
1 23

Transformation Groups
 
ISSN 1083-4362
 
Transformation Groups
DOI 10.1007/s00031-016-9372-y

NEWTON–OKOUNKOV POLYTOPES
OF FLAG VARIETIES

VALENTINA KIRITCHENKO



1 23

Your article is protected by copyright and all

rights are held exclusively by Springer Science

+Business Media New York. This e-offprint is

for personal use only and shall not be self-

archived in electronic repositories. If you wish

to self-archive your article, please use the

accepted manuscript version for posting on

your own website. You may further deposit

the accepted manuscript version in any

repository, provided it is only made publicly

available 12 months after official publication

or later and provided acknowledgement is

given to the original source of publication

and a link is inserted to the published article

on Springer's website. The link must be

accompanied by the following text: "The final

publication is available at link.springer.com”.



Transformation Groups c©Springer Science+Business Media New York (2016)

NEWTON–OKOUNKOV POLYTOPES OF

FLAG VARIETIES

VALENTINA KIRITCHENKO∗

Laboratory of Algebraic Geometry
and Faculty of Mathematics
National Research University
Higher School of Economics

Vavilova st., 7
117312, Moscow, Russia

and

Institute for
Information Transmission Problems

Bol’shoi Karetnyi l., 19–1
127051, Moscow, Russia

vkiritch@hse.ru

Abstract. We compute the Newton–Okounkov bodies of line bundles on the com-
plete flag variety of GLn for a geometric valuation coming from a flag of translated
Schubert subvarieties. The Schubert subvarieties correspond to the terminal subwords
in the decomposition (s1)(s2s1)(s3s2s1)(. . .)(sn−1 · · · s1) of the longest element in the
Weyl group. The resulting Newton–Okounkov bodies coincide with the Feigin–Fourier–
Littelmann–Vinberg polytopes in type A.

1. Introduction

Newton–Okounkov convex bodies generalize Newton polytopes from toric ge-
ometry to a more general algebro-geometric as well as representation-theoretic
setting. In particular, Newton–Okounkov bodies of flag varieties and of Bott–
Samelson resolutions for different valuations have recently attracted much in-
terest due to connections with representation theory and Schubert calculus. The
Newton–Okounkov body can be assigned to a line bundle on an algebraic variety
X [KaKh], [LM]. In contrast with Newton polytopes, Newton–Okounkov bod-
ies depend heavily on a choice of a valuation on the field of rational functions
C(X). In the case of flag varieties, it is especially interesting to consider various
geometric valuations, namely, valuations coming from a complete flag of subva-
rieties pt = Yd ⊂ · · · ⊂ Y1 ⊂ Y0 = X , where d := dimX , since the resulting
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VALENTINA KIRITCHENKO

Newton–Okounkov convex bodies can often be identified with polytopes that arise
in representation theory.

The first explicit computation of Newton–Okounkov polytopes of flag varieties is
due to Okounkov [O]. For a geometric valuation, he identified Newton–Okounkov
polytopes of symplectic flag varieties with symplectic Gelfand–Zetlin polytopes.
Since then several other computations were made for different valuations [An],
[Fu], [FFL14], [HY], [Ka], [Ki14]; see also [An15], [FK], [SchS] for related results.
In the present paper, we use a natural geometric valuation introduced by Anderson
in [An, Sect. 6.4] who computed an example for GL3. In this example, the Newton–
Okounkov polytope was identified with the 3-dimensional Gelfand–Zetlin polytope.

Let X be the complete flag variety for GLn(C). We compute Newton–Okounkov
convex bodies of semiample line bundles on X for the geometric valuation coming
from the flag of translated Schubert subvarieties

w0Xid ⊂ w0w
−1
d−1Xwd−1

⊂ w0w
−1
d−2Xwd−2

⊂ · · · ⊂ w0w
−1
1 Xw1

⊂ X,

where w1, w2,. . . , wd−1 are terminal subwords of the decomposition

(s1)(s2s1)(s3s2s1)(. . .)(sn−1 · · · s1)

of the longest element in Sn (see Section 2.1 for a precise definition). The valu-
ation can be alternatively described as the lowest term valuation associated with
a natural coordinate system on the open Schubert cell in X (see Section 2.2).
The computation is based on simple algebro-geometric and convex-geometric ar-
guments. The only representation-theoretic input is the well-known fact that the
number of integer points in the Gelfand–Zetlin polytope for a dominant weight λ
is equal to the dimension of the irreducible representation of GLn with the highest
weight λ.

Surprisingly, the resulting polytopes for n > 3 are not, in general, combinatori-
ally equivalent to the Gelfand–Zetlin polytopes and coincide instead with Feigin–
Fourier–Littelmann–Vinberg polytopes in type A. The complete list of cases when
Feigin–Fourier–Littelmann–Vinberg polytopes in type A are combinatorially equiv-
alent to the Gelfand–Zetlin polytopes can be found in [Fo]. Though Feigin–Fourier–
Littelmann–Vinberg polytopes can also be defined in type C, an analogous result
for Newton–Okounkov polytopes does not hold already for Sp4(C) (see Section
2.4 for more details). In both types A and C, Feigin–Fourier–Littelmann–Vinberg
polytopes were earlier obtained as Newton–Okounkov bodies for a completely dif-
ferent valuation that does not come from any decomposition of the longest element
(see [FFL14, Examples 8.1, 8.2]). The fact that valuations considered in [FFL14]
and in the present paper yield the same Newton–Okounkov polytopes served as
the starting point for the recent preprint [FaFL15], which gives a conceptual ex-
planation for this coincidence (see [FaFL15, Example 17]).

