of Selective Rationalizability to agreements and its relationship with

equilibrium are deeply investigated in [14]. In particular, the out-

comes that Selective Rationalizability uniquely pins down for some

restrictions do not include and are not included in the set of subgame

6Or, extending Selective Rationalizability to games with incomplete infor-
mation, the restrictions can model public news about a state of nature. For
instance, in a �nancial market, players can tentatively believe that everyone is
behaving according to the same public information about the value of an asset.
Yet, if a player does not behave accordingly, the opponents may believe that the
player has di¤erent information rather than deeming the player irrational.
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perfect equilibrium outcomes. It is worth noting that the �exibility

of Selective Rationalizability, which allows to model incomplete co-

ordination instead of coordination on full strategy pro�les, can be

crucial to induce an outcome of the game (see [14] for details).

The Appendix contains the proofs of the results and the formal

analysis of the counterexample mentioned above.

2 Preliminaries

Description of the game. Consider a �nite dynamic game with
complete information and perfect recall � =



I;X; (Ai; Hi; ui)i2I

�
where:7

� I is the �nite set of players, and for any pro�le (Xi)i2I and any

; 6= J � I, I write XJ := �j2JXj, X := XI , X�i := XInfig,

X�i;j := XInfi;jg;

� Ai is the �nite set of actions of player i;

� X �
S

t2f0;:::;Tg

 S
;6=J�I

AJ

!t
is the �nite set of histories, where

T is the �nite horizon, and:

7The notation for the game is mainly taken from Osborne and Rubinstein
[28].
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1. A
0

J := ; =: h0 2 X, i.e. X contains the initial empty

history;

2. for every (ea1; :::;eal) 2 X and every t < l, (ea1; :::;eat) 2 X,
and I write (ea1; :::;eat) � (ea1; :::;eal);

3. there exist a correspondence J(x) : X � I and, for

every i 2 I, a non-empty-valued correspondence eAi :
fx 2 X : i 2 J(x)g � Ai such that for every x 2 X,

(x; a) 2 X if and only if a 2 �j2J(x) eAj(x);
4. Z := fx 2 X : J(x) = ;g is the set of terminal histories;

� Hi � 2X is the set of information sets of player i where:

1. it partitions fx 2 X : i 2 J(x)g;

2. for every h 2 Hi and x; x0 2 h, eAi(x) = eAi(x0) =: Ai(h);
3. (perfect recall) for every h 2 Hi and x; x0 2 h, x 6�
x0; moreover, for every (ex;ea) � x with ex 2 eh for someeh 2 Hi, there exists (ex0;ea0) � x0 such that ex0 2 eh and
ProjAiea0 =ProjAiea;8

� ui : Z ! R is the payo¤ function of player i.

8The �rst statement means that players cannot end up in the same informa-
tion set twice, because they remember having moved from it the �rst time. The
second statement means that players always distinguish two histories if they were
able to distinguish two predecessors or if they follow two di¤erent own moves.
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Perfect recall implies that each Hi inherits the partial order �
from X.

A strategy is a function si : Hi ! Ai such that for every h 2
Hi, si(h) 2 Ai(h). The set of all strategies is denoted by Si. A

strategy pro�le clearly induces one and only one terminal history;

let � : S ! Z denote the map that associates each strategy pro�le

with the induced terminal history. Fix h 2 Hi. The set of strategy
pro�les compatible with h is

S(h) := fs 2 S : 9x 2 h; x � �(s)g :

Then, for each J � I, the set of J�s strategy pro�les that are com-
patible with h is SJ(h) :=ProjSJS(h). Perfect recall implies that

S(h) = Si(h)� S�i(h); S�i(h) represents the partial observation by
player i of opponents�moves up to h. To keep the strategic reason-

ing hypotheses simple, I further assume the "observable deviators"

property (Fudenberg and Levine, [20]): for each i 2 I and h 2 Hi,

S(h) = �j2ISj(h):

Observable deviators is always satis�ed by games with observable

actions, where information sets are singletons. I will clarify later the

simplifying role of observable deviators and how it can be removed.
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For any pro�le of strategy sets SJ � SJ , let SJ(h) := SJ(h)\SJ .
The set of information sets of i compatible with SJ is

Hi(SJ) :=
�
h 2 Hi : SJ(h) 6= ;

	
:

Beliefs. Players update their beliefs about opponents� strategies

and beliefs as the game unfolds. A Conditional Probability System

(Renyi, [31]; henceforth CPS) assigns to each information set a be-

lief, conditional on the observed opponents�behavior. Here I de�ne

CPS�s over the opponents�state space 
�i := �j 6=i(Sj � Tj), where
epistemic type spaces (Tj)j2I will be de�ned in Section 4.

De�nition 1 A CPS on (
�i; (T�i�S�i(h))h2Hi), with Borel sigma
algebra B(
�i), is an array of probability measures (�i(�jh))h2Hi on
(
�i;B(
�i)) such that for each h 2 Hi, �i(T�i�S�i(h)jh) = 1, and
(chain rule) for every E 2 B(
�i) and C;D 2 (T�i � S�i(h))h2Hi,
if E � D � C then �i(EjD)�i(DjC) = �i(EjC).

The set of all CPS�s of player i is denoted by�Hi(
�i).9 CPS�s on

strategies are de�ned by replacing
�i with S�i and (T�i�S�i(h))h2Hi
with (S�i(h))h2Hi.

9If each 
j is compact metrizable, endowing the set �(
�i) of Borel proba-
bility measures on 
�i with the topology of weak convergence and (�(
�i))Hi

with the product topology, Battigalli and Siniscalchi [7] proved that �Hi(
�i)
is a compact metrizable subset of (�(
�i))Hi .
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For any J � In fig and SJ � SJ , I say that �i 2 �Hi(S�i)

strongly believes (Battigalli and Siniscalchi, [9])10 SJ if

�i(SJ � SIn(J[fig)jh) = 1

for all h 2 Hi(SJ). Thanks to observable deviators, there always
exists a CPS �i that strongly believes SJ and at the same time any

given SK � SK , K � In(J [fig). This is because, under observable
deviators, if h 2 Hi(SJ) \Hi(SK), then h 2 Hi(SJ � SK).

Rationality. I consider players who reply rationally to their beliefs.
By rationality I mean that players, at every information set, choose

an action that maximizes expected utility given their belief about

how the opponents will play and the expectation to choose ratio-

nally again in the continuation of the game. By standard dynamic

programming arguments, this is equivalent to playing a sequential

best reply to the CPS.

De�nition 2 Fix �i 2 �Hi(S�i). A strategy si 2 Si is a sequential
best reply to �i if for each h 2 Hi(si), si is a continuation best reply
to �i(�jh), i.e. for all esi 2 Si(h),X
s�i2S�i(h)

ui(�(si; s�i))�i(s�ijh) �
X

s�i2S�i(h)

ui(�(esi; s�i))�i(s�ijh).
10Battigalli and Siniscalchi make a stricter use of the term strong belief, by

referring only to Borel subsets of 
�i or S�i.
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The set of sequential best replies to �i is denoted by �(�i).

3 Selective Rationalizability

In dynamic games, forward induction reasoning about rationality

has already been studied under di¤erent assumptions. Pearce [29]

de�nes Extensive-Form Rationalizability under the hypothesis that

conditional beliefs satisfy structural consistency (Kreps and Wilson

[24]), that is, that they can be generated by a prior product distri-

bution on S�i. Battigalli [2] assumes strategic independence, which

(roughly speaking) requires players to maintain the belief about each

opponent as long as her individual behavior does not contradict it.

Battigalli and Siniscalchi [9] remove any assumption of independence

and require players to maintain each order of belief in rationality only

until none of the opponents contradict it. Then, they give to the re-

sulting elimination procedure, Strong Rationalizability, an epistemic

characterization based on the notion of strong belief. For this reason,

I adopt Strong Rationalizability as a starting point, but I amend it

by introducing independent rationalization: players maintain an or-

der of belief in rationality of an opponent as long as her individual

behavior does not contradict it. The motivation for this choice is

two-fold. First, it is coherent with the emphasis on the persistence

of beliefs in rationality. Second, it will allow to better compare Se-

lective Rationalizability with equilibrium re�nements, as discussed
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later. As far as Strong Rationalizability is concerned, it is easy to

observe that independent rationalization is immaterial for the pre-

dicted outcomes, since it kicks in at an information set only when it

is not reached anymore by some player. However, the whole analysis

can be read without independent rationalization by simply substi-

tuting j, which will indicate one opponent of player i, with �i, i.e.
all opponents of i jointly considered. Instead, I do not adopt strate-

gic independence. This is not in contradiction with independent

rationalization: there can be correlations11 also among the choices

of players with di¤erent levels of sophistication. However, assuming

strategic independence would complicate the notation but not alter

the results.

For brevity and to distinguish it from the original notion of Strong

Rationalizability, I will call this version simply "Rationalizability".

De�nition 3 (Rationalizability) Consider the following procedure.

(Step 0) For each i 2 I, let S0i = Si.

(Step n>0) For each i 2 I and si 2 Si, let si 2 Sni if and only if
there is �i 2 �Hi(S�i) such that:

R1 si 2 �(�i);

11For instance, a player can believe that two opponents get the same signal
of her own intentions, regardless of their strategic sophistication. See also Au-
mann [1] and Brandenburger and Friedenberg [13] for motivation of spurious
correlations among players�strategies.
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R2 �i strongly believes S
q
j for all j 6= i and q < n.

