
Simulation Modelling Practice and Theory 74 (2017) 1–16

Contents lists available at ScienceDirect

Simulation Modelling Practice and Theory

journal homepage: www.elsevier.com/locate/simpat

Generating event logs for high-level process models

�

Alexey A. Mitsyuk

a , Ivan S. Shugurov

a , Anna A. Kalenkova

a , ∗, Wil M.P. van der
Aalst b , a

a National Research University Higher School of Economics, Laboratory of Process-Aware Information Systems, Moscow, 1010 0 0, Russia
b Eindhoven University of Technology, Department of Mathematics and Computer Science, PO Box 513, NL-5600 MB Eindhoven, The

Netherlands

a r t i c l e i n f o

Article history:

Received 20 May 2016

Revised 22 January 2017

Accepted 24 January 2017

Keywords:

Event log generation

Business process simulation

BPMN (Business process model and

notation)

Process mining

a b s t r a c t

Business Process Model and Notation (BPMN) is a de-facto standard for practitioners work-

ing in the Business Process Management (BPM) field. The BPMN standard [1] offers high-

level modeling constructs, such as subprocesses, events, data and message flows, lanes,

and is widely used to model processes in various domains. Recently several BPMN-based

process mining techniques [2, 3, 4] were introduced. These techniques allow represent-

ing processes, discovered from the event logs of process-aware information systems, in a

convenient way, using the BPMN standard. To test these mining approaches an appropri-

ate tool for the generation of event logs from BPMN models is needed. In this work we

suggest such a tool. We propose a formal token-based executable BPMN semantics, which

takes into account BPMN 2.0 with its expressive constructs. The developed tool is based

on these semantics and allows simulation of hierarchical process models (including mod-

els with cancellations), models with data flows and pools, and models interacting through

message flows. To manage the control flow, script-based gateways and choice preferences

are implemented as well. The proposed simulation technique was implemented on top of

existing plug-ins for ProM (Process Mining Framework) [5], and was verified on models

created by practitioners from various domains.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

BPMN (Business Process Model and Notation) 2.0 [1] is one of the most frequently used process modeling notations and

is a de facto standard in business process modeling. Petri nets are respected in academia due to their simplicity, ability to

express concurrency, clear semantics, and mathematical nature. These notations have good instrumental support and are

widely used by both researchers and practitioners.

Process mining [6] is a research area which offers tools and methods for analysing and improving processes by looking

at insights hidden in event logs of information systems. In addition to Petri nets, which remain the most frequently used

modeling notation among process miners, process mining results are increasingly visualized as BPMN models [2–4] .

Most of process mining algorithms require an event log as an input parameter. However, in order to develop and sys-

tematically evaluate these algorithms one requires large sets of models and corresponding event logs. Although the goal of
� This work is supported by the Basic Research Program at the National Research University Higher School of Economics.
∗ Corresponding author.

E-mail addresses: amitsyuk@hse.ru (A .A . Mitsyuk), shugurov94@gmail.com (I.S. Shugurov), akalenkova@hse.ru (A .A . Kalenkova), w.m.p.v.d.aalst@tue.nl

(W.M.P. van der Aalst).

http://dx.doi.org/10.1016/j.simpat.2017.01.003

1569-190X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.simpat.2017.01.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/simpat
http://crossmark.crossref.org/dialog/?doi=10.1016/j.simpat.2017.01.003&domain=pdf
mailto:amitsyuk@hse.ru
mailto:shugurov94@gmail.com
mailto:akalenkova@hse.ru
mailto:w.m.p.v.d.aalst@tue.nl
http://dx.doi.org/10.1016/j.simpat.2017.01.003

2 A .A . Mitsyuk et al. / Simulation Modelling Practice and Theory 74 (2017) 1–16

process mining is to analyze real-life event logs, they are often not suitable for the verification of new algorithms at early

stages of the development. The potential problem is to find (or construct) a log with particular characteristics. Artificially

generated logs are needed for better testing and evaluation of the process mining algorithms. The possible evaluation ap-

proach can be defined as follows. First, one generates an event log by simulating the selected process model. Second, he or

she applies a novel process discovery algorithm to this log. Finally, the discovered model is compared to the initial one. Note

that in real-life event logs such a “ground truth” is often missing. Therefore, it is important to be able to generate models

and logs in a controlled manner.

Our objective is to design and implement a concrete approach for the generation of event logs by direct simulation

of BPMN models. We start by discussing related work (Section 2), and introducing a running example (Section 3). The

three main contributions are described in Sections 4 –6 respectively. In particular, Section 4 introduces a formal BPMN 2.0

semantics, Section 5 presents event log generation algorithms. The reader can find a description of the tool implementing

the proposed algorithms and its evaluation in Section 6 .

2. Related work

Several papers have been published in the field of artificial event log generation in the context of process mining. In this

section we will take a look at existing approaches and tools.

Manual generation of logs with particular characteristics is the most naive way to test process mining algorithms. How-

ever, in some cases it is useful. For example, during implementation of a discovery algorithm one usually has several very

simple samples to evaluate the code in very straightforward situations. Manual generation has evident limitations and dis-

advantages. Creating several larger sets of logs through manual generation is extremely tedious and possibly leads to many

of mistakes. Usually, it is also a very time-consuming activity.

An approach for the generation of artificial event logs using CPN Tools has been proposed in [7] . CPN Tools is a widely

used colored Petri nets editor with powerful simulation and analysis abilities. The proposed extension for CPN Tools provides

an opportunity to generate random logs based on a given Petri net. The main difficulty of the approach is that it implies

writing scripts in the Standard ML language, which leads to possible problems during tool adaptation for a specific task. CPN

Tools does not support the simulation of BPMN models directly. Although manual approaches for transformation of BPMN

subsets to CPN were discussed in [8,9] , there are no well-defined and implemented algorithms to perform these transfor-

mations. Thus, a lot of manual work is needed to simulate BPMN models, which includes control-, data-flow, messages, and

other BPMN-specific concepts using the colored Petri nets notation.

Yet another way to simulate BPMN models is to follow a two-step approach: (1) transform a BPMN model to a modeling

formalism called DEVS (Discrete Event System Specification [10]), (2) then simulate DEVS model using one of the DEVS simu-

lation tools [11] . Different implementations of such an approach are considered in [12,13] . In these papers authors present

two software tools for BPMN-to-DEVS transformation. Another BPMN-to-DEVS transformation is presented in [14] .

In comparison to both these approaches, our method works without an additional transformation step. We state that

BPMN models can be executed directly. Moreover, we present a corresponding semantics for BPMN models and a plug-

in for ProM Framework [5] , which implements the proposed approach. Since ProM provides integration of various process

discovery and log processing plug-ins, the direct simulation based on the formal BPMN semantics can be incorporated with

other process mining approaches to automate testing of BPMN discovery methods.

Yet another instrument for event logs generation is SecSy tool [15] . The purpose of this tool is to generate artificial event

logs for testing algorithms in the field of security-oriented information systems modeling. The tool generates an event log

satisfying the behavior predefined by a given specifications. However, SecSy mainly focuses on security-oriented aspects of

information systems.

Processes Logs Generator (PLG, and its later version PLG2) is a highly configurable toolbox to produce event data.

PLG [16,17] is a framework for the generation of artificial business process models in a form of dependency graphs and

event logs of their execution. The authors employ context-free grammars to build process models. A similar technique for

generating structured BPMN models and event logs is used in [18] . These approaches deal only with block-structured process

models.