The paper is organized as follows. In Section 2, we define the valuation, formu-
late the main result, and consider several examples. Section 3 contains the proof
of the main theorem modulo the result on comparison between the Gelfand–Zetlin
and Feigin–Fourier–Littelmann–Vinberg polytopes. The latter result is explained
in Section 4 using purely convex-geometric arguments.

I am grateful to Alexander Esterov, Evgeny Feigin, and Evgeny Smirnov for
useful discussions. I would also like to thank the referee for valuable comments.
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NEWTON–OKOUNKOV POLYTOPES OF FLAG VARIETIES

2. Main result

In this section, we define the valuation on C(X), recall the inequalities defining
Feigin–Fourier–Littelmann–Vinberg polytopes and formulate the main theorem.
We also define a geometrically natural coordinate system on the open Schubert
cell and use it to do the simplest examples by hand. Finally, we discuss the case
of symplectic flag varieties.

2.1. Valuation

Fix the decomposition w0 = (s1)(s2s1)(s3s2s1) . . . (sn−1 · · · s1) of the longest ele-
ment w0 ∈ Sn. Here si := (i, i+1) is the ith elementary transposition. Denote by
d :=

(

n
2

)

the length of w0.
Fix a complete flag of subspaces F • := (F 1 ⊂ F 2 ⊂ · · · ⊂ Fn−1 ⊂ Cn) (this

amounts to fixing a Borel subgroup B ⊂ GLn). In what follows, wk for k = 1, . . . , d
denotes the subword of w0 obtained by deleting the first k simple reflections in w0,
and wk denotes the corresponding element of Sn. Consider the flag of translated
Schubert subvarieties:

w0Xid ⊂ w0w
−1
d−1Xwd−1

⊂ w0w
−1
d−2Xwd−2

⊂ · · · ⊂ w0w
−1
1 Xw1

⊂ GLn/B, (∗)

where Schubert subvarieties are taken with respect to the flag F •, i.e., Xw =
BwB/B (cf. [An, Sect. 6.4] and [Ka, Rem. 2.3]). Let y1, . . . , yd be coordinates on
the open Schubert cell C (with respect to F •) that are compatible with (∗), i.e.,
w0w

−1
k Xwk

∩ C = {y1 = · · · = yk = 0}. A possible choice of such coordinates is
described in Section 2.2.

Fix the lexicographic ordering on monomials in coordinates y1, . . . , yd, i.e.,
yk1

1 · · · ykd � yl1 · · · yld iff there exists j ≤ d such that ki = li for i < j and kj > lj .
Let v denote the lowest order term valuation on C(Xw0

) = C(GLn/B) associated
with these coordinates and ordering. Let Lλ be the line bundle on GLn/B corre-
sponding to a dominant weight λ := (λ1, . . . , λn) ∈ Z

n of GLn (dominant means
that λ1 ≥ λ2 ≥ . . . ≥ λn). Recall that the bundle Lλ is semiample iff λ is domi-
nant and very ample iff λ is strictly dominant, i.e., λ1 > λ2 > . . . > λn. Denote
by ∆v(GLn/B,Lλ) ⊂ Rd the Newton–Okounkov convex body corresponding to
GLn/B, Lλ and v (see [KaKh], [LM] for a definition of Newton–Okounkov convex
bodies).

Theorem 2.1. The Newton–Okounkov convex body ∆v(GLn/B,Lλ) coincides with
the Feigin–Fourier–Littelmann–Vinberg polytope FFLV(λ).

We now recall the definition of FFLV(λ). Label coordinates in Rd corresponding
to (y1, . . . , yd) by (u1

n−1;u
2
n−2, u

1
n−2; . . . ;u

n−1
1 , un−2

1 , . . . , u1
1). Arrange the coordi-

nates into the table

λ1 λ2 λ3 . . . λn

u1
1 u1

2 . . . u1
n−1

u2
1 . . . u2

n−2

. . .
. . .

un−2
1 un−2

2

un−1
1

(FFLV)
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The polytope FFLV(λ) is defined by inequalities ul
m ≥ 0 and

∑

(l,m)∈D

ul
m ≤ λi − λj

for all Dyck paths going from λi to λj in table (FFLV) where 1 ≤ i < j ≤ n (see
[FFL] for more details).

Example 2.2. (a) For n = 3, there are six inequalities:

0 ≤ u1
1 ≤ λ1 − λ2; 0 ≤ u1

2 ≤ λ2 − λ3; 0 ≤ u2
1; u1

1 + u2
1 + u1

2 ≤ λ1 − λ3.

In this case, there is a unimodular change of coordinates that maps FFLV(λ) to
the Gelfand–Zetlin polytope GZ(λ) (see Section 4 for a definition of GZ(λ)).

(b) For n = 4, there are 13 inequalities:

0 ≤ u1
1 ≤ λ1 − λ2; 0 ≤ u1

2 ≤ λ2 − λ3; 0 ≤ u1
3 ≤ λ3 − λ4; 0 ≤ u2

1, u2
2, u3

1;

u1
1 + u2

1 + u1
2 ≤ λ1 − λ3; u1

2 + u2
2 + u1

3 ≤ λ2 − λ4;

u1
1 + u2

1 + u1
2 + u2

2 + u1
3 ≤ λ1 − λ4; u1

1 + u2
1 + u3

1 + u2
2 + u1

3 ≤ λ1 − λ4.