Finally let S1i = \n�0Sni . The pro�les in S1 are called rational-

izable.

Note that R2 can always be satis�ed thanks to observable devia-

tors. Therefore, Rationalizability always yields a non-empty output.

In absence of observable deviators, in place of strong belief in Sqj for

all j 6= i, a player can instead strongly believe that (i) all opponents
play a strategy in Sqj , (ii) all opponents but one play a strategy in S

q
j ,

and so on. These hypotheses correspond to nested sets of opponents�

strategy pro�les, which can be strongly believed at the same time

regardless of the structure of information sets. In another paper,

Battigalli and Siniscalchi [8] adopt instead a weaker but more com-

plicated notion of independent rationalization ("independent best

rationalization").

Selective Rationalizability re�nes Rationalizability in the follow-

ing way. Each player has an exogenous theory of opponents� be-

havior and re�nes the rationalizable �rst-order beliefs according to

this theory. The theory of player i is represented by a set of CPS�s

�i � �Hi(S�i) over opponents�strategies. Players are aware of the

theories of everyone else. Therefore, they can also expect each op-

ponent to re�ne her �rst-order beliefs according to the own theory.

This belief towards an opponent is maintained as long as the op-

ponent herself is not observed making a move that contradicts it.
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Moreover, players expect each opponent to reason about everyone

else in the same way. Also this belief is maintained as long as the op-

ponent herself does not make a move that contradicts it. And so on.

Thus, Selective Rationalizability is de�ned under independent ratio-

nalization. This allows better comparability with the equilibrium

literature. Without independent rationalization, if a player deviates

from the agreed-upon path, each opponent is free to believe that any

other opponent is not going to implement her threat. In this way, no

coordination of threats would be required. These issues are widely

discussed in [14]. Note however that independent rationalization is

immaterial for the message of this paper and for the analysis of all

the examples: players are only two in all games except for the game

of Section 5, where independent rationalization plays no role anyway.

De�nition 4 (Selective Rationalizability) Fix a pro�le (�i)i2I

of compact subsets of CPS�s. Let ((Smi )i2I)
1
m=0 denote the Rational-

izability procedure. Consider the following procedure.

(Step 0) For each i 2 I, let S0i;R� = S1i .

(Step n>0) For each i 2 I and si 2 Si, let si 2 Sni;R� if and only
if there is �i 2 �i such that:

S1 si 2 �(�i);

S2 �i strongly believes S
q
j;R� for all j 6= i and q < n;

S3 �i strongly believes S
q
j for all j 6= i and q 2 N.
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Finally, let S1i;R� = \n�0Sni;R�. The pro�les in S1R� are called

selectively-rationalizable.

Step 0 initializes Selective Rationalizability with the rationaliz-

able strategy pro�les. This is only to stress that Selective Ratio-

nalizability re�nes Rationalizability: S3 already implies that players

strongly believe in the rationalizable strategies of each opponent, and

that the strategies surviving step 1 are rationalizable. Indeed, Se-

lective Rationalizability can also be seen as an "extension" of Ratio-

nalizability, in a unique elimination procedure where the restrictions

kick in once no more strategies can be eliminated otherwise.

In absence of observable deviators, S2 and S3 can be modi�ed in

the same fashion of R2.

Selective Rationalizability can be simpli�ed in di¤erent ways ac-

cording to the structure of the restrictions. S3 can be eliminated

by requiring strategies to be rationalizable when �rst-order beliefs

are not restricted at the non-rationalizable information sets. Let

((bSnj;R�)j2I)1n=0 denote Selective Rationalizability rede�ned with si 2
S1i in place of S3.

De�nition 5 I say that �i � �Hi(S�i) is maximal if for every

�i 2 �i and ��i with �
�
i (S�i(z)jh) = �i(S�i(z)jh) for all h 2 Hi(S1)

and z 2 �(S1), ��i 2 �i.

Proposition 1 Suppose that for every i 2 I, �i is maximal. Then,

�(bS1R�) = �(S1R�).
19



Proposition 2 Fix compact � = (�i)i2I with S1R� 6= ;. There

exists a pro�le (��
i )i2I of compact maximal subsets of CPS�s such

that �(S1R��) = �(S
1
R�).

Thus, the class of maximal restrictions su¢ ces to yield all the

possible behavioral implications of Selective Rationalizability.12

Selective Rationalizability is an elimination procedure. So, a clas-

sical question is whether it can be de�ned as a reduction procedure,

i.e. a procedure where step n can be computed based on step n� 1
only. Battigalli and Prestipino [6] identify a class of restrictions,

"closed under composition", under which Strong-�-Rationalizability

can be de�ned as a reduction procedure. For instance, think of re-

strictions �i where, for some map � : h 2 Hi 7! �(h) � S�i(h),

�i 2 �i if and only if �i(�(h)jh) = 1 for all h 2 Hi.13 Also for Se-
lective Rationalizability, if the restrictions are maximal and closed

under composition, S3 and S2 can be substituted by si 2 Sn�1i;R� and

strong belief in just (Sn�1j;R�)j 6=i, in two-players games (and R2 by

si 2 Sn�1i and strong belief in (Sn�1j )j 6=i for Rationalizability). The

same would hold in games with more than two players in absence of

independent rationalization, but not under independent rationaliza-

tion. The reason is the following. Call j; k two opponents of player

12In [14] I identify a class of agreements that su¢ ces to yield all the possible
behavioral implications of agreements. This class of agreements gives rise to
restrictions that are equivalent to the corresponding maximal restrictions. The
same applies to the agreements that correspond to a Self-Enforcing Set ([14]).
13The restrictions generated by agreements in [14] fall in this class.
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i, and �x h 2 Hi with Sn�1j;R�(h) 6= ; = Sn�1k;R�(h) and S
n�2
k;R�(h) 6= ;. A

strategy si 2 Sn�1i;R�(h) may be a sequential best reply to some �i that

strongly believes Sn�1j;R� and S
n�1
k;R�, but not to any �

0
i that strongly

believes Sn�1j;R� and S
n�2
k;R�, because it may not be a continuation best

reply to any belief over Sn�1j;R�(h)� Sn�2k;R�(h).

It is will be useful to compare Selective Rationalizability with

Strong-�-Rationalizability, both in terms of epistemics (in Section

4) and in terms of predictions (in the Discussion Section). Thus, I

provide here the formal de�nition of Strong-�-Rationalizability.

De�nition 6 (Strong-�-Rationalizability, [6]) Fix a pro�le� =
(�i)i2I of compact subsets of CPS�s. Consider the following proce-

dure.

(Step 0) For each i 2 I, let S0i;� = Si;

(Step n>0) For each i 2 I and si 2 Si, let si 2 Sni;� if and only
if there is �i 2 �i such that:

D1 si 2 �(�i);

D2 �i strongly believes S
q
�i;� for all q < n.

Finally let S1i;� = \n�0Sni;�. The pro�les in S1� are called strongly-
�-rationalizable.
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Note that, if D2 is modi�ed like S2 to assume independent ratio-

nalization (or vice versa), Selective Rationalizability can be seen as

a special case of Strong-�-Rationalizability, since S3 is a constant

restriction on CPS�s which could be incorporated in a compact �i.

However, to compare the two under the same restrictions and to bet-

ter analyze the epistemic priority issues, Selective Rationalizability

will be kept as a stand-alone solution concept, isolating the exoge-

nous restrictions.

Selective Rationalizability and Strong-�-Rationalizability, di¤er-

ently than Rationalizability, can yield the empty set. This happens

when at some step there is no �i 2 �i that satis�es S2 and S3, or D2.

This means that the restrictions are not compatible with strategic

reasoning about rationality and the restrictions themselves.

To see all three procedures formally at work and yield non-empty

predictions, consult the example in the Appendix.

4 Epistemic analysis

I adopt the epistemic framework of Battigalli and Prestipino [6],

dropping the incompleteness of information dimension.14 Players�

14Note that, within the same framework, I de�ne events in a slightly di¤er-
ent way: a player�s beliefs are not extended over the own strategy and type,
and events that restrict only her strategies and types are de�ned in her own
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beliefs over strategies of all orders are given an implicit represen-

tation through a compact, complete, and continuous type structure

(
i; Ti; gi)i2I ,15 where for every i 2 I, 
i = Si � Ti, Ti is a compact
metrizable space of epistemic types, and gi : ti 2 Ti 7! (gi;h(ti))h2Hi 2
�Hi(
�i) is a continuous and onto belief map. I will call "events" the

elements of the Borel sigma-algebras on each 
i, and of the product

sigma algebras on the Cartesian spaces 
J := �i2J�I
i.
The �rst-order belief map of player i, fi : ti 2 Ti 7! (fi;h(ti))h2Hi 2

�Hi(S�i), is de�ned as fi;h(ti) =MargS�igi;h(ti) for all i 2 I and

h 2 Hi, so it inherits continuity from gi. The event in 
i where the

restrictions of player i hold is

[�i] := f(si; ti) 2 
i : fi(ti) 2 �ig ;

[�i] is compact because �i is compact and fi is continuous. The

cartesian set where the restrictions of all players hold is [�] :=

�i2I [�i].