Event logs generation is also possible using the well-known BPMN engines (Activiti 1 , Bizagi 2 , and others). These frame-

works are developed to maintain real-life business processes using Java or other technologies, and can be extended with log

generation functions. Unfortunately, these engines usually have rather complex architecture. Thus, it is hard to apply them

in research. Moreover, engines usually do not follow the BPMN standard strictly. For example, the synchronization of paral-

lel branches in Activiti (Camunda) differs from the specification. The current version of the Bizagi engine can not simulate

sub-processes with cancellations and is not an open source tool, thus, it can not be modified. iGrafx 3 is a set of solutions

for process management, analysis, and collaborative process design. Among others it has a simulation functionality. The no-

tation used in it is similar to BPMN, but formal translation rules are not presented. The simulator fits the goals of statistical

analysis, but has no functions for flexible event log generation.
1 Activiti BPM platform: http://activiti.org/ .
2 Bizagi engine: http://www.bizagi.com/en/ .
3 iGrafx platform: http://www.igrafx.com .

http://activiti.org/
http://www.bizagi.com/en/
http://www.igrafx.com

A .A . Mitsyuk et al. / Simulation Modelling Practice and Theory 74 (2017) 1–16 3

Fig. 1. Architectural changes process.

This paper focuses on the generation of event logs through simulation. There are also approaches that aim to transform

event data into simulation models. See [19] for example. Another related paper on mixing simulation with process mining

is [20] . Characteristics of generated event logs were investigated in [21,22] . Authors of [23] investigate problems of dealing

with large model collections.

The approach (and software) presented in this paper is an extension of the earlier one proposed in [24] . The previous

version deals only with process models in the classical Petri net notation. The new version of the approach presented in

this paper uses a well-defined subset of the BPMN standard as a language for process models. The user can generate logs

in a flexible manner using any BPMN model containing the main modeling elements (activities, gateways, cancellations,

message flows, and nested processes). One can fine-tune the experiment by using a predefined process model. Another

significant improvement is a new portion of data-flow-oriented features. The user can specify behavior of each particular

node connected with data objects by assigning a script written in Python.

In contrast to the log generators proposed earlier, our tool supports: (1) generation of event logs using (possibly non-

block-structured) BPMN models made by experts in any modeling tool; (2) cancellation events and message flows; (3) data-

driven gateways with assigned scripts; (4) BPMN pools and lanes considered as process roles; (5) time.

3. Motivating example

Let us consider an example of a high-level process model, which can be simulated with the approach proposed in this

paper. Modern best practices in software and system engineering assume application of well-defined development and de-

sign processes. Fig. 1 shows a model of a requirement change process.

The model contains two main pools related to the actors (roles) involved in the process: Customer and Architecture Team .

During an iteration of the development process the Customer formulates new requirements and sends it to a company’s

Architecture Team via a message flow. We consider only architects and analysts as architecture team members (they are rep-

resented as lanes). Firstly, the customer’s request is checked by an analyst in a nested process called Requirement Check . A

formal list of changes prepared is moved to an architect. The architect proposes architectural changes to satisfy new require-

ments and estimates time needed to implement them, which is stored in the Duration data object. The analyst calculates

the costs of an implementation, and sends a special proposal for the customer via message flow. If calculated costs are very

high or low to meet the business rules of the developer company, the project is rejected. Such a case can be modeled using

cancellation end and intermediate boundary events . The customer can accept or reject the proposal. If the customer accepts

the proposal, the analyst approves changes , and updates the total budget of the project via outgoing data object called Total

Budget . The architect redesigns architecture and sends report to the customer via message flow. Then the customer analyzes

the results . The same analysis is performed in both reject cases.

Such high-level models are quite common for the BPM field. They have relatively complex structures and use various

BPMN elements. Automated analysis and discovery of such models can give useful insights. While such discovery algorithms

are being actively developed, researchers face the problem of testing them. However, as it was discussed in Section 2 , there

4 A .A . Mitsyuk et al. / Simulation Modelling Practice and Theory 74 (2017) 1–16

are no tools supporting all modeling elements shown in Fig. 1 in a flexible manner. Developing such tools is the main

motivation for the work presented in this paper.

4. Event logs and BPMN modeling constructs

This section presents event logs, BPMN modeling constructs and their semantics underlying the proposed log generation

algorithms. BPMN offers a wide range of modeling elements but not all of them are frequently employed [25] . In contrast

to other proposed semantics [26–28] , in this paper we consider key BPMN constructs which cover the main workflow per-

spectives: control, resource, and data. Furthermore, the time perspective is considered as well. The set of selected modeling

constructs includes elements which can be mined using existing process discovery algorithms [2–4] , and those of high in-

terest for process miners [6,29] .

First, we introduce multisets used to define states of BPMN models and event logs, in which one trace can appear multi-

ple times. Multiset b : A → N over set A contains element a ∈ A, b (a) times. A set of all multisets over A is denoted as B(A) .

We will consider sets as a special case of multisets, where elements can appear 0 or 1 times.

Function f : X � Y is called a partial function with domain dom (f) ⊆ X and range defined as rng(f) = { f (x) | x ∈ dom (f) } ⊆ Y .

If dom (f) = X, then f is a total function .

4.1. Event logs

Event logs are used in almost all process mining approaches. Event logs show the behavior (at least a part of it) of an

information system being investigated. This is the only way to touch real life for analysts.

An event contains a name and can be equipped with additional attributes such as: resource, timestamp, and different

data variables. Let us define some basic notions which will be used in later definitions. Let U A be a set of possible activity

labels (event names), U At t r , and U Val be sets of possible attributes and values correspondingly [30] .

Definition 1 (Event log) . L = (E, T , act, attr) is an event log where:

• E is a set of events,

• T is a set of traces where each trace is a sequence of events, i.e., T ⊆ E ∗,

• act : E → U A is a function which maps each event onto its corresponding activity (event name),

• at t r : E → (U At t r � U Val) is a function which defines event attributes and their values.

Hence, an event log is a set of traces. A trace 〈 e 1 , e 2 , . . . , e n 〉 ∈ T is a sequence of e vents. Each e vent e corresponds to

activity act(e) ∈ U A and has a set of attributes dom(attr(e)) . One of the standard attributes is time , i.e., time ∈ dom(attr(e))

and attr(e)(time) is the timestamp of e . Another standard attribute is resource: resource ∈ dom(attr(e)) and attr(e)(resource) is

a name of the performer of e . Attributes are also used to record the values of data objects, such attributes have names of

corresponding data objects. Note that in this paper we assume each event appear only once in the event log.

4.2. Base BPMN modeling constructs

A typical model of a process control flow contains activities, start/end events, routing elements, and connections between

them. We also add a resource perspective which specifies performers of the activities. Usually resources are represented as

BPMN lanes.

According to the BPMN 2.0 standard activities, which represent elementary steps of the process, are called tasks. So-

called gateways and sequence flows are used to connect activities and to express different types of control-flow routing

concepts. Formally, we define a base BPMN model as follows.