In this case, FFLV(λ) and GZ(λ) are combinatorially different whenever λ is strict-
ly dominant because they have different numbers of facets (cf. [Fo, Prop. 2.1.1]).

2.2. Coordinates

We now introduce coordinates on the open Schubert cell in GLn/B that are com-
patible with the flag (∗). These coordinates seem to be natural from a geometric
viewpoint and will be used to compute by hand some examples in the end of this
section. However, they are not needed for the proof of the main result.

To motivate the definition consider first the Bott–Samelson variety Xw0
. Its

points are collections of d subspaces {V i
j ⊂ Cn | i + j ≤ n, i, j > 0} such that

dimV i
j = i, and V i

j , V
i
j+1 ⊂ V i+1

j where we put V i+1
n−i := F i+1. Incidence relations

between subspaces V i
j can be organized into the following table (similar to the

Gelfand–Zetlin table).

V 1
1 V 1

2 . . . V 1
n−1 F 1

V 2
1 . . . V 2

n−2 F 2

. . .
. . . · · ·

V n−2
1 V n−2

2 Fn−2

V n−1
1 Fn−1

where the notation
U V

W

means U, V ⊂ W .
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Collections of spaces (V i
j ⊂ Cn | i + j ≤ n, i, j ≥ 1) appear naturally when

we start from the fixed flag F • and apply d one-parameter deformations to get
the moving flag M• := (V 1

1 ⊂ V 2
1 ⊂ · · · ⊂ V n−1

1 ⊂ Cn). The deformations are
encoded by the word w0 as follows. The elementary transposition si corresponds
to P1-family of complete flags that differ only in the ith subspace. To go from F •

to M• we first move F 1 inside F 2 and get the flag (V 1
n−1 ⊂ F 2 ⊂ · · · ⊂ Fn−1);

second, we move F 2 inside F 3 and get (V 1
n−1 ⊂ V 2

n−2 ⊂ F 3 ⊂ · · · ⊂ Fn−1); third,
we move V 1

n−1 inside V 2
n−2 to get V 1

n−2; and so on.

Example 2.3. Let n = 4. Below is the sequence of intermediate flags between
F • and M•:

F • s1→ (V 1
3 ⊂ F 2 ⊂ F 3)

s2→ (V 1
3 ⊂ V 2

2 ⊂ F 3)
s1→ (V 1

2 ⊂ V 2
2 ⊂ F 3)

s3→ (V 1
2 ⊂ V 2

2 ⊂ V 3
1 )

s2→ (V 1
2 ⊂ V 2

1 ⊂ V 3
1 )

s1→ M•.

Remark 2.4. The word w0 is the same (after switching si and sn−i) as the word
used in [V, 2.2] to encode the path from the fixed flag to the moving flag in order to
establish a geometric Littlewood–Richardson rule for Grassmannians. According
to [V, 3.12] not every reduced decomposition of w0 can be used for this purpose,
which is another manifestation of the special properties of w0.

Note that if F • and M• are in general position (that is, M• lies in the open
Schubert cell C with respect to F •), then all subspaces V i

j are uniquely defined by

M•, namely, V i
j = Fn−j+1 ∩M i+j−1. In particular, the natural projection

πw0
: Xw0

→ GLn/B; πw0
: (V i

j ) 7→ M•

is one-to-one over C. Fix a basis e1,. . . , en in Cn compatible with F •, i.e., F i =
〈e1, . . . , ei〉 (fixing such a basis is equivalent to fixing a maximal torus T ⊂ B, and
hence, an action of the Weyl group on flags). Using the word w0 we now introduce

natural coordinates (x1
n−1;x

2
n−2, x

1
n−2; . . . ;x

n−1
1 , xn−2

1 , . . . , x1
1) on C ' π−1

w0
(C).

The origin in this coordinate system is the flag w0F
• := (w0F

1 ⊂ w0F
2 ⊂ · · · ⊂

w0F
n−1). The coordinate xi

j determines the position of V i
j inside the P1-family

of dimension i subspaces V i
j (x

i
j) such that V i−1

j+1 ⊂ V i
j (x

i
j) ⊂ V i+1

j . To define the

coordinate xi
j on P1 uniquely up to a constant factor it is enough to choose V i

j (0)

and V i
j (∞). The following choice seems to be the most natural:

Since M• and F • are in general position, that is, dim(F n−j ∩ M i+j) = i, we
have inclusions of pairwise distinct subspaces:

V i−1
j+1 = Fn−j ∩M i+j−1

V i
j = Fn−j+1 ∩M i+j−1 6= V i

j+1 = Fn−j ∩M i+j

V i+1
j = Fn−j+1 ∩M i+j

Put V i
j (∞) := V i

j+1 and V i
j (0) := 〈Fn−i−j , en−j+1〉 ∩ M i+j + V i−1

j+1 . Note that

〈Fn−i−j , en−j+1〉 ∩ M i+j is the line spanned by a vector en−j+1 + v for some
v ∈ Fn−i−j since Fn−i−j ∩ M i+j = {0}. It follows that dimV i

j (0) = i, and

V i
j (0) 6= V i

j (∞) because en−j+1 /∈ Fn−j . By construction, V i−1
j+1 ⊂ V i

j (0) ⊂ V i+1
j .

Note also that V i
j lies in A1 = P1 \ {V i

j (∞)} when M• and F • are in general
position.

Author's personal copy
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Remark 2.5. It is not hard to check that coordinates

(y1, . . . , yd) := (x1
n−1;x

2
n−2, x

1
n−2; . . . ;x

n−1
1 , xn−2

1 , . . . , x1
1)

are compatible with the flag (∗) of Schubert subvarieties.