From now on, �x a Cartesian (across players) eventE = �j2IEj �

strategy-type space. This makes it easier to deal with independent rationaliza-
tion. However, given the absence of major conceptual di¤erences, the reader is
invited to consult [6] for interesting and detailed explanations about this frame-
work.
15Friedenberg [18] proves that in static games, such a type structure repre-

sents all hierarchies of beliefs about strategies. Although this result has not been
formally extended to dynamic games, to the best of my knowledge, no coun-
terexample has been found. However, the canonical type structure for CPS�s of
Battigalli and Siniscalchi [7] is compact, complete, and continuous.
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. The closed16 event where player i believes in E�i at an informa-

tion set h 2 Hi is de�ned as

Bi;h(E�i) := f(si; ti) 2 
i : gi;h(ti)(E�i) = 1g

The closedness of Bi;h(E�i) implies the closedness of all the following

belief events. If E = �j2I(bTj�Sj) for some (bTj)j2I , E is an epistemic
event and can be believed at every information set:

Bi(E�i) : = \h2HiBi;h(E�i);
B(E) : = �j2IBj(E�j):

An epistemic event E is transparent when it holds and is commonly

believed at every information set:

B0(E) : = E;

Bn+1(E) : = B(Bn(E));

B�(E) : = \n�0Bn(E)):

If E is not an epistemic event, it could be impossible for player i

to believe inE�i at some information set h 2 Hi, because ProjS�iE�i\
S�i(h) = ;. However, player i may want to believe in E�i as long as

16Battigalli and Prestipino [6] provide an argument for the closedness of
Bi;h(E) based on the Portmanteu theorem. A direct proof based on the
Prokhorov metric is available upon request.
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not contradicted by observation. The event where this persistency

of the belief holds is:

SBi(E�i) :=
T

h2Hi:ProjS�iE�i\S�i(h) 6=;
Bi;h(E�i):

The "strong belief" operator SBi is non-monotonic: if E�i � F�i, it
needs not be the case that SBi(E�i) � SBi(F�i). This will explain
why Strong-�-Rationalizability is not a re�nement of Strong Ratio-

nalizability, and Selective Rationalizability, for given restrictions, is

not a re�nement of Strong-�-Rationalizability.

Suppose now that, for each opponent j, player i believes that the

true pair (sj; tj) is in Ej, as long as not contradicted by observation.

Then I say that i strongly believes in Ej for all j 6= i. Formally, I
de�ne the operator

SBi(E�i) := \j 6=iSBi(Ej � 
�j;i);

and given the independent rationalization hypothesis of the paper,

from now on I will refer to this operator and not to SBi as the "strong

belief " operator. Note that (si; ti) 2 SBi(E�i) if and only if, for each
j 6= i, gi(ti) strongly believes in Ej, i.e. gi;h(ti)(Ej � 
�i;j) = 1 for
all h 2 Hi with ProjSjEj \ Sj(h) 6= ;.
Recalling that for a pro�le (Xj)j2I , X = �j2IXi, de�ne induc-
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tively:

CSBi(E) : = Ei \ SBi(E�i);
CSB0i (E) : = Ei;

CSBn+1i (E) : = CSBi(CSB
n(E));

CSB1i (E) : = \n2NCSBni (E):

The event CSB1(E) is "correct and common strong belief in E."

First-order and higher-order beliefs are epistemic events, so they

have no bite in terms of behavior and predictions about opponents�

behavior without rationality and beliefs in rationality. The "ratio-

nality of player i" event is denoted by

Ri := f(si; t) 2 
i : si 2 �(fi(ti))g ;

and it is closed whenever � � fi, as in �nite games, is upper-hemi-
continuous. The rationality event is R := �i2IRi.

Here I consider rational players who keep, as the game unfolds,

the highest order of belief in rationality of each opponent that is

consistent with her observed behavior. Players further re�ne their

�rst-order beliefs through the own theories. All this is captured

by the event [�] \ CSB1(R). The event "rationality and common
strong belief in rationality", CSB1(R), characterizes Rationalizabil-
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ity.17 Furthermore, players believe, as long as not contradicted by

observation, that each opponent: (1) reasons in the same way; (2)

believes, as long as not contradicted by observation, that everyone

else reasons in the same way; and so on. The n-th order of this

belief is captured by the event CSBn([�]\CSB1(R)), and it char-
acterizes the n + 1-th step of Selective Rationalizability. The event

CSB1([�]\CSB1(R)) captures all the steps of reasoning at once.

Theorem 1 Fix a pro�le � = (�i)i2I of compact subsets of CPS�s.

Then, for every n � 0,

Sn+1R� = ProjSCSB
n([�] \ CSB1(R));

and

S1R� = ProjSCSB
1([�] \ CSB1(R)):

Therefore, Selective Rationalizability delivers the behavioral im-

plications of rationality, common strong belief in rationality, �rst-

order belief restrictions, and common strong belief in their conjunc-

tion. That is, step by step:

1. each player is rational and her beliefs are compatible with com-

mon strong belief in rationality and with the �rst-order belief

restrictions;

17Battigalli and Siniscalchi [9] characterize Strong Rationalizability with ra-
tionality and common strong belief in rationality, where strong belief is meant
without independent rationalization.
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2. 1 holds and each player believes that 1 holds for each opponent

as long as not contradicted by observation;

3. 1 and 2 hold and each player believes that 1 and 2 hold for

each opponent as long as not contradicted by observation;

4. ...

A deeper understanding of Selective Rationalizability and epis-

temic priority requires a closer look at the event that character-

izes Selective Rationalizability and a comparison with the charac-

terization of Strong-�-Rationalizability.proposed by Battigalli and

Prestipino [6]. Since independent rationalization is immaterial for

this analysis, to simplify exposition I assume that there are only two

players.

A simple preliminary observation: In the event

CSB1(R \B�([�])) � B�([�])

that characterizes Strong-�-Rationalizability, players keep at every

information set every order of belief in the restrictions; in the event

CSB1([�] \ CSB1(R)) � CSB1(R)

that characterizes Selective Rationalizability players keep at every

information set the highest order of strong belief in rationality which
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is per se compatible with the observed behavior.18 But what about

the beliefs in the restrictions under CSB1([�]\CSB1(R)) and the
beliefs in rationality under CSB1(R\B�([�]))? Let E = �i2IEi :=
[�] \ CSB1(R).
Fix i 2 I and h 2 Hi(ProjSCSB1(E)). Consider the belief of

player i at h in the restrictions of �i. That is, consider the event
Bi;h([��i]). Does it hold under CSB1i (E)? That is, does it hold

that CSB1i (E) � Bi;h([��i])? Fix (si; ti) 2 SBi(E�i) � CSB1i (E).
Since h 2 Hi(ProjS�iE), then 1 = gi;h(ti)(E�i) � gi;h(ti)([��i]).

Thus, (si; ti) 2 Bi;h([��i]). The �rst-order belief in the opponent�s

restrictions holds at all selectively rationalizable information sets.

Now, let eB�i([�i]) := \h02H�i(ProjSCSB1(E))B�i;h0([�i]). Consider

the belief of player i at h in the belief of �i at all

h0 2 H�i(ProjSCSB1(E))

in i�s restrictions. That is, consider the event Bi;h( eB�i([�i])). Does

it hold that CSB1i (E) � Bi;h( eB�i([�i]))? Fix

(si; ti) 2 SBi(CSB�i(E)) � CSB1i (E):

18Note that in both events, the own restrictions are never dropped: CSB1(R\
B�([�])) � [�] � CSB([�]\CSB1(R)). If they are at odds with the behavioral
implications of opponents�strategic reasoning, the events are empty. That is,
the theories of opponents�behavior represented by the restrictions are rejected
by strategic reasoning.
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As shown, SB�i(Ei) � eB�i([�i]). Since h 2 Hi(ProjS�iCSB�i(E)),
then

1 = gi;h(ti)(CSB�i(E)) � gi;h(ti)( eB�i([�i])):

Thus, (si; ti) 2 Bi;h( eB�i([�i])).

Proceeding by induction, one shows that at every selectively ra-

tionalizable information sets, there is common belief that the re-

strictions hold at all selectively rationalizable information sets them-

selves. A similar argument shows that at every information set com-

patible with CSB1(R\B�([�])) (i.e. with Strong-�-Rationalizabi-
lity), there is common belief in rationality at all the strongly-�-

rationalizable information sets themselves.

Put down in this way, it seems that the epistemic priority issue

does not actually arise at the relevant information sets, so that Se-

lective Rationalizability and Strong-�-Rationalizability, when both

non-empty, should predict the same outcomes. This is false. Com-

mon belief in rationality and in the restrictions holds along di¤erent

sets of paths, depending on which o¤-path beliefs sustain them: com-

mon strong belief in rationality or transparency of the restrictions.

This phenomenon is illustrated concretely in the Discussion Section.

Since an order of belief in the restrictions is immaterial without

the corresponding order of belief in rationality, Strong-�-Rationali-

zability can also be characterized without requiring transparency of

the �rst-order belief restrictions at all information sets. That is,
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Strong-�-Rationalizability is also characterized by the event

CSB1(R \ [�])

(see Battigalli and Prestipino [6]),19 which puts rationality and the

restrictions on the same epistemic priority level. To complete the

picture, one may wonder whether the event CSB1(R) \ B�([�]),
which does not assign epistemic priority to rationality or the re-

strictions either, also characterizes one of the two procedures. The

answer is negative. Consider the following game.