Definition 2 (Base BPMN model) . A base BPMN model is a tuple: (N, A, G XOR , G AND , e start , E end , E cancel , SF , EF , λa , R, res) , where

• N is a set of flow nodes,

• A, G XOR , G AND , { e start } , E end form a partition of N ,

• A ⊆ N is a set of activities,

• G XOR ⊆ N, G AND ⊆ N are sets of exclusive and parallel gateways respectively,

• e start ∈ N, E end ⊆ N, E cancel ⊆ E end , such that E end \ E cancel � = ∅ are a start event, a set of end events, and a set of cancellation

end events respectively,

• SF ⊆ N × N is a set of sequence flows, EF ⊆ SF ∩ (A × N) is a set of exceptional flows, such that ∀ a ∈ A ∃ n ∈ N : (a, n) ∈
SF , (a, n) / ∈ EF , i.e., each activity has a non-exceptional outgoing sequence flow,

• λa : A → U A is a labeling function,

• R is a set of resources, res : A � R is a partial function which maps some of the activities onto set of resources.

This definition is based on the definition of Labeled BPMN Model from [3] . Note, that the BPMN 2.0 standard [1] describes

more gateway and event types. In particular, there are the following gateway and intermediate event types: complex, inclu-

sive, event-based, parallel event-based gateways; message, timer, link, signal, multi, error, escalation and other events. We

do not consider these elements in our base BPMN model. There are two reasons for that. First, our token-based semantics

A .A . Mitsyuk et al. / Simulation Modelling Practice and Theory 74 (2017) 1–16 5

Fig. 2. A fragment with cancellation.

is supported by gateways with local dependencies, i.e., the enablement of a gateway depends only on its ingoing flows.

This is the case for the gateway types we consider. Second, many of the interrupting events behaviorally correspond to the

cancellation event descried in this work. In the future we plan to extend the set of supported BPMN elements.

An example of a base BPMN model is shown in Fig. 2 . This is a fragment of the example process shown in Fig. 1 . The

fragment describes a cost calculation for a particular proposal. Depending on the cost, a proposal can be either sent to the

customer, or canceled.

The start event e start is an event without any incoming sequence flows. End events E end are events without any outgoing

sequence flows. All events are shown as circles. End events are represented by circles with bold borders. Cancellation events

are marked with an additional “x” sign.

A marking of a BPMN model denotes a current state of a process instance. It is a multiset over the set of sequence flows,

denoted as m : SF → N . That is, each sequence flow may contain tokens or not. A token in some sequence flow shows, that

the source activity (or gateway) of this sequence flow is already fired, whereas the target activity (gateway) may fire, if all

other incoming flows for it also carry tokens. A marking shows a snapshot of the process instance execution at a particular

moment in time. An initial marking is a marking such that m (s f) = 1 , if sf is an outgoing sequence flow of e start , m (s f) = 0

otherwise. Final marking is a marking such that ∀ s f ∈ SF : m (s f) = 0 . Each node may be enabled, then an enabled node may

fire.

An activity is depicted as a rounded rectangle and denotes some visible action, which occurs in a business process. The

fragment shown in Fig. 2 contains two activities “Calculate Cost’’ and “Send Proposal”. The first activity is performed in

all process instances, whereas the branch with the latter one can be cancelled. An activity a ∈ A is said to be in enabled

state in marking m if at least one of its incoming sequence flows holds at least one token. An enabled activity a may fire.

When activity a fires it consumes one token from an incoming sequence flow and produces a token for each outgoing not

exceptional sequence flow.

Gateways of two types (parallel and exclusive) are needed to redirect control flow during process runs. Exclusive gateways

(shown as diamonds with an “x” sign) merge alternative paths: incoming sequence flow token is routed to one of the

outgoing sequence flows. A parallel gateway (modeled as a diamond with a plus sign) is enabled if each incoming sequence

flow contains at least one token. An enabled parallel gateway may fire, consuming a token from each incoming sequence

flow and producing a token to each outgoing sequence flow. The reader can see an exclusive gateway in Fig. 2 .

An end event is enabled if one of its incoming sequence flows contains a token. When an ordinary end event fires, it

consumes a token from an incoming sequence flow, while a cancellation end event consumes all the existing tokens, yielding

an empty marking.

Process resources are modeled with lanes . The reader can see in Fig. 1 , that the process of the architecture team is

performed by two following roles: “Analyst” and “Architect”. The lanes are separated with a solid line and placed in a single

BPMN pool .

4.3. Hierarchical BPMN models

BPMN supports hierarchy, i.e., a process can contain sub-processes. Sub-processes can be presented as base BPMN mod-

els.

Fig. 3 shows a fragment of the architectural changes process model (see Fig. 1) with sub-process “Calculate Cost”. Sub-

process is an expanded activity of the base model, which contains a nested model. First, the atomic activity “Calculate Cost”

is performed. After its completion either the prepared proposal is sent to the Customer, or the proposal is canceled. Note

that a sub-process can be either finished successfully by reaching an end event, or canceled. The choice is made by the

exclusive gateway. This situation is modeled using a cancellation event. The outgoing exceptional flow is marked with a

boundary intermediate cancellation event.

Let us introduce a formal definition for hierarchical models.

Definition 3 (Hierarchical BPMN model) . A hierarchical BPMN model is a tuple: BPMN h = (BPMN models , BPMN root , H, ref ,

cancel) , where

• BPMN models = { BPMN 1 , . . . , BPMN m

} is a set of base BPMN models 4 ,
4 Let A = A 1 ∪ . . . ∪ A m , EF = EF 1 ∪ . . . ∪ EF m , and E cancel = E cancel 1 ∪ . . . ∪ E cancel m , where A 1 , ... , A m , EF 1 , ... , EF m , and E cancel 1 , ... , E cancel m are sets of activities,

exceptional flows, and cancellation events of base models BPMN 1 , ... , BPMN m respectively.

6 A .A . Mitsyuk et al. / Simulation Modelling Practice and Theory 74 (2017) 1–16

Fig. 3. A fragment with sub-process.

• H ⊆ BPMN models \ { BPMN root } × BPMN models is a tree relation, which specifies a parent for each BPMN model, where

BPMN root is a root of this tree,

• ref : A � BPMN models \ { BPMN root } , such that (BPMN child , BPMN parent) ∈ H iff ∃ a ∈ A parent : ref (a) = BPMN child , where A parent is

a set of BPMN parent activities, i.e. ref specifies the link between activities in a parent model and child models, there is an

activity for each child model,

• cancel : E cancel → EF is a bijective function, such that it maps cancellation end events of BPMN child to exceptional sequence

flows of BPMN parent for each pair (BPMN child , BPMN parent) ∈ H.

Consider a hierarchical BPMN model BPMN h = (BPMN models , BPMN root , H, ref , cancel) . We say that activities, for which ref

function is not defined, are atomic activities . All other activities are non-atomic . A set of nested process models for a model

BPMN parent ∈ BPMN models is defined as { BPMN nested ∈ BPMN models | (BPMN nested , BPMN parent) ∈ H

∗} , where H

∗ is a transitive clo-

sure of H .

Suppose that e start is a start event of model BPMN root . Then an initial marking m of BPMN h is defined as follows: ∀ sf ∈ SF :

m (sf) = 1 , if sf is an outgoing sequence flow of e start , and m (sf) = 0 , otherwise.

Firing rules of hierarchical BPMN models extend the firing rules of base BPMN models in a part of enabling and fir-

ing non-atomic activities. Suppose that a is a non-atomic activity of a base model BPMN parent ∈ BPMN models , then exists

BPMN child ∈ BPMN models , such that ref (a) = BPMN child . Activity a can fire if and only if BPMN child and its nested models do

not contain any tokens. When activity a fires it consumes a token from an incoming sequence flow and produces tokens to

outgoing sequence flows of BPMN child start event.