Example 2.6. Let n = 3. Then

V 1
1 = 〈(x1

1x
1
2 − x2

1)e1 + x1
1e2 + e3〉; V 1

2 = 〈x1
2e1 + e2〉;

V 2
1 = 〈x1

2e1 + e2,−x2
1e1 + e3〉.

Figure 1 depicts projectivizations in P2 of various subspaces involved in this ex-
ample.

PHF1L PHF2L PHV2
1L PHV2

1H0LL

PHV1
1H0LL PHV1

2H0LL
PHM 1L

PHM 2L
PH<e3>L

Figure 1. Coordinates on flags for n = 3

2.3. Examples

Theorem 2.1 will be proved in the next section. Here we verify it by hand in three
simplest examples.

Example 2.7 (cf. [An, Sect. 6.4]). Let n = 3, and λ = (2, 1, 0). The flag vari-
ety GL3/B can be regarded as a hypersurface in P

2 × P
2∗ under the embedding

(V 1
1 , V

2
1 ) 7→ V 1

1 × V 2
1 . The line bundle Lλ on GL3/B is the pullback of the dual

tautological line bundle O(1) on P8 under the embedding:

pλ : GL3/B ↪→ P
2 × P

2∗ Segre
−−−→ P

8.

Using Example 2.6 we get that in coordinates (y1, y2, y3) = (x1
2, x

2
1, x

1
1) the map

pλ takes the form

pλ : (y1, y2, y3) 7→





y1y3 − y2
y3
1



×
(

y2 y1 1
)

.

Hence, H0(GL3/B,Lλ) has the basis 1, y1, y2, y3, y1y3, y2y3, y1y2y3 − y22, y
2
1y3 −

y1y2. Applying the valuation v we get 8 integer points (0, 0, 0), (1, 0, 0), (0, 1, 0),
(0, 0, 1), (1, 0, 1), (0, 1, 1), (0, 2, 0), (1, 1, 0), whose convex hull in R3 is given exactly
by the inequalities of Example 2.2(a).
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Example 2.8. Let n = 4, and λ = (1, 1, 0, 0). The line bundle Lλ on GL4/B
is the pullback of the dual tautological line bundle O(1) on P5 under the natural
projection GL4/B → G(2, 4) composed with the Plücker embedding G(2, 4) ↪→ P5

of the Grassmannian. Using Example 2.3 we get that in coordinates (y1, . . . , y6)
the plane V 2

1 is spanned by the vectors (y4y6+ y5, y4, 1, 0) and (y2y6 + y3, y2, 0, 1).
Hence, the map pλ has the form

pλ : (y1, . . . , y6) 7→ (y2y5 − y3y4 : −(y2y6 + y3) : y4y6 + y5 : −y2 : y4 : 1).

The valuation v takes the sections of H0(GL4/B,Lλ) to 6 integer points in the
4-space {u1

1 = u1
3 = 0}. In coordinates (u2

1, u
3
1, u

1
2, u

2
2), these points are (0, 1, 1, 0),

(0, 1, 0, 0), (0, 0, 0, 1), (1, 0, 0, 0), (0, 0, 1, 0), (0, 0, 0, 0). Their convex hull in R4 is
given exactly by the inequalities of Example 2.2(b).

Example 2.9. The previous example can be extended to G(3, 6), that is, n = 6
and λ = (1, 1, 1, 0, 0, 0). This is the minimal example when FFLV(λ) and GZ(λ)
are not combinatorially equivalent (cf. [Fo, Prop. 2.1.1]). When computing V 3

1 in
coordinates (y1, . . . , y15), one can immediately ignore all monomials that contain
y15, y14, y13, since they never appear as the lowest order terms. The same holds
for y3, y2, y1. If y15 = y14 = y13 = 0, then pλ takes the following simple form:

pλ : (y4, . . . , y12) 7→ 3× 3 minors of





y10 y11 y12 1 0 0
y7 y8 y9 0 1 0
y4 y5 y6 0 0 1



 .

Hence, we have to compute the lowest order terms of all minors of the 3×3 matrix
formed by the first three columns. After rotating this matrix as follows:

y10
y7 y11

y4 y8 y12
y5 y9

y6

it is easy to see that the lowest order monomials in the minors are in bijective
correspondence with those collections of ui

j (where 3 ≤ i+ j ≤ 6, j ≤ 3) in table
(FFLV) that cannot occur in the same Dyck path. By definition, FFLV(λ) contains
an integer point with ui

j = 1 and ul
m = 1 iff no Dyck path passes through both ui

j

and ul
m. Hence, the valuation v maps bijectively the minors to the integer points

in FFLV(λ).

Remark 2.10. The arguments of Example 2.9 allow one to identify the Newton–
Okounkov convex body ∆v(GLn/B,Lωi

) with FFLV(ωi) for any fundamental
weight ωi of GLn. This might lead to an alternative proof of Theorem 2.1 if one
uses that ∆v(GLn/B,Lλ) for λ = k1ω1 + · · ·+ kn−1ωn−1 contains the Minkowski
sum

k1∆v(GLn/B,Lω1
) + · · ·+ kn−1∆v(GLn/B,Lωn−1

).
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2.4. Symplectic case

A statement analogous to Theorem 2.1 does not hold in type C already in the case
of Sp4. We now discuss this case in more detail. For the rest of this section, X de-
notes the complete flag variety for Sp4. The flag of translated Schubert subvarieties
analogous to (∗) has the form

s1s2s1s2Xid ⊂ s1s2s1Xs2 ⊂ s1s2Xs1s2 ⊂ s1Xs2s1s2 ⊂ X,

where s1, s2 are simple reflections. The resulting Newton–Okounkov polytopes
were computed in [Ki14, Prop. 4.1]. Regardless of whether s1 corresponds to the
shorter or the longer root, these polytopes have 11 vertices (for a strictly domi-
nant weight) while Feigin–Fourier–Littelmann–Vinberg polytopes (as well as string
polytopes) for Sp4 have 12 vertices. In particular, the former are not combinato-
rially equivalent to the latter.