Ann

L. &M

Bob Bob

N . & O P . & Q

2; 2 0; 0 0; 0 1; 1

Under the restriction that Ann believes that Bob plays N , both

Strong-�-Rationalizability and Selective Rationalizability yield L

for Ann and N:Q for Bob. Yet, CSB1(R) \ B�([�]) is empty, be-
cause it requires Bob to believe at (M) both that Ann is rational

and that her restriction holds, and the two things are clearly at odds.

This is because restrictions and rationality are not under the same

19In games with more than 2 players, since Strong-�-Rationalizability is de-
�ned without independent rationalization, CSBi has to be rede�ned with SBi
in place of SBi.
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strong belief operator, so Bob is not allowed to drop the belief in

their conjunction.20

To conclude this section, it is worth to stress which assumptions

on the game and on the type structure are crucial for the characteri-

zation result. Completeness, compactness and continuity of the type

structure play a crucial role in the proof of Theorem 1. Finiteness of

the game, instead, is only instrumental for the existence of such type

structure and the upper-hemicontinuity of the best response corre-

spondences, which guarantees closedness of the rationality event. A

complete, compact and continuous type structure exists not only for

�nite games, but also for the class of "simple dynamic games" in-

troduced by Battigalli [4], i.e. all games where the sets of available

actions are �nite at all histories (such as in�nitely repeated games

with a �nite stage game), except possibly for preterminal histories

where they can be any compact metric space. Indeed, the canonical

type structure for CPS�s constructed by Battigalli and Siniscalchi

[7] exists in all such games. Under continuity of the payo¤ func-

tions, Battigalli and Tebaldi [11] extend the epistemic characteri-

20Friedenberg [19] obtains predictions for a two-players bargaining game by
intersecting common strong belief in rationality with the event "on path strategic
certainty" and common strong belief in it. On path strategic certainty selects
the states where players have correct beliefs about the path of play induced by
their strategies. Thus, it does not �x beliefs on a particular path and it is not
an epistemic event. So, at (M), on path strategic certainty does not force Bob
to keep the belief that Ann believed in N and no contradiction with the belief
in the rationality of Ann arises.
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zation of Strong-�-Rationalizability to simple dynamic games. The

same could be done here for Selective Rationalizability. The proof of

Theorem 1 (and 2) can be easily adapted to simple dynamic games

by using Lemma 3 of Battigalli and Tebaldi [11] to claim the exis-

tence of CPS�s over strategies and types with the desired marginal

CPS over strategies. On the other hand, �niteness allows to provide

a self-contained proof of the main results, so it is mantained.

5 Finer epistemic priority orderings

Consider the following game, where after I Cleo chooses the matrix.

AnB W E

Cleo � O �! N 2 2 3:6 0 0 0

# I S 0 0 0 2 2 4

M1 L R M2 L R

U 1 1 3:3 0 0 3:3 U 0 0 0 1 1 8:1

D 0 0 3:3 1 1 3:9 D 1 1 8:1 0 0 0

All strategies are rationalizable. Suppose that players agree on the

subgame perfect equilibrium (S:U;E:L;O:M1). Consider the corre-

sponding �rst-order-belief restrictions for all players. Then, Selective

Rationalizability yields the desired outcome (O; (S;E)). Upon ob-

serving I, Ann and Bob drop the belief that Cleo believes in (S;E)
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and (U;L). In particular, they can believe that Cleo did not believe

in (S;E) and could rationally play M1 after I. In this case, they

have the incentive to play U against L and vice versa.

Suppose now instead that Ann and Bob have an alternative the-

ory to rationalize Cleo�s move I. They believe that Cleo believed

that they would have complied with the agreement on path (i.e.

that they would have played (S;E) after O), but does not believe

that they will implement the threat o¤-path (i.e. that they will play

(U;L) after I). If Ann and Bob rationalize I under this light, they

expect Cleo to pick M2, because (I;M1) is not rational given the

belief in (S;E). Under M2, Ann and Bob cannot coordinate on

(U;L).

Suppose now that players agree on the subgame perfect equilib-

rium (N:U;W:L;O:M1), and that upon observing I, they believe

that Cleo believed in (N;W ), but does not believe in (U;L). This

time, this does not exclude that Cleo would play M1, hoping for

(D;R). Thus, Ann may play U when she believes that Bob will play

L, and vice versa. So, the restrictions are compatible with this kind

of strategic reasoning and yield the desired outcome (O; (N;W )) as

unique prediction.21

Two important questions arise now. First: Does the exclusion

21Note a seemingly paradoxical but quite customary consequence of forward
induction reasoning: to convince Cleo to play O, Ann and Bob must promise
to play (N;W ), which gives Cleo a payo¤ of 3:6, instead of (S;E), which yields
Cleo a payo¤ of 4.
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of (O; (S;E)) and not of (O; (N;W )) correspond to some existing

equilibrium re�nement? Note that both outcomes are induced by a

subgame perfect equilibrium in (extensive-form/strongly) rational-

izable strategies. Second, and most importantly: Can this kind of

strategic reasoning be modeled as an epistemic priority order be-

tween di¤erent theories of opponents�behavior, and be captured by

a solution concept analogous to Selective Rationalizability?

The answer to the �rst question is yes: strategic stability à la

Kohlberg and Mertens [23].22

De�nition 7 (Kohlberg and Mertens [23]) For each i 2 I, let
�i be the set of mixed strategies of i, i.e. the set of probability dis-

tributions over Si. A closed set of mixed equilibria b� � � is stable
if it is minimal with respect to the following property: for any " > 0,

there exists �0 > 0 such that for any completely mixed (�i)i2I 2 �
and (�i)i2I with 0 < �i < �0 for all i 2 I, the perturbed game where
for every i 2 I, every si 2 Si is substituted by (1� �i)si+ �i�i has a
mixed equilibrium "-close to b�.
Consider �rst a set of two mixed equilibria b� = f(�i)i2I ; (�0i)i2Ig

22Strategic stability has been chosen over Forward Induction equilibria of
Govindan and Wilson [21] or Man [26] because the latter do not re�ne extensive-
form rationalizability, hence do not capture all orders of strong belief in ratio-
nality. Strategic stability, instead, re�nes iterated admissibility, which in generic
games corresponds to extensive-form rationalizability (Shimoji, [32]).
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inducing outcome (O; (N;W )):

�C(O) = 1; �A(N:D) = �B(W:R) =
1p
2
;

�A(N:U) = �B(W:L) = 1�
1p
2
;

�0C(O) = 1; �
0
A(N:D) = �

0
B(W:R) =

2

3
;

�0A(N:U) = �
0
B(W:L) =

1

3
.

Under �, Cleo is actually indi¤erent between O and I:M1, while un-

der �0, she is indi¤erent betweenO and I:M2. I show that b� is stable.
Fix any completely mixed (e�i)i2I 2 �, an arbitrarily small �0, and
(�i)i2I with 0 < �i < �0 for all i 2 I. Consider the game perturbed
as in De�nition 7 and indicate with tilde the perturbed strategies. Ife�A(I:M2) > e�A(I:M1) (resp., e�A(I:M2) < e�A(I:M1)), assign small
probability to ]I:M1 (resp., ]I:M2) and the complementary proba-
bility to eO in such a way that, overall, I:M1 and I:M2 are played

with equal probability. Then, after I, Ann and Bob are indi¤erent

between their actions regardless of the belief about the action of the

other. Thus, since all strategies are perturbed in the same way, Ann

and Bob are indi¤erent between gN:U and gN:D, and between gW:L
and gW:R. Assign probability to these strategies in such a way that
Cleo is indi¤erent between eO and ]I:M1 (resp., ]I:M2).23 For any

23Since the perturbed strategies assign positive probability to S and E, the
expected payo¤ of Cleo after O is lower than 3:6. The payo¤ of Cleo after I:M1
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" > 0, by picking a small enough �0, we have an equilibrium in the

perturbed game where the induced probabilities over the original

strategies are "-close to those assigned by � (resp., �0).24

Instead, there is no stable set of equilibria inducing (O; (S;E)):

any perturbation of O that gives negligeable probability to I:M1

with respect to I:M2 cannot be compensated by giving positive

probability to ]I:M1, because ]I:M1 cannot be optimal under belief
in (S;E) (albeit perturbed). Thus, Ann and Bob must play close to

an equilibrium of matrix M2, which cannot discourage a deviation

to ]I:M2.

This is not the �rst time that a connection between rationalizabil-

ity and equilibrium re�nements à la strategic stability is established.