If BPMN child reaches the final marking and a cancellation end event n of BPMN child is the cause of termination, then a

token will be added to ef – an exceptional sequence flow of BPMN parent , such that cancel(n) = ef , and all the tokens will

be removed from sequence flows of nested models. Otherwise, if BPMN child and its nested models reach the final markings,

then tokens will be added to outgoing not exceptional sequence flows of a .

The BPMN notation contains a wide range of event constructs, the semantics of which involves cancellation. These could

be error, signal, cancel, and other types of events. In this paper we combine all of them together conceptually as one type

called cancel events.

4.4. BPMN models with data

In this subsection we will enrich BPMN models with data objects and data associations. Fig. 4 shows a fragment of

architectural changes process model (see Fig. 1) with the data object “Cost”. Data associations are shown as dashed arrows.

The model contains an explicit choice between acceptance and rejection of an architectural changes proposal, prepared by

the architecture team as a result of analysis of customer’s needs. Then it was received by the customer (“Receive Proposal”
Fig. 4. A fragment with data object.

A .A . Mitsyuk et al. / Simulation Modelling Practice and Theory 74 (2017) 1–16 7

Fig. 5. A fragment with participants.

activity in Fig. 4). The choice is made in an exclusive gateway, basing on the results of the analysis performed earlier.

These results stored in data object “Cost” shown with a symbolic sheet of paper. It has two following data associations:

write association with activity “Receive Proposal” and read association with the exclusive gateway. Thus, the cost of received

proposal is defined as a value of the data object after the firing of “Receive Proposal” activity. If cost is not appropriate, the

gateway activates the “Reject Proposal” branch. In other case, the process proceeds with the “Accept Proposal” activity.

Definition 4 (BPMN model with data) . A BPMN model with data is a tuple BPMN data = (BPMN h , DO , DA , f A , f SF , default , λd) ,

where:

• BPMN h is a hierarchical BPMN model, where BPMN models = { BPMN 1 , . . . , BPMN m

} is a set of base BPMN models 5 ,

• DO = { do 1 , . . . , do k } is a set of data objects,

• DA ⊆ (A × DO) ∪ (DO × A) ∪ (DO × G XOR) is a set of data associations,

• f A : A → ((DO → U Val) → (DO → U Val)) is a function which specifies how activities change the values of data objects,

• f SF : SF ′ → ((DO → U Val) → { true, false }) where SF ′ = { (g, n) ∈ SF ′ | g ∈ G XOR , n ∈ N} is a function, which defines condi-

tional branching,

• default : G XOR → SF is a function which specifies a default outgoing sequence flow sf ∈ SF for each exclusive gateway

g XOR ∈ G XOR ,

• λd : DO → U Attr is a function, which maps each data object to its name.

A marking of a BPMN model with data is defined as a pair (m, d), where m : SF → N is a marking of hierarchical model

BPMN h , and d : DO → U Val presents values of data objects.

BPMN models with data extend firing rules of hierarchical BPMN models. When an activity a ∈ A fires in a marking (m,

d) it defines and sets new data object values: d ′ = f A (a)(d) . Firing of an exclusive gateway g XOR in a marking (m, d) results

in producing a token to one of the outgoing sequence flows sf ∈ SF , for which f SF (sf)(d) = true . If for all outgoing sequence

flows sf holds that f SF (sf)(d) = false, a token is added to the flow default (g XOR) .

4.5. Interacting BPMN models

In this subsection we will introduce BPMN models, which represent different participants, interacting through message

flows. In Fig. 5 the reader can see a fragment of the architectural changes process model (see Fig. 1), in which new require-

ments are sent as messages from a customer to the architecture team. The message flow is shown as a dashed line with

a white arrow at the side of a message receiver (activity “New Requirement Request”) and a white circle at the side of a

sender (activity “New Requirement Formulated”).
5 Further we will use the following notations: N = N 1 ∪ . . . ∪ N m , A = A 1 ∪ . . . ∪ A m , G XOR = G XOR 1 ∪ . . . ∪ G XOR m , SF = SF 1 ∪ . . . ∪ SF m , where N 1 , ... , N m , A 1 ,

... , A m , G XOR 1 , ... , G XOR m , SF 1 , ... , SF m are sets of nodes, activities, exclusive gateways and sequence flows of models BPMN 1 , ... , BPMN m respectively.

8 A .A . Mitsyuk et al. / Simulation Modelling Practice and Theory 74 (2017) 1–16

Each participant is usually visualized as a pool within the entire BPMN model 6 .

Definition 5 (BPMN model with participants) . A BPMN model with participants is a tuple BPMN part = (BPMN p , MF) , where

• BPMN p =

{
BPMN d 1

, . . . , BPMN d k

}
is a set of BPMN models with data,

• MF ⊂ (A × A) \ (A 1 × A 1) \ . . . \ (A k × A k)
7 is a set of message flows.

A marking of a BPMN model with participants BPMN part = (BPMN p , MF) can be represented as (m 1 , . . . , m k , m

′) , where

m i is a marking of BPMN d i
model for i ∈ 1 , k , and m

′ ∈ (MF → N) . An initial marking is represented as (m 1 0
, . . . , m k 0

, m 0
′) ,

where m i 0
is an initial marking of a corresponding BPMN d i

model.

Message flows extend the firing rules of activities. In addition to the standard enabling conditions presented earlier,

each incoming message flow of an activity must contain at least one token to make this activity enabled, i.e., activity “New

Requirement Request” in Fig. 5 will become enabled only when some request will be sent from the customer. When an

activity fires, apart from the standard operations with tokens on sequence flows, it consumes a token from each incoming

message flow and produces a token to each outgoing message flow.

BPMN pools and messages allow to model and simulate systems with multiple participants working in parallel and can be

synchronized via message flows. This is the only modeling element allowed to cross pool’s boundary. Note, that in Fig. 1 the

processes of customer and architecture team have independent starts and ends. Message flows is the only mechanism that

binds them together.

5. Event log generation

In this section we present our approach for the generation of event logs. We will consider the different types of BPMN

models described earlier. The remainder of the section is organized as follows: first, an algorithm for generating event logs

from base BPMN models is described; then each next section explains a specific enhancement of the algorithm.

5.1. A basic approach for event log generation

This subsection is devoted to an algorithm used for the simulation of base BPMN models as they are defined above. An

event log corresponds to Definition 1 . Recall that we assume each event appear one in the log. Each trace corresponds to

an execution of a single process instance. That is, all tokens in a model created during generation of one trace relate to the

same instance of a process being simulated.

Algorithm 1 presents a base simulation approach. During a model execution it constructs a set of event logs, each of

which consists of traces.

Firing of an activity leads to the creation of an event with certain attributes, such as its name and resource. If lanes

are presented in a model, they are used during the generation in order to specify resources involved in the execution of

activities.

In Algorithm 1 all events and gateways are fired first, and only then activities are executed. Before checking whether

activities are enabled, all possible firings of gateways are carried out 8 . After that we have the entire set of activities enabled

at a particular step of simulation. Thus, each of them can fire with the equal probability. Due to the invisible nature of gate-

ways execution, it is enough to find the first enabled gateway and then it can be immediately fired. By invisible nature we

mean, that there are no records in the event log corresponding to the gateway firings. They are needed for the control-flow

management only. In contrast, activities require more careful handling. First, all enabled activities are found and only then

a random one is fired. Outgoing sequence flows of fired exclusive gateways are selected randomly as well. Therefore, there

are two stages in simulation. First, all events and gateway are fired in an arbitrary order until the only enabled elements

are activities. Second, one of the enabled activities is selected randomly and fired. This ensures equal probability of firing

of each enabled activity at each step. Moreover, the choice of one or another process model branch is also made randomly

(Algorithm 2).