Note that the string polytopes for the decomposition

w0 = (s1)(s2s1s2)(. . .)(snsn−1 · · · s2s1s2 · · · sn−1sn), (Sp)

where s1 corresponds to the longer root, coincides (after a unimodular change of
coordinates) with the symplectic Gelfand–Zetlin polytopes by [L, Cor. 6.3]. The
latter were exhibited in [O] as the Newton–Okounkov bodies of the symplectic flag
variety Sp2n/B for the lowest term valuation associated with the B-invariant flag
of (not translated) Schubert subvarieties corresponding to the initial subwords of
w0:

Xid ⊂ Xw0w
−1

1

⊂ · · · ⊂ Xw0w
−1

d−1

⊂ Sp2n/B,

where d = n2 = dimSp2n/B.
Finally, note that string polytopes for any connected reductive group G and any

reduced decomposition w0 were obtained in [Ka] as the Newton–Okounkov bodies
of the complete flag variety G/B for the highest term valuation associated with
the B-invariant flag of Schubert subvarieties:

Xid ⊂ Xwd−1
⊂ · · · ⊂ Xw1

⊂ G/B.

Here d denotes the dimension of G/B (and the length of w0). Note that for
G = GLn and w0 as in Section 2.1, the string polytope coincides with the Gelfand–
Zetlin polytope in type A by [L, Cor. 5.2]. While the highest term valuation comes
naturally when dealing with crystal bases and string polytopes, the lowest term
valuation is more natural from a geometric viewpoint since it can be interpreted
using the order of the pole of a rational function along a hypersurface.

3. Proof of Theorem 2.1

We first formulate and prove simple general results about Newton–Okounkov
bodies and recall classical facts about divisors on Schubert varieties. Then we
prove Theorem 2.1.
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3.1. Preliminaries

We will need the following two simple lemmas on Newton–Okounkov convex bodies.

Lemma 3.1. Let X be a variety, L a line bundle on X, and v a valuation on
C(X). If D is an effective divisor on X, then

∆v(X,L) ⊂ ∆v(X,L⊗O(D)).

Proof. Since D is effective, 1 ∈ H0(X,O(D)). The lemma follows directly from the
definition of Newton–Okounkov bodies, since for any l ∈ N we have the inclusion
i : H0(X,L⊗l) ⊂ H0(X, (L⊗O(D))⊗l) given by i(s) = s⊗ 1. �

The lemma below is a partial case of [LM, Thm. 4.24]. We provide a short proof
for the reader’s convenience.

Lemma 3.2. Let X ⊂ PN be a projective variety of dimension d, and Y• =
({x0} = Yd ⊂ · · · ⊂ Y1 ⊂ Y0 = X) a complete flag of subvarieties at a smooth
point x0 ∈ X. Consider a valuation v on C(X) associated with the flag Y•, and
the corresponding coordinates a1, . . . , ad on Rd. Let v1 be the restriction of the val-
uation v to C(Y1). Denote by L the restriction of the dual tautological bundle
OPN (1) to X. Then we have

∆v1(Y1, L|Y1
) = ∆v(X,L) ∩ {a1 = 0}.

Proof. It is well known that the natural restriction map

H0(PN ,OPN (l)) → H0(X,L⊗l)

is surjective for sufficiently large l. Similarly, the map

H0(PN ,OPN (l)) → H0(Y1, L
⊗l|Y1

)

is surjective. Hence, the map H0(X,L⊗l) → H0(Y1, L
⊗l|Y1

) is surjective, and
∆v1(Y1, L|Y1

) ⊂ ∆v(X,L). For a section s ∈ H0(X,L⊗l), denote by s̄ its restriction
to Y1. Then s̄ 6= 0 iff v(s) ∈ {a1 = 0}. Hence, ∆v1(Y1, L|Y1

) = ∆v(X,L)∩{a1 = 0}
as desired. �

We will also use the classical Chevalley formula [B, Prop. 1.4.3] and the descrip-
tion of Cartier divisors on Schubert varieties [B, Prop. 2.2.8]. When applied to Xw

from (∗) and Lλ these propositions immediately yield the following:

Lemma 3.3. Let w = (si . . . s1)(sn−j+1 · · · s1) . . . (sn−1 · · · s1) where i + j ≤ n.
Then the Picard group of Xw is spanned by the classes of Xws where s runs through
transpositions s1, s2, . . . , sj−1; (j, j+1), (j, j+2), . . . , (j, i+j) and (j−1, i+j+1),
(j − 1, i+ j + 2), . . . , (j − 1, n). In particular,

Lλ|Xw
=

j−1
⊗

l=1

O(Xwsl)
λl−λl+1 ⊗

i
⊗

l=1

O(Xw(j l+j))
λj−λl+j

⊗

n
⊗

l=i+j+1

O(Xw(j−1 l))
λj−1−λl .
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Remark 3.4. Lemma 3.3 implies the following important property of the decom-
position w0. For every k ≤ d, the Schubert subvariety Xwk

is a Cartier divisor on
Xwk−1

. This property is used in the proof below. It would be interesting to find
decompositions with this property for other reductive groups (decomposition (Sp)
for Spn does not have this property).