In signaling games, Battigalli and Siniscalchi [10] show that when an

equilibrium outcome satis�es the Iterated Intuitive Criterion (Cho

and Kreps [17]), Strong-�-Rationalizability yields a non-empty set

for the corresponding restrictions (i.e. the belief that opponents play

compatibly with the path). In [14] I prove that Selective Rational-

izability yields the empty set for a class of non strategically stable

equilibrium paths: those that can be upset by a convincing devi-

(resp., I:M2) can be lowered by the same amount by assigning probabilities
to gN:U and gN:D and gW:L and gW:R in such a way that N:D and W:R have
probability lower than 1=

p
2 (resp., higher than 2=3). This can be done with

probabilities of gN:D and gW:R close to 1=p2 (resp., 2=3).
24The set is minimal because, depending on e�A(I:M2) 7 e�A(I:M1), only one

of the two equilibria can be approximated.
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ation (Osborne [27]). So, one could think that strategic stability

simply requires non-emptiness of Selective Rationalizability/Strong-

�-Rationalizability25 under the belief in the equilibrium path. This

is false. In the example above, both procedures yield a non-empty set

under the belief in (O; (S;E)).26 Thus, there is no incompatibility

between the belief in the path and the rationalization of deviations

based on it (unlike for equilibrium paths that can be upset by a con-

vincing deviation). The problem is the incompatibility between the

rationalization of deviations based on the belief in the path and the

threats that sustain the path in equilibrium. This calls for a ratio-

nalizability procedure that takes both into account. The remainder

of this section is dedicated to construct and characterize epistemi-

cally such rationalizability procedure. The scope is expanded to an

arbitrary number of theories of opponents�behavior, of an arbitrary

nature (i.e. not just path versus o¤-path behavior). Without the

ambition to perfectly characterize strategic stability, the application

of this rationalizability procedure to equilibrium path and pro�le

captures in a general and transparent way the spirit of the strategic

reasoning stories in the background of strategic stability and related

re�nements.

When players have competing theories of opponents�behavior,

25The two conditions are equivalent: see Proposition 3.
26S1R� = S

1
� = fS:U; S:Dg � fE:L;E:Rg � fO; I:M2g = S1R� = S1� .
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the �rst issue to solve is the epistemic priority ordering between

them. Suppose, for instance, that each player has two overlapping

theories. Thus, some predictions may be consistent with both theo-

ries, and both theories can be used at the same time to re�ne beliefs.

At the beginning of the game, each player believes that opponents

re�ne beliefs according to their theories. Yet, as the game unfolds,

some player may display behavior which cannot be optimal under

both her theories at the same time. Then, for the opponents, the

epistemic priority issue arises. Which theory is the player following?

Suppose that everyone solves this dilemma in favour of the same

theory. Then, this theory receives epistemic priority, and strategic

reasoning about the other theory alone kicks in only at informa-

tion sets that are not compatible with strategic reasoning about the

�rst theory. Thus, when the theories are compatible with strategic

reasoning, strategic reasoning about the second theory alone is im-

material for the induced outcomes. Hence, the problem is simpli�ed

by taking as second theory the overlap with the �rst.

De�nition 8 A chain of restrictions is a �nite sequence

((�1
i )i2I ; :::; (�

k
i )i2I)

such that for each i 2 I, �k
i � ::: � �1

i � �Hi(S�i), and for each

l � k, �l
i is compact.

Note that, in the equilibrium path � equilibrium pro�le moti-

vating case, under this formalization the equilibrium path is the pri-
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mary theory of opponents�behavior. The equilibrium pro�le yields a

more restrictive, secondary theory. In the intuitive narration, play-

ers "resort" to the path theory when a deviator displays disbelief

in the whole equilibrium pro�le. But since believing in the equi-

librium pro�le actually implies believing in its path, the belief that

the deviator believes in the path holds all along, and receives higher

epistemic priority. Attributing the highest epistemic priority to the

beliefs in rationality, the theories are then considered in their epis-

temic priority order according to the following extension of Selective

Rationalizability.

De�nition 9 Fix a chain of restrictions ((�1
i )i2I ; :::; (�

k
i )i2I). Let

((Sqi;0)i2I)
1
q=0 denote Rationalizability. Fix 1 � l � k and for each

p = 0; :::; l � 1, suppose that ((Sqi;p)i2I)1q=0 has already been de�ned.
Consider now the following procedure.

(Step 0) For each i 2 I, let S0i;l = S1i;l�1.

(Step n) For each i 2 I and si 2 Si, let si 2 Sni;l if and only if
there exists �i 2 �l

i such that:

E1(l) si 2 �(�i);

E2(l) �i strongly believes S
q
j;l for all j 6= i and q < n;

E3(l) �i strongly believes S
q
j;p for all p < l, j 6= i, and q 2 N.

For every i 2 I, let S1i;l := \q2NS
q
i;l.
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Similarly to Selective Rationalizability, the procedure starts with

Rationalizability. Then, the �rst-order belief restrictions are grad-

ually introduced, following the descending epistemic priority order,

when strategic reasoning about the weaker theories does not re�ne

the strategy sets anymore. E3(l) guarantees that strategic reasoning

according to the weaker theories is maintained. This is re�ected in

the following epistemic characterization.

Theorem 2 Fix a chain of restrictions ((�1
i )i2I ; :::; (�

k
i )i2I). For

each n 2 N [ f1g, it holds Snk =

ProjSCSB
n�1([�k]\CSB1([�k�1]\ :::CSB1(

�
�1
�
\CSB1(R)))):

Let CSB0 := CSB1(R) and, for each l = 1; :::; k, let CSBl :=

CSB1(
�
�l
�
\ CSBl�1). Note that CSBk � CSB1(R): the highest

epistemic priority is still assigned to rationality. As long as com-

patible with the beliefs in rationality and with the observed behav-

ior, players believe in the �rst-order belief restrictions �1 at every

order. As long as compatible with this and with the observed be-

havior, players believe in the restrictions �2 at every order. And

so on. The own restrictions can never be dropped: if for some

i 2 I, l � k and n � 0 the restrictions �l
i are not compatible with

the behavioral implications of CSBn�1�i (
�
�l
�
\ CSBl�1), the event

CSBni (
�
�l
�
\ CSBl�1) is empty.

Back to the equilibrium path � equilibrium pro�le case, if in-
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stead of considering the belief in the equilibrium path one considers

the belief in the path but not in the equilibrium threats, an alter-

native theory with respect to the belief in the whole equilibrium

pro�le is obtained. Then, the belief in the equilibrium pro�le by

a player is here considered by the opponents in�nitely more likely

(Blume et al. [12], Lo [25]) than the belief in the path but not in the

threats,27 because the former is believed to hold at the beginning

of the game, and the latter only after a deviation that contradicts

the former. Counterintuitively, the in�nitely more likely order seems

inverted with respect to the epistemic priority one. Note, though,

that the belief in the path but not in the threats is not the original

primary theory �1
i that represents belief in the path, but the di¤er-

ence �1
i n�2

i , where �
2
i is the secondary theory that represents belief

in the whole equilibrium pro�le. However, there seems to be a tight

connection between the notion of epistemic priority and the notion

of in�nitely more likely. Exploring this connection is an avenue for

future research.

27The notion of In�nitely More Likely applies to Lexicographic Probability
Systems (Blume et al. [12]), but a CPS can be transformed into a Lexicographic
Probability System. Siniscalchi [33] uses this connection, but �rst introduces a
notion of "at least as plausible as" between theories of opponents�behavior that
applies directly to CPS�s.
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6 Discussion

To discuss some issues related to epistemic priority, consider the

following game.

Ann

A. & B

2; 2 Bob

I . & O

AnnnBob L C R 3; 3

U 0; 1 0; 0 1; 0

M 1; 0 0; 4 0; 0

D 0; 0 1; 0 1; 4

One could expect that if the restrictions are not compatible with

strategic reasoning when the epistemic priority is on them, a fortiori

they will not when the epistemic priority is on rationality. This

is false. Selective rationalizability can yield a non-empty set when

Strong-�-Rationalizability does not. Suppose that Bob promises

to play O and Ann threatens not to play D otherwise. Fix the

corresponding restrictions.

At step 1 of Strong-�-Rationalizability, Ann eliminates A and

Bob eliminates I:L and I:R. At step 2, Ann eliminates B:U and

B:M . At step 3, Bob obtains the empty set: he cannot believe that

Ann will not play D after I.

At step 1 of Rationalizability, Bob eliminates I:L. At step 2, Ann
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eliminates B:M . At step 3, Bob eliminates I:C. All other strategies

are rationalizable.28 At step 1 of Selective Rationalizability, Ann

further eliminates A and Bob further eliminates I:R. The remaining

strategies, B:U and B:D for Ann and O for Bob, are selectively

rationalizable.

The algorithmic reason why Selective Rationalizability yields a

non-empty set while Strong-�-Rationalizability does not is that S3

and the restrictions prevent Bob from reaching (B; I) already at the

�rst step of Selective Rationalizability, while Bob still reaches (B; I)

after the �rst step of Strong-�-Rationalizability. In this way, at the

second step and at (B; I), D2 becomes stricter than S2 (which is vac-

uous), and forces Ann to believe that Bob will play C after I. The

epistemic reason is that, at (B; I), Ann is forced to believe that Bob

is rational and has the restriction under Strong-�-Rationalizability

(so that he would play C), but not under Selective Rationalizabil-

ity.29 Keeping the highest possible order of belief in rationality may

require to drop an order of belief in the restrictions, even if it is

compatible with the same order of belief in rationality at the infor-

mation set. At (B; I), if Ann believes in rationality up to the third

28The tie between D and U against R is only to keep the game small; it can
be eliminated by introducing another action of Bob in the subgame.
29In abstract terms, this is an e¤ect of the non-monotonicity of strong belief:

strong belief in the event "Bob is rational, has the restriction, and strongly
believes that Ann is rational and strongly believes that he is rational" is less
restrictive for Ann�s beliefs at (B; I) than strong belief in the larger event "Bob
is rational and has the restriction".
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order, she cannot believe that Bob has the restriction, although this

is compatible with just believing in Bob�s rationality. Under Selec-

tive Rationalizability, S3 imposes from step 1 all orders of belief in

rationality that are per se compatible with the observed behavior. In

this way, through S2, any order of belief in the restrictions is main-

tained only as long as compatible with them (see Section 4). Under

Strong-�-Rationalizability, the n-th order belief in rationality and in

the restrictions is always maintained at an information set that can

be reached if this belief is correct. But then, as it happens to Ann at

(B; I), beliefs may fall in a subset of n-th order belief in rationality

where some higher order of belief in rationality never holds.