The generation of a trace terminates when one of two situations occur: (1) there are no more tokens in the model;

(2) execution exceeded the specified maximal number of firings. In the former case the replay finished successfully (process

instance is completed), the generated trace is added to the event log. In the latter case, the replay did not terminate properly

and the trace will not be added to the event log.

Forced termination is supported to deal with very large or live-locking models.
6 Note that in contrast to lanes sequence flows cannot cross pools borders.
7 A = A 1 ∪ . . . ∪ A k and A 1 , ... , A k are disjoint sets of all activities of the base BPMN models, forming models BPMN d 1 , ... , BPMN d k respectively.
8 Note, that there can be a cyclic firing of gateways. In that case according to Algorithm 1 the log generation process will be terminated and the trace

will not be added to a log.

A .A . Mitsyuk et al. / Simulation Modelling Practice and Theory 74 (2017) 1–16 9

Algorithm 1. A basic event logs generation.

Algorithm 2. Algorithm 1 continued.

5.2. Generating event logs for BPMN models with data

In contrast to the simulation of hierarchical and interacting BPMN models, which have additional firing rules and thus

extend the basic log generation algorithm in a natural way, simulation of a BPMN model with data should be described

separately.

Algorithm 3 extends the basic Algorithm 1 with a modified procedure of activity execution: each firing of an activity not

only changes the marking, but assigns novel values to data objects. The values of data objects are written to the log in a

form of event attributes.

10 A .A . Mitsyuk et al. / Simulation Modelling Practice and Theory 74 (2017) 1–16

Algorithm 3 Event generation with data.

Input: activity a , BPMN data = (BPMN h , DO , DA , f A , f SF , default , λd) , (m, ((do 1 , val 1) , . . . , (do n , val n))) , L i = (E i , T i , act i , at t r i)

1: procedure execute (a , BPMN data , L i)

2: // λa , res , ref are functions defined by

3: // BPMN models, which contain activity a

4: m ← f ire (a, m, BPMN data) ;

5: if ref (a) is not defined then

6: e ← createEv ent() ;

7: E i ← E i ∪ { e } ;
8: T i ← T i + e ;

9: act i ← act i ∪ { (e, λa (a)) } ;
10: if res (a) is defined for a then

11: at t r i ← at t r i ∪ { (e, (resource, res (a)) } ;
12: end if

13: for do j ∈ DO do

14: at t r i ← at t r i ∪ { (e, (λd (do) , f A (a)((do 1 , val 1) , . . . , (do n , val n))(do j)) } ;
15: end for

16: end if

17: end procedure

Fig. 6. A model fragment with an exclusive gateway.

Additionally, as it follows from the definition of BPMN models with data, during the execution of an exclusive gateway,

a token is added to one of the outgoing sequence flows, for which the value of a special assigned function is true . If the

values of functions for all outgoing sequence flows are false , a token is added to the default outgoing sequence flow.

5.3. Simulating BPMN models with preferences

In order to make simulation more realistic we introduce a notion of so-called preferences , which is used to modify the

choice between conflicting activities. For the BPMN language that is the case when dealing with exclusive gateways.

A typical scenario is shown in Fig. 6 , which is also a fragment of Fig. 1 . Obviously, in a real-life setting, rejections and

approvals happen with different frequencies. Thus, sometimes it seems rational to set one activity as more frequent than

the other when generating an event log. For example, one may want to simulate the situation, when almost all proposals

are approved.

A preference is a non-negative integer value within some range. Each preference corresponds to exactly one outgoing

sequence flow. The higher a preference is, the higher possibility to add a token to a certain sequence flow is. The precise

formula for the probability of a sequence flow to get a token is P (s j) =

pre f (s j)
∑ | OSF |

i =1
pre f (s i)

. Where OSF is a set of outgoing sequence

flows from a specific exclusive gateway; s i , s j ∈ OSF are two outgoing sequence flows, and pref(s) , s ∈ OSF is a preference of

the particular sequence flow s from the set OSF .

For the case shown in Fig. 6 OSF contains two sequence flow to activities “Approve Changes” and “Proposal Rejected”. For

example, one can set pre f (s ApproveChanges) = 10 and pre f (s ProposalRe jected) = 1 . Then, changes will be approved in most cases.

Note that it is possible to completely disallow one or more outgoing flows in order to achieve the desired behavior.

However, it is ensured that at least one outgoing sequence flow has a non-zero preference:
∑ | OSF |

i =1
pre f (s i) > 0 .

The algorithm used for checking whether an exclusive choice gateway is enabled remains intact – we only need to extend

the way an outgoing sequence flow is selected. The pseudo code is provided in Algorithm 4 .

5.4. An approach for generating event logs with time

In order to make simulation more similar to the way processes are executed in real life, where activities take time to be

performed, a slight extension of the notion of token is required.

A .A . Mitsyuk et al. / Simulation Modelling Practice and Theory 74 (2017) 1–16 11

Algorithm 4 An outgoing sequence flow selection.

Input: an exclusive choice gateway g ∈ G XOR Output: an outgoing sequence flow of g

1: function select (g)

2: //g• is a list of outgoing sequence flows for g,

3: if size(g•) = 1 then

4: return g • [1] ;

5: end if

6: pre f Arr ← 〈〉 ;
7: for i ← 1 up to size (g•) do

8: if i = 1 then

9: pre f Arr ← pre f (g • [1]) ;

10: else

11: pre f Arr ← pre f Arr ∪ (pre f Ar r [i − 1] + pre f (g • [i])) ;

12: end if

13: end for

14: number ← random (1 , pre f Ar r [size (predAr r − 1)]) ;

15: for i ← 1 up to size (g•) do

16: if number ≤ pre f Ar r [i] then

17: return g • [i] ;

18: end if

19: end for

20: end function

Each token is associated with a timestamp which indicates when the token was added to a sequence flow. We introduce

a time function, which returns a timestamp of a given token. Given two tokens t 1 and t 2 we say that token t 1 is earlier

than token t 2 or t 1 < t 2 , if time (t 1) < time (t 2) . Likewise, we say that token t 1 is later than token t 2 or t 1 > t 2 , if time (t 1) >

time (t 2) .

Atomic activities are the only elements whose execution times are defined. Gateways and events fire instantly. For a given

atomic activity the function StartTime returns either a uniformly distributed value between activity’s minimal and maximal

execution times or allows for introduction of other distributions in a flexible manner. Activities in our approach fire without

pauses in-between them. This means that the duration of the particular instance of an activity in the particular process

instance defined by the starting time of the next activity instance.

See, for example, the model shown in Fig. 1 . Activity “Adjust Requirement Changes” becomes enabled after the firing

of both activities “Propose Changes of Internal Functional Requirements” and “Propose Changes of Internal Non-Functional

Requirements”. The starting time of the gateway can be defined as the latest completion time of the previous activities. The

gateway firing takes no time. Then, the starting time of the activity “Adjust Requirement Changes” is equal to the end time

of the gateway firing. That is, the function StartTime returns for each activity a start time, which is exactly the end time of

the previously fired elements.

The firing of activities is accomplished in two phases: start of firing and end of firing. At the start stage of firing a token

with the earliest timestamp is removed from one of the incoming sequence flows and a token with the earliest timestamp

is consumed from each incoming message flow. The start time of firing is equal to the largest timestamp among timestamps

of the consumed tokens (Algorithm 5).