Moreover, it is easy to check that all Xwk
are smooth by [M, Thm. 3.7.5] but

this is not used in the proof.

3.2. Proof of Theorem 2.1

We will prove by induction the following more general statement. Put Yk :=
w0w

−1
k Xwk

, and let vk be the restriction of the valuation v to the field C(Yk) '
C(yk+1, . . . , yd) (see Remark 2.5). We will also use an alternative labeling of coordi-
nates in Rd, namely, (a1, a2, . . . , ad) = (u1

n−1;u
2
n−2, u

1
n−2; . . . ;u

n−1
1 , un−2

1 , . . . , u1
1).

Let Fk(λ) be the face of FFLV(λ) given by equations ul
m = 0 for all pairs (l,m)

such that either m > j, or m = j and l ≥ i. Here k and (i, j) are related via the
above identification of coordinates ak and ui

j , i.e., ak = ui
j .

Theorem 3.5. The Newton–Okounkov convex body ∆vk (Yk , Lλ|Yk
) coincides with

the face Fk(λ).

In particular, this theorem reduces to Theorem 2.1 when k = 0 (we put F0(λ) =
FFLV(λ)). The main idea of the proof is to identify the slices of the Newton–
Okounkov convex body ∆vk−1

(Yk−1, Lλ|Yk−1
) by hyperplanes {ak = const} with

Fk(µ) for suitable µ. We will need a convex-geometric lemma for slices of Fk−1(λ)
and a similar algebro-geometric lemma for ∆vk−1

(Yk−1, Lλ|Yk−1
).

Lemma 3.6. There exists a path of dominant weights µ(t) such that

(t− λi+j)ek + Fk(µ(t)) = Fk−1(λ) ∩ {ak = t− λi+j}

for all t ∈ [λi+j , λj ]. Here ek denotes the kth basis vector in Rd. In particular,

Fk−1(λ) = conv{(t− λi+j)ek + Fk(µ(t)) | λi+j ≤ t ≤ λj}.

Proof. Define µ(t) = (µ1(t), . . . , µn(t)) as follows:

µl(t) =

{

max{λl, t} if j < l ≤ i+ j,
λl otherwise.

In particular, λ = µ(λi+j), and every µl(t) is a piecewise linear concave function of
t. The lemma now follows immediately from the definitions of Fk(λ) and FFLV(λ).
�

In particular, Fk−1(λ) fibers over the segment [0, λj −λi+j ], and the fiber poly-
tope is analogous to Fk(λ) for strictly dominant λ.

Lemma 3.7. Take µ(t) as in the proof of Lemma 3.6. Then

(t− λi+j)ek +∆vk (Yk , Lµ(t)|Yk
) ⊂ ∆vk−1

(Yk−1, Lλ|Yk−1
) ∩ {ak = t− λi+j}

for all integer t ∈ [λi+j , λj ]. In particular,

conv{(t−λi+j)ek+∆vk (Yk, Lµ(t)|Yk
) | λi+j ≤ t≤λj , t∈Z}⊂∆vk−1

(Yk−1, Lλ|Yk−1
).
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Proof. By definition, Yk and Yk−1 are translates of the Schubert varieties Xwk
and

Xwk−1
, respectively, where wk = (si−1 · · · s1)(sn−j+1 · · · s1) . . . (sn−1 · · · s1) and

wk−1 = siwk. Put τ = t− λi+j . It is easy to check using Lemma 3.3 that

Lλ|Yk−1
⊗O(−τYk) = Lµ(t)|Yk−1

⊗O(τ(siYk − Yk))⊗E(τ)

for an effective Cartier divisor E(τ) on Yk−1. Indeed, E(τ) = L(λ−µ(t))|Yk−1
⊗

O(−τsiYk) is a translate of the following divisor on Xwk−1
:

i−1
⊗

l=1

O(Xw(j l+j))
max{0,t−λl+j}.

Note that ∆vk−1
(Yk−1, Lµ(t)|Yk−1

⊗O(τ(siYk−Yk)))=τek+∆vk−1
(Yk−1, Lµ(t)|Yk−1

)
since siYk − Yk is the divisor of the rational function yk. Applying Lemma 3.1 to
Yk−1, Lµ(t)|Yk−1

⊗O(τ(siYk − Yk)) and E(τ) we get

τek +∆vk−1
(Yk−1, Lµ(t)|Yk−1

) ⊂ ∆vk−1
(Yk−1, Lλ|Yk−1

⊗O(−τYk)).

Intersecting both sides with the hyperplane {ak = τ} yields

τek+∆vk−1
(Yk−1, Lµ(t)|Yk−1

)∩{ak=0}⊂∆vk−1
(Yk−1, Lλ|Yk−1

⊗O(−τYk))∩{ak=τ}.

Since Lµ(t) is semiample we can apply Lemma 3.2 and get that

∆vk (Yk , Lµ(t)|Yk
) = ∆vk−1

(Yk−1, Lµ(t)|Yk−1
) ∩ {ak = 0}.

It follows that

τek +∆vk (Yk, Lµ(t)|Yk
) ⊂ ∆vk−1

(Yk−1, Lλ|Yk−1
⊗O(−τYk)) ∩ {ak = τ}.

It remains to note that ∆vk−1
(Yk−1, Lλ|Yk−1

⊗O(−τYk)) ⊂ ∆vk−1
(Yk−1, Lλ|Yk−1

)
by Lemma 3.1. �

We are now ready to prove Theorem 3.5.