However, as shown in Section 4, when Selective Rationalizabil-

ity or Strong-�-Rationalizability yields a non-empty set, it captures

all orders of belief in rationality and in the restrictions along the

induced paths. Then, one could expect Selective Rationalizability

and Strong-�-Rationalizability to yield the same paths when they

both yield a non-empty set. This is, again, false. The game after

(B; I) and the restrictions are modi�ed in the Appendix, and the

two procedures are formally shown to yield non-empty, disjoint pre-

dictions. At (B), when Bob believes that Ann would interpret his

move I by giving epistemic priority to the beliefs in the restrictions,

he prefers to play I instead of O. But then, anticipating this, Ann

plays A. When instead Bob believes that Ann would interpret I by

giving epistemic priority to rationality, he prefers O over I, and then
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Ann plays B. So, the selectively rationalizable information sets are

the root and (B), and all orders of belief in rationality and in the

restrictions at the root and (B) hold. Although common belief in

rationality and in the restriction can hold along the (B;O) path, the

path is not sustained by o¤-the-path beliefs under epistemic priority

to the restrictions.

In games with observable actions, there are very interesting re-

strictions under which Selective Rationalizability and Strong-�-Ra-

tionalizability predict the same outcomes (or both deliver the empty

set). Such restrictions correspond to the belief in a path of play.

That is, players strongly believe that each opponent plans to remain

on-path.

Proposition 3 (Catonini [15]) Fix a game with observable actions
and z 2 Z. For each i 2 I, let �i be the set of all �i that strongly

believe (Sj(z))j 6=i. Then �(S1R�) = �(S
1
� ).

The proof of this result is rather sophisticated, and it is provided

in [15].30

30The result is formally proved without independent rationalization, but it
is possible to prove that independent rationalization is immaterial under path
restrictions.
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7 Appendix

7.1 A game

In this game, Selective Rationalizability and Strong-�-Rationalizability

yield non-empty, yet disjoint predictions for the same �rst-order be-

lief restrictions.

Ann

A. & B

(4; 6) Bob

I . & O

AnnnBob W N S E (5; 5)

T (3; 6) (0; 7) (0; 0) (0; 0)

U (0; 7) (3; 6) (0; 0) (0; 0)

M (2; 1) (2; 1) (0; 0) (0; 0)

D (0; 0) (0; 6) (1; 0) (0; 0)

B (0; 0) (0; 0) (0; 6) (1; 0)

First-order-beliefs restrictions:
�A := �

HA(SB); �B := f�B 2 �HB(SA) : 8h 2 HB; �B(B:T jh) =
�B(B:U jh) = 0g:

Rationalizability:
S1A = SA; S

1
B = fI:W; I:N; I:S;Og ;

S2A = fA;B:T;B:U;B:M;B:Dg ; S2B = S1B;
S3A = S

2
A; S

3
B = fI:W; I:N;Og ;
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S4A = fA;B:T;B:U;B:Mg ; S4B = S3B;
S5A = S

4
A = S

1
A ; S

5
B = S

4
B = S

1
B :

Selective Rationalizability:
S1A;R� = fA;B:T;B:U;B:Mg ; S1B;R� = fOg ;
S2A;R� = fB:T;B:U;B:Mg ; S2B;R� = S1B;R�;
S3A;R� = S

2
A;R� = S

1
A;R�; S

3
B;R� = S

2
B;R� = S

1
B;R�.

Strong-�-Rationalizability:
S1A;� = SA; S

1
B;� = fI:N; I:S;Og ;

S2A;� = fA;B:U;B:Dg ; S2B;� = S1B;�;
S3A;� = S

2
A;�; S

3
B;� = fI:Ng ;

S4A;� = fAg ; S4B;� = S3B;�;
S5A;� = S

4
A;� = S

1
A;�; S

5
B;� = S

4
B;� = S

1
B;�:

7.2 Proofs

Proof of Proposition 1. I prove by induction a stronger state-
ment.

Induction hypothesis (n): For every m � n, i 2 I, and si 2
Smi;R� (resp., bsi 2 bSmi;R�), there exists bsi 2 bSmi;R� (resp., si 2 Smi;R�)
such that si(h) = bsi(h) for all h 2 Hi(S1).
Basis step (n = 0): It follows from bS0R� = S0R� = S1.
Inductive step (n + 1). Fix i 2 I, si 2 Sn+1i;R� (resp., bsi 2bSn+1i;R�), and �i 2 �i that strongly believes ((Smj;R�)j 6=i)

n
m=0 (resp.,
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((bSmj;R�)j 6=i)nm=0) such that si 2 �(�i). By the induction hypothe-
sis, for each j 6= i, I can construct a map �j : S

1
j ! S1j such

that for each m � n and sj 2 Smj;R� � S1j (resp., sj 2 bSmj;R� �
S1j ), �j(sj) 2 bSmj;R� (resp., �j(sj) 2 Smj;R�) and �j(sj)(h) = sj(h)

for all h 2 Hj(S
1). For each h 2 Hi(S

1) and s�i 2 S1�i, note

that s�i 2 S1�i(h) if and only if (�j 6=i�j)(s�i) 2 S1�i(h).
31 More-

over, by the induction hypothesis, for each j 6= i and m = 1; :::; n,

Hi(S
m
j;R�) \ Hi(S1) = Hi(bSmj;R�) \ Hi(S1). Then, there exists �i

that strongly believes ((bSmj;R�)j 6=i)nm=0 (resp., ((Smj;R�)j 6=i)nm=0) and
((Sqj )j 6=i)

1
q=0 such that �i(s�ijh) = �i((�j 6=i�j)�1(s�i)jh) for all h 2

Hi(S
1) and s�i 2 (�j 6=i�j)(S1�i(h)). So, since �i(S1�ijh) = 1 (by

strong belief in S0�i;R� = bS0�i;R� = S1�i), �i(S�i(z)jh) = �i(S�i(z)jh)
for all h 2 Hi(S1) and z 2 �(S1). Hence: by maximality of �i,

�i 2 �i; by �(�(e�i)�S1�i) � �(S1) for any e�i that strongly believes
S1�i,

32 there is si 2 �(�i) � bSn+1i;R� (resp., si 2 �(�i) � Sn+1i;R�) such

that si(h) = si(h) for all h 2 Hi(S1). �

Proof of Proposition 2. For each i 2 I, let �i be the (com-

pact33) set of all �i 2 �i that satisfy S3 and S2 under (�j)j2I for

31For each s0�i 2 S1�i(h), by perfect recall S1i (h)�
�
s0�i
	
� S1(h), hence there

is a history x 2 h such that x � z for some z 2 �(S1i (h) �
�
s0�i
	
) � �(S1),

and then for all x0 � x and j 6= i with x0 2 h0 for some h0 2 Hj , it holds
h0 2 Hj(S1).
32If this was not the case, then there would be e�i that strongly believes also

((Sqj )j 6=i)
1
q=0, and esi 2 �(e�i) � S1i such that �(fesig � S1�i) 6� �(S1), a contra-

diction.
33Compactness can be indirectly argued from the epistemic characterization
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all n 2 N. By �niteness,34 S1R� = �i2I�(�i) = S
1
R�
, and then each

�i 2 �i strongly believes (S1j;R�)j 6=i, thus S
1
R�
= S1

R�
. Let �i 2 ��

i if

and only if there exists �i 2 �i such that �i(S�i(z)jh) = �i(S�i(z)jh)
for all h 2 Hi(S1) and z 2 �(S1). It is easy to observe that for each
i 2 I, ��

i is compact
35 and maximal, and ��

i � �i. Now I show by

induction that �(S1
R�
) = �(S1R��).

Induction hypothesis (n): For every m � n, i 2 I, and si 2
S1
i;R�

(resp., s�i 2 Smi;R��), there exists s�i 2 Smi;R�� (resp., si 2 S1i;R�)
such that si(h) = s�i (h) for all h 2 Hi(S1).
Basis step (n = 1). Fix i 2 I. By ��

i � �i, S1i;R�� � S1
i;R�

.

Fix s�i 2 S1i;R�� and �i 2 ��
i that strongly believes S

1
�i such that

s�i 2 �(�i). By de�nition of �
�
i , there exists �i 2 �i such that

�i(S�i(z)jh) = �i(S�i(z)jh) for all h 2 Hi(S1) and z 2 �(S1). Since
�(�(e�i) � S1�i) � �(S1) for any e�i that strongly believes S1�i, there
exists si 2 �(�i) � S1i;R� such that si(h) = s

�
i (h) for all h 2 Hi(S1).