Then, information on the start of firing (at t r(e)(time) = StartT ime (a)) is written to the log. Next step is to log the end

of firing. To do it we determine the time needed for the activity execution by invoking the StartTime function and adding

this value to the start time. Then a token with the calculated timestamp is created for each outgoing sequence flow and

information on the activity termination is added to the log.

During an execution of an enabled exclusive gateway, the earliest token is removed from the incoming sequence flows

and placed to one of the outgoing sequence flows without alteration of the timestamp. When a parallel gateway fires, the

earliest token is taken from each incoming sequence flow and the latest among them defines a start of the firing time. A

token with this timestamp is added to each outgoing sequence flow.

6. Tool support and evaluation

6.1. Event log generator

The proposed approach was implemented as a collection of plug-ins 9 for the well-known ProM tool [5] . ProM is an open-

source framework for the development of process mining algorithms in a standardized environment. We used an XML-based

format XES [31] to represent event logs. An event in XES is described by a corresponding activity name, timestamp, resource

id, group id, and customizable properties (such as values of data variables).

The basic log generator implements the main generation functionality. The user is asked (see Fig. 7) to specify (1) the

number of event logs to be generated, (2) the number of traces to be generated for each event log, and (3) an upper bound
9 Available at https://sourceforge.net/projects/gena- log- generator/ .

https://sourceforge.net/projects/gena-log-generator/

12 A .A . Mitsyuk et al. / Simulation Modelling Practice and Theory 74 (2017) 1–16

Algorithm 5 An activity start time.

Input: an enabled activity a ∈ A Output: start time of a

1: function StartTime (a)

2: // function token returns the earliest token from the flow

3: // a token stored in one of the incoming sequence flows of a ;

4: token sf ;

5: // a token stored in one of the incoming message flows of a

6: token mf ;

7: for all sf where sf is an incoming sequence flow of a do

8: if m (sf) > 0 then

9: if token(sf) < token sf then

10: token sf ← token(sf);

11: end if

12: end if

13: end for

14: for all mf where mf is an incoming message flow of a do

15: if token (mf) > token mf then

16: token mf ← token(mf);

17: end if

18: end for

19: if token sf < token mf then

20: time a ← time (token mf);

21: else

22: time a ← time (token sf);

23: end if

24: return time a ;

25: end function

Fig. 7. General settings.

for the length of a trace (see Section 5.1). Using the extended BPMN log generator the user can easily configure the behavior

of an existing model via configuration of exclusive gateways. It is also possible to assign special preferences to gateways as

described in Section 5 . The time-aware log generator is responsible for the generation of event logs with timestamps. The

data-aware generator allows for using models with explicit data-flows.

The actual implementation of data objects extends their definition given in Section 4 . To make simulation more flexible

and configurable user-written Python scripts are supported. There are three types of nodes which can be enriched with

scripts: (1) data objects, (2) activities including nested processes, and (3) exclusive choice gateways. Scripts can be used to

initialize data objects and specify actions performed with them during the node firing.

Each node (of the three mentioned types) can be associated with of most one script. If a data object is not associated

with any initializing script, its default value equals to an empty string. Otherwise, a script is called when a generation of a

trace starts.

Now let us demonstrate how to generate an event log for the model of Architectural Changes Process from Section 3 (see

Fig. 1) using our tool. The maximal number of firings per trace was set to 200. We decided to use data-aware log gener-

A .A . Mitsyuk et al. / Simulation Modelling Practice and Theory 74 (2017) 1–16 13

Fig. 8. Distribution of traces.

Table 1

A one-trace fragment of example generated event log.

Trace Event Activity name Group Role Timestamp / Data variables

21 1 New requirement formulated Customer – 2016-02-24T22:02:24.455 + 03:00

[-;“Functional Reqs”;-;-;-]

21 2 Wait for proposal Customer – 2016-02-24T23:08:16.455 + 03:00

[-;“Functional Reqs”;-;-;-]

21 3 New requirements request Arch.team Analyst 2016-02-25T00:01:00.455 + 03:00

[-;“Functional Reqs”;-;-;-]

21 4 Propose changes of internal non-func reqs Arch.team Analyst 2016-02-25T01:49:28.455 + 03:00

[-;“Functional Reqs”;-;-;-]

21 5 Propose changes of internal func reqs Arch.team Analyst 2016-02-25T01:55:24.455 + 03:00

[-;“Functional Reqs”;-;-;-]

21 6 Adjust requirement changes Arch.team Analyst 2016-02-25T02:58:31.455 + 03:00

[-;“Functional Reqs”;-;-;-]

21 7 Check requirements changes Arch.team Architect 2016-02-25T04:45:48.455 + 03:00

[-;“Functional Reqs”;-;-;-]

21 8 Propose architectural changes Arch.team Architect 2016-02-25T05:48:38.455 + 03:00

[-;“Functional Reqs”;203.37;-;-]

21 9 Calculate cost Arch.team Analyst 2016-02-25T07:01:46.455 + 03:00

[-;“Func.Reqs”;203.37;426.75;-]

21 10 Send proposal Arch.team Analyst 2016-02-25T08:04:16.455 + 03:00

[-;“Func.Reqs”;203.37;426.75;-]

21 11 Receive proposal Customer – 2016-02-25T09:33:47.455 + 03:00

[14.1;“Func.Reqs”;203.37;426.75;-]

21 12 Reject proposal Customer – 2016-02-25T11:25:35.455 + 03:00

[14.1;“Func.Reqs”;203.37;426.75;-]

21 13 Analyze results Customer – 2016-02-25T12:28:49.455 + 03:00

[14.1;“Func.Reqs”;203.37;426.75;-]

21 14 Proposal rejected Arch.team Analyst 2016-02-25T12:46:36.455 + 03:00

[14.1;“Func.Reqs”;203.37;426.75;-]

ation with time. The generated sample event log contains 10 0 0 traces, 13,119 events, and 21 activity classes (the same

number as activities in the model shown in Fig. 1). The model contains five data objects. Thus, each event in the log will

contain values for all five data variables: [Cost for customer: Float; Functional requirements: String;
Duration: Float; Cost: Float; Total budget: Float] . There are 16 different case variants (sets of traces

presenting the same sequence of event names) in the generated log. This number is a property of a particular model used

for the log generation. Model shown in Fig. 1 specifies three general cases: one successful case, when all stakeholders accept

proposals (with 17 events), and two rejection cases (with 12 and 14 events). Other cases lead to deadlocks. The number of

actual case variants in the log is larger because of choices and interleaving of concurrent events. For example, in the process

functional requirements can be proposed before or after of non-functional requirements.

Fig. 8 shows the distribution of number of traces by case variants. One can see, that there are three groups of cases.

Approximately 700 traces are from the four most popular cases: 1, 2, 3, 4. Several cases form the second group of less

popular cases (numbered 5, 6, and 7). The over variants (case types 8 to 16) are even less frequent. Obviously, short traces

are the most popular. The longer the trace, the more variations it allows. Thus, the structure of a model together with the

generation settings influences the character of the distribution. One can specify preferences, which will lead to a single-case

event log, by disabling all branches except the desired ones. The distribution shown in Fig. 8 is typical for the generation

with random choices on all gateways. Table 1 contains one-trace fragment from the generated event log.

14 A .A . Mitsyuk et al. / Simulation Modelling Practice and Theory 74 (2017) 1–16

Table 2

Simulation statistics for 10 different models selected from Signavio collection.