Proof of Theorem 3.5. Let us first prove that Fk(λ) ⊂ ∆vk (Yk, Lλ|Yk
) for all dom-

inant λ by backward induction on k. For k = d, we have that both convex bodies
coincide with the origin in Rd. Suppose the inclusion holds for k. We now prove
it for k − 1. By Lemma 3.6,

Fk−1(λ) = conv{(t− λi+j)ek + Fk(µ(t)) | λi+j ≤ t ≤ λj}.

Moreover, when taking the convex hull it is enough to consider only integer values
of t, since µ(t) is linear at all non-integer points. Using the induction hypothesis
Fk(µ(t)) ⊂ ∆vk (Yk, Lµ(t)|Yk

) we get that

Fk−1(λ) ⊂ conv{(t− λi+j)ek +∆vk (Yk , Lµ(t)|Yk
) | λi+j ≤ t ≤ λj , t ∈ Z}.

Hence Fk−1(λ) ⊂ ∆vk−1
(Yk−1, Lλ|Yk−1

) by Lemma 3.7.
Finally, for k = 0 we get F0(λ) ⊂ ∆v(GLn/B,Lλ). Since both convex bodies

have the same volume they must coincide. Here we use that by Theorem 4.3
the volume of F0(λ) = FFLV(λ) coincides with the volume of the Gelfand–Zetlin
polytope GZ(λ). Hence, inclusions Fk(λ) ⊂ ∆vk (Yk, Lλ|Yk

) are equalities for all k.
�
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Remark 3.8. Results of Section 4 (see Theorem 4.3 and Remark 4.1) imply that the
number of integer points in Fk(λ) (and hence, in the Newton–Okounkov polytope
∆vk (Yk, Lλ|Yk

)) is equal to the dimension of the Demazure module H0(Yk, Lλ|Yk
)

for all k = 0, . . . , d and dominant λ.

To illustrate the proof of Theorem 3.5, consider the simplest meaningful exam-
ple.

Example 3.9. Let k = d − 1, i.e., wk = s1 and wk−1 = s2s1. Then Yk−1 = P̂2

is the blow-up of P2 at one point, and Yk = P1 is embedded into Yk−1 as one of
the fibers of the P1-bundle P̂2 → P1. The Picard group of P̂2 is spanned by O(Yk)

and O(E) where E ⊂ P̂
2 is the exceptional divisor. Note that O(E)a ⊗O(Yk)

b is
semiample iff 0 ≤ a ≤ b. We have

Lλ|Yk−1
= O(E)λ1−λ2 ⊗O(Yk)

λ1−λ3 .

Hence, the line bundle Lλ|Yk−1
⊗O(−(t− λ3)Yk)) is no longer semiample if λ2 <

t ≤ λ1. However, it has the same global sections (modulo multiplication by yt−λ3

k )
as the semiample bundle Lµ(t) = O(E)λ1−t⊗O(Yk)

λ1−t. Hence, Lµ(t) can be used
instead of Lλ|Yk−1

⊗O(−(t−λ3)Yk)) when computing ∆vk−1
(Lλ|Yk−1

, Yk−1). Figure
2 on the next page shows the Newton–Okounkov polygons of Lλ|Yk−1

(trapezoid)
and Lµ(t)|Yk−1

(triangle), which are just Newton polygons since Yk−1 is toric.

ad-1

ad

Figure 2. Newton polygons of Lλ|Yd−2
and Lµ(t)|Yd−2

for d = 3, λ = (3, 1, 0), and
t = 2

4. Comparison of Gelfand–Zetlin polytopes and
Feigin–Fourier–Littelmann–Vinberg polytopes

We start with an elementary construction of polytopes fibered over a segment.
Then we apply this construction to get the Gelfand–Zetlin and Feigin–Fourier–
Littelmann–Vinberg polytopes in a uniform way.
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4.1. Construction with fiber polytope

Let P ⊂ Rl be a convex polytope. The set of linear functionals, whose restrictions
to P attain their maximal values at a face F ⊂ P , form a cone CF ; the normal fan
of P is defined as the set of cones CF corresponding to all faces F ⊆ Q. We say
that a polytope Q ⊂ Rl is subordinate to P if the normal fan of P is a subdivision
of the normal fan of Q. Note that the set of all polytopes subordinate to P forms
a semigroup under the Minkowski sum. Denote this semigroup by SP .

Let µ(t) be a piecewise-linear continuous function from a segment I ⊂ R to SP .
We say that µ(t) is convex if

µ(t1) + µ(t2)

2
⊂ µ

(

t1 + t2
2

)

for all t1, t2 ∈ I . In other words, the set

Pµ :=
⋃

t∈I

µ(t)× {t} ⊂ R
l × R = R

l+1

is a convex polytope. In this case, Pµ fibers over I and the fiber polytope is
subordinate to P .

Suppose now that µ′(t) is a convex function from I to SQ for a convex polytope
Q ⊂ Rl. If the polytopes µ(t) and µ′(t) have the same Ehrhart polynomials for all
t ∈ I then obviously so do Pµ and Pµ′ . The simplest example is when P = Q and
µ′(t) is a parallel translate of µ(t). In this case, Pµ and Pµ′ also have the same
fiber polytope but might be combinatorially different even for quite simple µ(t)
and µ′(t) (see Example 4.4).