Inductive step (n+1). Fix i 2 I, si 2 S1i;R�, and �i 2 �i such

that si 2 �(�i). By the induction hypothesis, for each j 6= i, I can
construct a map �j : S

1
j ! S1j such that for each sj 2 S1j nS1j;R�,

and Lemma 1: �i = fi(ProjTiCSB
1
i ([�] \ CSB1(R))).

34Or milder conditions which guarantee that every si 2 S1i;R� is a sequential
best reply to some �i that strongly believes ((S

q
j;R�)j2I)

1
q=0 and ((S

q
j )j2I)

1
q=0.

35For each sequence of CPS�s in ��i and any corresponding sequence of CPS�s
in �i, the equalities for each h 2 Hi(S1) and z 2 �(S1) are preserved in the
limit. By compactness of �i, the sequence in �i converges to a CPS in �i, so
the limit of the sequence in ��i is a CPS (by compactness of �

Hi(S�i)) that
satis�es the conditions to be in ��i .
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�j(sj) = sj, and for each sj 2 S1
j;R�

� S1j , �j(sj) 2 Snj;R�� and

�j(sj)(h) = sj(h) for all h 2 Hj(S1). For each h 2 Hi(S1) and
s�i 2 S1�i, note that s�i 2 S1�i(h) if and only if (�j 6=i�j)(s�i) 2
S1�i(h).

31 Moreover, by the induction hypothesis, for each j 6= i and
m = 1; :::; n,

Hi(S
m
j;R��)\Hi(S1) = Hi(S1j;R�)\Hi(S

1) = Hi(S
n
j;R��)\Hi(S1):

Then, recalling that �i strongly believes (S
1
j;R�

)j 6=i, there exists ��i
that strongly believes ((Smj;R��)j 6=i)

n
m=0 and ((S

q
j )j 6=i)

1
q=0 such that

��i (s�ijh) = �i((�j 6=i�j)�1(s�i)jh) for all h 2 Hi(S
1) and s�i 2

(�j 6=i�j)(S1�i(h)). So, since �i(S1�ijh) = 1 (by strong belief in S1�i),
��i (S�i(z)jh) = �i(S�i(z)jh) for all h 2 Hi(S

1) and z 2 �(S1).

Hence: by de�nition of ��
i and �i 2 �i, ��i 2 ��

i ; by �(�(e�i) �
S1�i) � �(S1) for any e�i that strongly believes S1�i,32 there is s�i 2
�(��i ) � Sn+1i;R�� such that s

�
i (h) = si(h) for all h 2 Hi(S1). The

other direction is identical to the basis step. �

PROOFS OF THE THEOREMS.

First, I prove a generalized version of Theorem 1. Applying this

result to Rationalizability yields the conditions to apply it to Selec-

tive Rationalizability and prove Theorem 1, and with further itera-

tions, Theorem 2.

Consider this generalized rationalizability procedure (without a

step 0).
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De�nition 10 Fix two pro�les of subsets of CPS�s, (�i)i2I and

(�G
i )i2I . Fix n � 1 and, if n > 1, suppose that ((Sqi;G)i2I)

n�1
q=1 has

already been de�ned. For every i 2 I and si 2 Si, let si 2 Sni;G if and
only if there exists �i 2 �i such that:

G1 si 2 �(�i);

G2 �i strongly believes S
q
j;G for all j 6= i and 1 � q < n;36

G3 �i 2 �G
i .

Call �n;G
i the set of all �i 2 �i that satisfy G2 and G3.

Finally, let S1i;G = \n�1Sni;G and �
1;G
i = \n�1�n;G

i .

Consider now the following property for a Cartesian event E =

�i2IEi � 
.

De�nition 11 A Cartesian event E = �i2IEi satis�es the "com-
pleteness property" if for every i 2 I, ti 2ProjTiEi, si 2 �(fi(ti)),
and maps37 (� j)j 6=i with � j : sj 2ProjSjEj 7! (sj; tj) 2 Ej for all
j 6= i, there exists t0i 2 Ti such that (si; t0i) 2 Ei, fi(t0i) = fi(ti),

and gi;h(t0i) [f� j(sj)g � 
�i;j] = fi;h(ti) [fsjg � S�i;j] for all h 2 Hi,
j 6= i, and sj 2ProjSjEj.

36Vacuous for n = 1.
37Note that the maps are injective.
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In the proof of the following, generalized characterization result,

the completeness property (assumed here and shown to hold for ra-

tionality later) allows to retrieve the desired types from the induction

hypothesis, instead of constructing them from scratch in the induc-

tive step (di¤erently than, for instance, in [6]).

Lemma 1 Fix a closed, Cartesian event E = �i2IEi � R with the
completeness property38 such that for each i 2 I, fi(ProjTiEi) =

�i \�G
i
(39) (which implies S1i;G =ProjSiEi).

40

Then, for every n 2 N, CSBn�1(E) has the completeness prop-
erty and for each i 2 I, fi(ProjTiCSB

n�1
i (E)) = �n;G

i (which implies

Sni;G =ProjSiCSB
n�1
i (E)).

Moreover, CSB1(E) has the completeness property and for each

i 2 I, fi(ProjTiCSB1i (E)) = �
1;G
i and S1i;G =ProjSCSB

1
i (E).

Proof. For �nite n, the proof is by induction.

Induction Hypothesis (n=1,...,m): the Lemma holds for n =
1; :::m.

Basis step (n=1): the Lemma holds for n = 1 by assumption.

38The event E can be empty, just like CSB1(R) \ [�] in Theorem 1.
39Since fi is continuous and ProjTiEi is compact (because Ei is closed and Ti

is compact),compactness of �i \�Gi is implied.
40� is guaranteed by the completeness property of E; � is guaranteed by the

fact that E � R.
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Inductive step (n=m+1): For each i 2 I, let Fi = CSBm�1i (E)

and Gi = CSBmi (E)

Fix i 2 I and �i 2 �
m+1;G
i . Since �i 2 �

m;G
i , by the Induction

Hypothesis there exists ti 2ProjTiFi such that fi(ti) = �i. Fix maps
(� j)j 6=i with � j : sj 2ProjSjFj 7! (sj; tj) 2 Fj for all j 6= i. By the In-
duction Hypothesis, F has the completeness property. So, there ex-

ists (s0i; t
0
i) 2 Fi such that fi(t0i) = fi(ti), and for every h 2 Hi, j 6= i,

and sj 2ProjSjFj, gi;h(t0i) [f� j(sj)g � 
�i;j] = fi;h(ti) [fsjg � S�i;j].
Then, since fi(ti) strongly believes Smj;G =ProjSjFj (by the Induction

Hypothesis), gi(t0i) strongly believes Fj. So, (s
0
i; t

0
i) 2 SBi(F�i)\Fi =

Gi.

Fix i 2 I and ti 2ProjTiGi. Since ti 2ProjTiFi, by the Induction
Hypothesis fi(ti) 2 �m;G

i . Since ti 2ProjTiSBi(F�i), gi(ti) strongly
believes Fj for all j 6= i, hence fi(ti) strongly believes ProjSjFj. By
the Induction Hypothesis ProjSjFj = S

m
j . So fi(ti) 2 �

m+1;G
i .

Now I show that G has the completeness property. Fix i 2 I,
ti 2ProjTiGi �ProjTiFi, si 2 �(fi(ti)), and maps (� j)j 6=i with � j :
sj 2 ProjSjGj 7! (sj; tj) 2 Gj � Fj for all j 6= i. Extend each

� j to � 0j : sj 2ProjSjFj 7! (sj; tj) 2 Fj in such a way that for

every sj 2ProjSjGj, � 0j(sj) = � j(sj). By the Induction Hypothe-

sis, F has the completeness property. So, there exists t0i 2 Ti such
that (si; t0i) 2 Fi, fi(t0i) = fi(ti), and for every h 2 Hi, j 6= i, and

sj 2ProjSjFj, gi;h(t0i)[f� 0j(sj)g � 
�i;j] = fi;h(ti) [fsjg � S�i;j]. Since
ti 2ProjTiSBi(F�i), fi(ti) strongly believes ProjSjFj for all j 6= i.
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Then, gi(t0i) strongly believes Fj. So (si; t
0
i) 2 SBi(F�i) \ Fi = Gi.

�

Now I prove that the lemma holds for n =1. By �niteness, there
is M 2 N such that S1G = SMG . For each i 2 I, let Fi := CSBMi (E)
and Gi := CSB1i (E).

For each j 2 I, sj 2 S1j;G, and q 2 N, as shown above (fsjg �
Tj)\CSBq�1j (E) is non-empty, and also closed (see Section 4). Thus,

((fsjg � Tj) \ CSBq�1j (E))q2N is a sequence of nested, non-empty

closed sets, so it has the �nite intersection property. Then, since 
j
is compact,

\q2N((fsjg � Tj) \ CSBq�1j (E)) = (fsjg � Tj) \Gj 6= ;:

So, S1j;G �ProjSjGj, and as shown above S1j;G =ProjSjFj �ProjSjGj.
Hence, S1j;G =ProjSjGj and there exists a map � j : sj 2ProjSjFj 7!
(sj; tj) 2 Gj � Fj.