Model iD Number of

elements

(Events)

Activities/

Gateways(XOR + AND)/

Flows

Pools/

Lanes

Trace

variants

Total events

(Classes)

Trace length

Min Mean Max

8914774_rev1 11 (2) 5 / 4 + 0 / 12 0 / 0 3 2511 (5) 2 3 3

100193728_rev3 16 (2) 10 / 2 + 2 / 19 1 / 4 10 0 0 30,930 (10) 21 31 64

1073989552_rev1 17 (4) 9 / 2 + 2 / 17 0 / 0 5 5072 (9) 3 5 7

1754711371_rev1 18 (2) 10 / 4 + 2 / 20 1 / 2 6 5905 (10) 4 6 9

186202353_rev1 30 (2) 16 / 4 + 8 / 35 0 / 0 657 18,024 (16) 15 18 57

1280191109_rev7 28 (3) 22 / 3 + 0 / 30 0 / 0 10 0 0 896,988 (22) 890 897 904

604624904_rev1 27 (2) 17 / 0 + 8 / 15 1 / 4 36 17,0 0 0 (17) 17 17 17

1391700380_rev1 18 (2) 10 / 4 + 2 / 20 0 / 0 6 5962 (10) 4 6 9

1849720729_rev3 12 (4) 6 / 2 + 0 / 11 1 / 3 3 3505 (6) 3 4 4

2012957934_rev3 21 (3) 13 / 2 + 3 / 23 0 / 0 28 7228 (13) 1 7 35

Fig. 9. Initial model.

6.2. Evaluation

In order to test robustness and effectiveness of the approach, the presented tool has been tested on models selected from

the Signavio BPMN Reference Models Collection

10 . This collection contains several thousands (more than 4 700) of real-life

process models made by experts. These models were collected by Signavio from many of application areas and are usually

used to test analysis algorithms in the BPM field.

Approximately 30 0 0 of models satisfy the restrictions of the formal framework described in Section 4 . The most popular

construct, which is not supported in our framework, is a message event . In general, these events are a type of syntactic sugar,

they add no essential aspects for the modeling. Another non-supported type of elements is timer event . However, we plan

to support these elements in the next version of the tool.

The event log generator works correctly and robustly on 956 of satisfying models. For the other models the tool fails

to return traces after 10 0 0 attempts. These models can not terminate because of deadlocks (process executions leading to

the states, in which no node is enabled) or livelocks (executions inevitably ending up in a loop of repeating tasks without

possibility to reach the end state). For each model the test script generated an event log of 500 traces using our tool. The

whole test procedure (for all models from the Signavio Collection) took 646,065 ms (10 min approximately) on a typical

desktop computer. The total number of generated traces is 478,0 0 0. During the generation 10,520 deadlocks and 198,663

livelocks were identified. Our tool successfully simulated models from Signavio Collection, which satisfy the restrictions of

the formal framework, and contain no deadlocks or livelocks.

Table 2 shows generation statistics for 10 different models, which were randomly selected from Signavio Collection. 10 0 0

traces were generated for each model. The reader can see the relationship between model structure (number of activities,

gateways, lanes) and the variability of characteristics of generated event logs. In Fig. 9 the 186202353_rev1 model is

shown. Fig. 10 shows the view with characteristics of the event log, which was generated for this model.

In the worst case complexity for the log generation can be estimated as C = O (N L · N tr · S f · (| SF | + | MF | + | N| + | DO | +
E v)) , where N L is the number of event logs, N tr is the number of traces, S f is a maximum number of firings within a trace

generation, SF, MF, N , and DO are the total numbers of sequence flows, message flows, sequence nodes, and data objects

respectively, E v is a constant, indicating the number of operations needed to generate an event (depends on the generation

type). Before a single firing all sequence and message flows are checked for the presence of tokens, after that activated

nodes are determined, then one of them is selected and fired, during its firing novel tokens are produced, the values of data

variables are changed and not more than E v log writing operations are performed.
10 Signavio models collection: http://www.signavio.com/reference-models/ .

http://www.signavio.com/reference-models/

A .A . Mitsyuk et al. / Simulation Modelling Practice and Theory 74 (2017) 1–16 15

Fig. 10. Generated event log.

7. Conclusion

This paper proposes an approach for the generation of event logs for high-level process models. Formal semantics for the

core part of the BPMN standard, including flat control flow, hierarchy, data perspective, and participants, are defined and

supported. On the basis of the introduced semantics, a tool for the automated event log generation has been implemented

within the ProM Framework. Furthermore, the generation is enriched with capabilities of modifying the behavior of exclusive

gateways and simulating models with time.

The approach has been tested using hundreds of models from the Signavio BPMN Reference Models Collection. The

results of this evaluation showed that the approach allows the generation of event logs for a significant portion of models

from this collection. Moreover, the tool has shown its effectiveness, efficiency and robustness. The entire testing collection

can be processed in less than half an our. The tool is resistant to unsound models that get stuck in deadlocks or livelocks.

Experimentations also show the need to expand the number of BPMN elements supported by the tool. Several types of

events are not yet supported by our tool but are present in the model collection. This is especially true for message events.

Nevertheless, the core part of BPMN model is supported by our approach.

With the help of this tool, researchers and BPM specialists can evaluate process mining algorithms using sets of event

logs with desired characteristics generated for fine-tuned models. A possible extension of the approach can be to incorporate

more elements from the BPMN 2.0 standard. The clear identification of dependencies between specific model parameters

and statistical characteristics of corresponding event logs may also be an interesting area for future research.

References

[1] OMG , Business Process Model and Notation (BPMN), Object Management Group, 2013 . (formal/2013-12-09).
[2] A .A . Kalenkova , M. de Leoni , W.M.P. van der Aalst , Discovering, analyzing and enhancing BPMN models using ProM, in: Proceedings of the BPM

Demo Sessions 2014 Co-located with the 12th International Conference on Business Process Management (BPM 2014), Eindhoven, The Netherlands,

September 10, 2014, CEUR Workshop Proceedings, vol. 1295, CEUR-WS.org, 2014, p. 36 .
[3] A .A . Kalenkova , W.M.P. van der Aalst , I.A. Lomazova , V.A. Rubin , Process mining using BPMN: relating event logs and process models, Softw. Syst.

Model. (2015) 1–30 .
[4] R. Conforti , M. Dumas , L. Garca-Bauelos , M. La Rosa , Beyond tasks and gateways: discovering BPMN models with subprocesses, boundary events

and activity markers, in: Business Process Management, in: Lecture Notes in Computer Science, vol. 8659, Springer International Publishing, 2014,
pp. 101–117 .

[5] H. Verbeek , J. Buijs , B. Dongen , W. Aalst , ProM 6: the process mining toolkit, in: Proc. of BPM Demonstration Track 2010, CEUR Workshop Proceedings,

vol. 615, 2010, pp. 34–39 .
[6] W.M.P. van der Aalst , Process Mining - Data Science in Action, second ed., Springer, 2016 .

[7] A .K.A .d. Medeiros , C.W. Günther , Process mining: using CPN tools to create test logs for mining algorithms, in: K. Jensen (Ed.), Proceedings of the
Sixth Workshop on the Practical Use of Coloured Petri Nets and CPN Tools (CPN 2005), DAIMI, vol. 576, University of Aarhus, Aarhus, Denmark, 2005,

pp. 177–190 .
[8] M. Zäuram , Business Process Simulation Using Coloured Petri Nets, University of Tartu, Estonia, 2010 Master’s thesis .

http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0001
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0001
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0001
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0002
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0002
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0002
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0002
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0003
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0003
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0003
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0003
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0003
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0004
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0004
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0004
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0004
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0004
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0005
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0005
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0005
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0005
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0005
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0006
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0006
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0007
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0007
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0007
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0008
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0008

16 A .A . Mitsyuk et al. / Simulation Modelling Practice and Theory 74 (2017) 1–16

[9] M. Ramadan , H. Elmongui , R. Hassan , BPMN formalisation using coloured petri nets, in: The 2nd GSTF Annual International Conference on Software
Engineering & Applications (SEA’11), 2011 .