4.2. GZ(λ) vs FFLV(λ)

We now show that both GZ(λ) and FFLV(λ) can be obtained inductively from
a point using the above construction. Recall that the Gelfand–Zetlin polytope
GZ(λ) ⊂ Rd is defined by the following inequalities

λ1 λ2 λ3 . . . λn

z11 z12 . . . z1n−1

z21 . . . z2n−2

. . .
. . .

zn−2
1 zn−2

2

zn−1
1

where the notation
a b

c

means a ≥ c ≥ b. Let Gk(λ) be the face of the Gelfand–Zetlin polytope GZ(λ)
given by the equations zlm = zl−1

m+1 for all pairs (l,m) such that either m > j, or
m = j and l ≥ i (we put z0m = λm).
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Remark 4.1. In [Ki, Thm. 3.4], there is an inductive construction of the Gelfand–
Zetlin polytope via convex geometric Demazure operators. The flag of faces

Gd(λ) ⊂ Gd−1(λ) ⊂ Gd−2(λ) ⊂ · · · ⊂ G1(λ) ⊂ GZ(λ) =: G0(λ).

is exactly the flag used in this construction. In particular, by [Ki, Cor. 4.5] the
number of integer points in Gk is equal to the dimension of the Demazure module
H0(Yk, Lλ|Yk

) for all k = 0, . . . , d and dominant λ.

Lemma 4.2. Take µ(t) as in the proof of Lemma 3.7. There exists a path z(t) ∈
Rd such that

Gk−1(λ) ∩ {zij = t} = z(t) +Gk(µ(t))

for all integer t ∈ [λi+j , λj ]. In particular,

Gk−1(λ) = conv{z(t) +Gk(µ(t)) | λi+j ≤ t ≤ λj}.

Proof. Define the coordinates zlm(t) of z(t) ∈ Rd as follows:

zlm(t) =



























(t− λi+j) if m > j, l +m = i+ j, λi+j ≤ t,
(t− λi+j−1) if m > j, l +m = i+ j − 1, λi+j−1 ≤ t,
...

...
(t− λj+2) if m > j, l +m = j + 2, λj+2 ≤ t,
0 otherwise.

In particular, z(t) = 0 if i = 1. The statement of the lemma now follows by direct
calculation from the definition of GZ(λ) and Gk(λ). �

Lemmas 3.6 and 4.2 together with the backward induction on k immediately
yield an elementary proof of the following theorem.

Theorem 4.3. Polytopes Fk(λ) and Gk(λ) have the same Ehrhart polynomial for
all k = 0,. . . , d. In particular, Gelfand–Zetlin polytope GZ(λ) and Feigin–Fourier–
Littelmann–Vinberg polytope FFLV(λ) have the same Ehrhart polynomial.

The last statement of the theorem also follows from [FFL]. The first elementary
proof of this statement was given in [ABS] using a different approach.

Lemmas 3.6 and 4.2 imply that both FFLV(λ) and GZ(λ) can be obtained
inductively from a point by iterating the construction of Section 4.1. Note that
both Fk−1(λ) and Gk−1(λ) fiber over a segment of length λj −λi+j , and fibers are
equal (up to a parallel translation) to Fk(µ(t)) and Gk(µ(t)), respectively, for the
same piecewise linear function µ(t) on the segment. The only difference between
these two cases is the presence of the shift vector z(t) in the second case.

Example 4.4. cf. [Fo] For n = 3, k = 0, . . . , 3, and n = 4, k = 2, . . . , 6, there
exists a unimodular change of coordinates that maps Fk to Gk. Let n = 4, and
k = 1. Then Fk provides the minimal example when Fk is not combinatorially
equivalent to Gk.
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We now illustrate how to obtain the inequalities defining F1 from those of F2

using Lemma 3.6 or equivalently the construction of Section 4.1 (and not the
definition of F1). For k = 2, we have i = j = 2, and

µ(t) =

{

(λ1, λ2, λ3, t) if λ4 ≤ t ≤ λ3,
(λ1, λ2, t, t) if λ3 ≤ t ≤ λ2.

By Example 2.2 the inequalities defining F2 are

0 ≤ u1
1 ≤ λ1 − λ2; 0 ≤ u1

2 ≤ λ2 − λ3; 0 ≤ u2
1, u3

1;

u1
1 + u2

1 + u1
2 ≤ λ1 − λ3; u1

1 + u2
1 + u3

1 ≤ λ1 − λ4.

Put u2
2 := t− λ4. Using the last statement of Lemma 3.6 as a definition of F1, we

get that F1 is defined by inequalities:

0 ≤ u1
1 ≤ λ1 − λ2; 0 ≤ u1

2 ≤ λ2 − µ3(u
2
2 + λ4); 0 ≤ u2

1, u3
1;

u1
1 + u2

1 + u1
2 ≤ λ1 − µ3(u

2
2 + λ4); u1

1 + u2
1 + u3

1 ≤ λ1 − (u2
2 + λ4);

0 ≤ u2
2 ≤ λ2 − λ4.

Using that µ3(t) = max{λ3, t} and eliminating redundant inequalities we get:

0 ≤ u1
1 ≤ λ1 − λ2; 0 ≤ u1

2 ≤ λ2 − λ3; u1
2 + u2

2 ≤ λ2 − λ4; 0 ≤ u2
1, u3

1, u2
2;

u1
1 + u2

1 + u1
2 ≤ λ1 − λ3; u1

1 + u2
1 + u1

2 + u2
2 ≤ λ1 − λ4;

u1
1 + u2

1 + u3
1 + u2

2 ≤ λ1 − λ4.

Similarly, one can restore G1 from G2 and check that there are only 10 inequalities
for G1.
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