Fix i 2 I and �i 2 �
1;G
i . Since �i 2 �

M+1;G
i , as shown above

there exists ti 2ProjTiFi such that fi(ti) = �i, and F has the com-

pleteness property. So, there exists (s0i; t
0
i) 2 Fi such that for every

i 2 I, fi(t0i) = fi(ti), and for every h 2 Hi, j 6= i, and sj 2ProjSjFj,
gi;h(t

0
i)[f� j(sj)g � 
�i;j] = fi;h(ti) [fsjg � S�i;j]. Then, since fi(ti)

strongly believes SMj;G = S1j;G =ProjSjGj, gi(t
0
i) strongly believes

Gj. Hence, for each q � M , since ProjSjCSB
q
j (E) = S1j;G and

CSBqj (E) � Gj, gi(t0i) strongly believes CSB
q
j (E). So, (s

0
i; t

0
i) 2
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SBi(CSB
q
�i(E)). Then, inductively, (s

0
i; t

0
i) 2 CSBq+1i (E) for all

q �M . Thus (s0i; t0i) 2 Gi.
Fix i 2 I and ti 2ProjTiGi. For every q � 1, ti 2ProjTiCSB

q�1
i (E),

thus, as shown above, fi(ti) 2 �q;G
i . Then, fi(ti) 2 �1;G

i .

Finally, I show that G has the completeness property. Fix i 2
I, ti 2ProjTiGi �ProjTiFi, si 2 �(fi(ti)), and maps (� j)j 6=i with

� j : sj 2 ProjSjGj 7! (sj; tj) 2 Gj � Fj for all j 6= i. As shown

above, ProjSjGj =ProjSjFj, and F has the completeness property.

So, there exists t0i 2 Ti such that (si; t0i) 2 Fi, fi(t0i) = fi(ti), and for
every h 2 Hi, j 6= i, and sj 2ProjSjFj, gi;h(t0i)[f� j(sj)g � 
�i;j] =
fi;h(ti) [fsjg � S�i;j]. Since ti 2ProjTiSBi(F�i), fi(ti) strongly be-
lieves ProjSjFj =ProjSjGj for all j 6= i. Then, gi(t0i) strongly be-

lieves Gj. Hence, for each q �M , since ProjSjCSB
q
j (E) =ProjSjGj

and CSBqj (E) � Gj, gi(t0i) strongly believes CSB
q
j (E). So, (si; t

0
i) 2

SBi(CSB
q
�i(E)). Then, inductively, (si; t

0
i) 2 CSBq+1i (E) for all

q �M . Thus (si; t0i) 2 Gi. �

Proof of Theorems 1 and 2.

Let (�0
i )i2I := (�

Hi(S�i))i2I . Fix a chain of restrictions

((�1
i )i2I ; :::; (�

k
i )i2I):

(For Theorem 1, let (�1
i )i2I = (�i)i2I .) Let CSB1�1 := R and, for

each l = 0; :::; k and n 2 N0 [ f1g, let CSBnl := CSBn(
�
�l
�
\
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CSB1l�1) (so, CSB
n
0 = CSBn(R)). For each i 2 I, let �G

i;0 :=

�Hi(S�i). For each l = 1; :::; k, let �G
i;l be the set of CPS�s that sat-

isfy E3(l) (so, �G
i;1 is the set of CPS�s that satisfy S3). Then, Theo-

rem 1 is given by Lemma 1 with E := [�1]\CSB10 = [�]\CSB1(R)
and (�G

i )i2I := (�G
i;1)i2I ;

41 Theorem 2 is given by Lemma 1 with

E :=
�
�k
�
\ CSB1k�1, (�i)i2I = (�

k
i )i2I , and (�

G
i )i2I := (�

G
i;k)i2I . I

am going to show inductively that each E =
�
�l
�
\CSB1l�1 satis�es

the conditions of Lemma 1.

Induction Hypothesis (l = 0; :::; k): Lemma 1 holds for E :=�
�l
�
\ CSB1l�1, (�i)i2I = (�

l
i)i2I , and (�

G
i )i2I = (�

G
i;l)i2I .

Basis step (l = 0):
The event E = [�0]\CSB1�1 = R is closed (see Section 4). Now I

show that it has the completeness property. Fix i 2 I, ti 2ProjTiRi,
si 2 �(fi(ti)), and, for each j 6= i, � j : sj 2ProjSjRj 7! (sj; tj) 2 Rj.
Extend each � j to � 0j : sj 2 Sj 7! (sj; tj) 2 
j in such a way that for
every sj 2ProjSjRj, � 0j(sj) = � j(sj). De�ne �i 2 (�(S�i�T�i))Hi as
�i((�

0
j(sj))j 6=ijh) = fi;h(ti)[s�i] for all h 2 Hi and s�i = (sj)j 6=i 2 S�i

(it is well de�ned because each � 0j is injective). It is easy to verify that

�i is a CPS given that fi(ti) is a CPS. By ontoness of gi, there exists

t0i 2 Ti such that gi(t0i) = �i. Clearly, fi(t0i) = fi(ti), which implies

41Di¤erently than Selective Rationalizability, the generalized procedure used
here does not have a step 0. However, as alredy observed in Section 3, step 0 is
immaterial in presence of S3.
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(si; t
0
i) 2 Ri, and gi;h(t0i) [f� j(sj)g � 
�i;j] = fi;h(ti) [fsjg � S�i;j] for

all h 2 Hi, j 6= i, and sj 2ProjSjRj.
Moreover, fi(ProjTiRi) = �

Hi(S�i) = �
0
i \ �G

i;0. So, the condi-

tions of Lemma 1 are satis�ed.

Inductive step (l):
By assumption,

�
�l
�
is closed, and CSB1l�1 is closed too (see

Section 4). Thus, E =
�
�l
�
\ CSB1l�1 is closed. Now I show that

it has the completeness property. Fix i 2 I, ti 2ProjTiE, si 2
�(fi(ti)), and, for each j 6= i, � j : sj 2ProjSjE 7! (sj; tj) 2Proj
jE.
Extend each � j to � 0j : sj 2ProjSjCSB1l�1 7! (sj; tj) 2Proj
jCSB1l�1
in such a way that for every sj 2ProjSjE, � 0j(sj) = � j(sj). By the
Induction Hypothesis, CSB1l�1 has the completeness property. So,

there exists t0i 2 Ti such that (si; t0i) 2Proj
iCSB1l�1, fi(t0i) = fi(ti)

and for every h 2 Hi, j 6= i, and sj 2ProjSjCSB1l�1, gi;h(t0i)[f� 0j(sj)g�

�i;j] = fi;h(ti) [fsjg � S�i;j]. Thus, for every h 2 Hi, j 6= i, and

sj 2ProjSjE, gi;h(t0i) [f� j(sj)g � 
�i;j] = fi;h(ti) [fsjg � S�i;j]. Since
fi(t

0
i) = fi(ti), f(t

0
i) 2 �l+1

i � �l. Thus, (si; t0i) 2 Proj
iE.
By the Induction Hypothesis, fi(ProjTiCSB

1
l�1) = �

l�1
i \�G

i;l �
�l
i \�G

i;l for all i 2 I. Thus, fi(ProjTiE) = �l
i \�G

i;l.

So, the conditions of Lemma 1 are satis�ed. �
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3

Катонини, Э.
Рационализуемость и порядки эпистемических приоритетов [Электронный ресурс] : пре-

принт WP9/2018/03 / Э. Катонини ; Нац. исслед. ун-т «Высшая школа экономики». – Электрон. 
текст. дан. (500 Кб). – М. : Изд. дом Высшей школы экономики, 2018. – (Серия WP9 
«Исследования по экономике и финансам»). – 64 с. (На англ. яз.)

В начале динамической игры ее участники могут исходить из разных представлений о 
том, как будут вести себя их оппоненты. Если эти представления (или теории) являются 
общим знанием, то игроки могут уточнять свои убеждения первого порядка и, рассуждая 
стратегически, тестировать свои теории о поведении другого участника. В настоящей работе 
я предлагаю и даю эпистемическую характеристику новому свойству равновесий – 
избирательной рационализируемости. Это свойство налагает на убеждения игроков 
следующее условие: если наблюдаемое поведение несовместимо с их убеждениями в 
рациональности оппонентов и с теориями всех порядков относительно их поведения, то 
игроки должны придерживаться убеждений только тех порядков, которые совместимы с 
наблюдаемым поведением, удалив все несовместимые из своих теорий о поведении 
оппонента. Таким образом, избирательная рационализируемость включает в себя общие 
строгие убеждения в рациональности (Battigalli, Siniscalchi, 2002) и усиливает 
рационализируемость в развернутой форме (Pearce, 1984; BS, 2002); это понятие отличается 
от строгой дельта-рационализируемости (Battigalli, 2003; Battigalli, Siniscalchi, 2003) другим 
порядком эпистемических приоритетов. Избирательная рационализируемость может быть 
расширена для учета более общих классов эпистемических приоритетов в различных теориях 
относительно поведения оппонентов, что позволяет установить ее довольно неожиданную 
связь со стратегической стабильностью (Kohlberg, Mertens, 1986).
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«Высшая школа экономики», Москва; emiliano.catonini@gmail.com

Препринты Национального исследовательского университета
«Высшая школа экономики» размещаются по адресу: http://www.hse.ru/org/hse/wp



4

Препринт WP9/2018/03 
Серия WP9 

Исследования по экономике и финансам

Катонини Эмилиано

Рационализуемость и порядки 
эпистемических приоритетов

(на английском языке)

Изд. № 2079  