[10] B.P. Zeigler, Hierarchical, modular discrete-event modelling in an object-oriented environment, Simulation 49 (5) (1987) 219–230, doi: 10.1177/
003754 978704 900506 .

[11] G. Wainer, DEVS tools, Accessed: 2016-11-03,.
[12] D. Cetinkaya , A. Verbraeck , M.D. Seck , Model transformation from BPMN to DEVS in the MDD4MS framework, in: Proceedings of the 2012 Symposium

on Theory of Modeling and Simulation - DEVS Integrative M&S Symposium, TMS/DEVS ’12, Society for Computer Simulation International, San Diego,

CA , USA , 2012, pp. 28:1–28:6 .
[13] H. Bazoun , Y. Bouanan , G. Zacharewicz , Y. Ducq , H. Boye , Business process simulation: transformation of BPMN 2.0 to DEVS models (wip), in: Proceed-

ings of the Symposium on Theory of Modeling & Simulation - DEVS Integrative, DEVS ’14, Society for Computer Simulation International, San Diego,
CA , USA , 2014, pp. 20:1–20:7 .

[14] S. Boukelkoul, R. Maamri, Optimal model transformation of BPMN to DEVS, in: 2015 IEEE/ACS 12th International Conference of Computer Systems and
Applications (AICCSA), 2015, pp. 1–8, doi: 10.1109/AICCSA.2015.7507115 .

[15] T. Stocker , R. Accorsi , SecSy: security-aware Ssynthesis of process event logs, in: Proceedings of the 5th International Workshop on Enterprise Mod-
elling and Information Systems Architectures, 2013 . St. Gallen, Switzerland.

[16] A . Burattin , A . Sperduti , PLG: a framework for the generation of business process models and their execution logs, in: BPM 2010 Workshops, Pro-

ceedings of the Sixth Workshop on Business Process Intelligence (BPI2010), Lecture Notes in Business Information Processing, vol. 66, Springer-Verlag,
Berlin, 2011 .

[17] A. Burattin , PLG2: multiperspective processes randomization and simulation for online and offline settings, CoRR abs/1506.08415 (2015) .
[18] V.M. Kataeva , A .A . Kalenkova , Applying graph grammars for the generation of process models and their lsogs, in: Proceedings of the 8th

Spring/Summer Young Researchers Colloquium on Software Engineering (SYRCoSE 2014), 2014, pp. 83–87 .
[19] A. Rozinat , R.S. Mans , M. Song , W.M.P. van der Aalst , Discovering simulation models, Inf. Syst. 34 (3) (2009a) 305–327 .

[20] A. Rozinat , M.T. Wynn , W.M.P. van der Aalst , A.H.M. ter Hofstede , C.J. Fidge , Workflow simulation for operational decision support, Data Knowl. Eng.

68 (9) (2009b) 834–850 .
[21] K.M. van Hee , M.L. Rosa , Z. Liu , N. Sidorova , Discovering characteristics of stochastic collections of process models, in: BPM, Lecture Notes in Computer

Science, vol. 6896, Springer, 2011a, pp. 298–312 .
[22] K.M. van Hee , Z. Liu , N. Sidorova , Is my event log complete? - A probabilistic approach to process mining, in: RCIS, IEEE, 2011b, pp. 1–7 .

[23] R.M. Dijkman , M.L. Rosa , H.A. Reijers , Managing large collections of business process models - current techniques and challenges, Comput. Ind. 63 (2)
(2012) 91–97 .

[24] I.S. Shugurov , A .A . Mitsyuk , Generation of a set of event logs with noise, in: Proceedings of the 8th Spring/Summer Young Researchers Colloquium on

Software Engineering (SYRCoSE 2014), 2014, pp. 88–95 .
[25] M. zur Muehlen , J. Recker , How much language is enough? Theoretical and practical use of the business process modeling notation, in: Seminal

Contributions to Information Systems Engineering, Springer, 2013, pp. 429–443 .
[26] R.M. Dijkman , M. Dumas , C. Ouyang , Semantics and analysis of business process models in BPMN, Inf. Softw. Technol. 50 (12) (2008) 1281–1294 .

[27] A. Kheldoun , K. Barkaoui , M. Ioualalen , Specification and verification of complex business processes - a high-level petri net-based approach, in: BPM,
Lecture Notes in Computer Science, vol. 9253, Springer, 2015, pp. 55–71 .

[28] J. Ye , S. Sun , W. Song , L. Wen , Formal semantics of BPMN process models using YAWL, in: Intelligent Information Technology Application, 2008. IITA

’08. Second International Symposium on, vol. 2, 2008, pp. 70–74 .
[29] A. Kalenkova , I.A. Lomazova , Discovery of cancellation regions within process mining techniques, Fundam. Inform. 133 (2–3) (2014) 197–209 .

[30] W.M.P. van der Aalst , A .A . Kalenkova , V.A . Rubin , H. Verbeek , Process discovery using localized events, in: R. Devillers, A. Valmari (Eds.), Application
and Theory of Petri Nets and Concurrency: 36th International Conference, PETRI NETS 2015, Brussels, Belgium, June 21–26, 2015, Proceedings, Springer

International Publishing, Cham, 2015, pp. 287–308 .
[31] IEEE Task Force on Process Mining, XES Standard Definition, 2013. (www.xes-standard.org) .

http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0009
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0009
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0009
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0009
http://dx.doi.org/10.1177/003754978704900506
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0011
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0011
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0011
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0011
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0012
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0012
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0012
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0012
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0012
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0012
http://dx.doi.org/10.1109/AICCSA.2015.7507115
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0014
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0014
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0014
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0014
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0015
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0015
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0015
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0016
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0016
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0017
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0017
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0017
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0018
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0018
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0018
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0018
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0018
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0019
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0019
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0019
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0019
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0019
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0019
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0020
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0020
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0020
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0020
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0020
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0021
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0021
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0021
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0021
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0022
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0022
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0022
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0022
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0023
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0023
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0023
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0024
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0024
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0024
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0025
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0025
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0025
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0025
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0026
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0026
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0026
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0026
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0027
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0027
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0027
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0027
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0027
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0028
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0028
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0028
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0029
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0029
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0029
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0029
http://refhub.elsevier.com/S1569-190X(17)30004-7/sbref0029
http://www.xes-standard.org

	Generating event logs for high-level process models
	1 Introduction
	2 Related work
	3 Motivating example
	4 Event logs and BPMN modeling constructs
	4.1 Event logs
	4.2 Base BPMN modeling constructs
	4.3 Hierarchical BPMN models
	4.4 BPMN models with data
	4.5 Interacting BPMN models

	5 Event log generation
	5.1 A basic approach for event log generation
	5.2 Generating event logs for BPMN models with data
	5.3 Simulating BPMN models with preferences
	5.4 An approach for generating event logs with time

	6 Tool support and evaluation
	6.1 Event log generator
	6.2 Evaluation

	7 Conclusion
	 References

