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Abstract. We address question of synchronisation in parallel discrete
event simulation (PDES) algorithms. We study synchronisation in con-
servative PDES model adding long-range connections between processing
elements. We investigate how fraction of the random long-range connec-
tions in the synchronisation scheme influences the simulation time profile
of PDES. We found that small fraction of random distant connections
enhance synchronisation, namely, the width of the local virtual times
remains constant with increasing number of processing elements. At the
same time the conservative algorithm of PDES on small-world networks
remains free from deadlocks. We compare our results with the case-study
simulations.
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1 Introduction

Modern high performance systems consist with hundreds of thousands of nodes,
which in turn may have many CPUs, cores, and numerical accelerators. The de-
velopment of hardware architecture influences on the development environments
(programming models, frameworks, compilers, libraries, etc.). They now need to
deal with a high level of parallelism and can solve difficulties arising from system
heterogeneity [1].

In the paper we discuss synchronisation in one of the methods of large-
scale simulation known as parallel discrete event simulation (PDES) [2]. The
method is widely used in physics and computer science, as well as in economics,
engineering, and society. The first ideas come about 40 years ago in order to
overcome limitation of memory/time resources, and revising of the method is still
important nowadays. PDES has a property of good scalability with the physical
system size (number of objects) as well as with the hardware size (number of
nodes, cores, and level of the hyper-threadings).

PDES allows to run one single discrete event simulation task on the num-
ber of processing elements (PE), which physically can be nodes, or CPUs, or
cores, or threads depending on the particular system architecture. The system
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being simulated is divided into subsystems which are mapped onto programming
objects, or logical processes (LPs). Logical process is a sequential subprogram
executed by some PE.

The system changes its state at some discrete moments of time, which are
usually Poisson arrivals. The changes are called discrete events. The events gen-
erates messages with timestamps which are saved in the output queue and sent
to other LPs. Received messages are stored by LPs in their input queues. LPs
during the simulation maintain a loop, sequentially taking the event with the
lowest timestamp from the input queue, executing it, and communicating with
other LPs if necessary. The communication between LPs goes exclusively via
time-stamped messages. It is important that LPs do not use any shared memory.
Synchronisation process is done locally by the analysis of the values of times-
tamps of messages in the queue. When LP processes an event, it updates its own
local virtual time (LVT) to the time of the processed event. Each LP evolves
independently in time and there is no global synchronisation in the simulation
process. Since the dynamic is asynchronous some synchronisation protocol is re-
quired. There are three groups of such protocols: conservative, optimistic and
FaS [2–4].

In the paper we investigate the performance and scalability properties of
the conservative PDES algorithm. In conservative algorithm it is assumed that
all dependencies between LPs must be checked before every portion of compu-
tations in order to preserve causality of the computations. The performance of
conservative algorithm depends on the communication network: the more depen-
dencies in the system the lower speed of the computation. We study the influence
of long-range communication links on the synchronisation and performance of
PDES conservative algorithm. We build a simplified model of the evolution of
LVT profile. The model allows to measure local time variance and average speed
of the utilisation of processing times by LPs. The observables are then mapped
onto synchronisation aspects of PDES scheme.

The paper is organised as follows. In the next section we describe a back-
ground of the problem. Section 3 provides detailed information about the model
under consideration. The results of our simulation are given in Section 4. The
discussion and further work are presented in Section 5.

2 Models of Evolution of LVT Profile in PDES

In this section we describe the general approach to investigation of synchronisa-
tion in PDES algorithms and review main results in this area.

Conservative PDES model on regular networks. Model of evolution of times
in PDES conservative algorithm is proposed in [5]. Authors consider communi-
cation scheme with only nearest-neighbour interactions, which is equivalent to
one-dimensional system with periodic boundary conditions. It was found in sim-
ulation that evolution of time profile reminds the evolution of a growing surface
which is known from literature in physics does belong to Kardar-Parisi-Zhang-
like kinetic roughening [6]. This analogy provides a cross-disciplinary application
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of well-known concepts from non-equilibrium statistical physics to our problem.
More details on the relation of PDES algorithms with physical models can be
found in [7, 8].

Synchronisation of the parallel schemes can be described using this analogy.
Efficiency of parallel implementation can be defined as a fraction of the non-idle
processing elements. This fraction exactly coincides with the density of local
minima in the growing model. It is shown in [5] that in the worst-case scenario
the efficiency of the PDES algorithm remains nonzero as the number of PEs goes
to infinity.

Freeze-and-Shift PDES model. The conservative PDES is proved to be free
from deadlock, and efficiency is about 1/4, on average, i.e., at least one PE out of
four is working at any given time. In [4] an alternative synchronisation algorithm
of PDES was proposed. It is based on i) the extension of the PDES concept on the
hierarchical hardware architecture, including multi-core and hyper-threadings
and ii) using analogy of the evolution of time-profile interface with the physical
models of surface interface growth. In the late case classification of the boundary
conditions leads to the classification of possible PDES algorithms. Authors give
a way to increase utilisation by giving each node a large portion of LPs which
are processed by threads running on the same CPU. The LPs within one CPU
communicate conservatively, whereas LPs from different CPUs communicate ac-
cording to either conservative, or optimistic scheme, or scheme with fixed LVT
on the boundary LPs (those which can communicate with LP in the neighbour-
ing CPUs). In the last case CPUs do not communicate with other CPUs for
some time interval window (the frozen part of the algorithm), and after that
time the message exchange is implemented as part of the memory shifting be-
tween CPUs (the shift part of the algorithm). The algorithm is therefore called
Freeze-and-Shift (FaS).

Optimistic PDES models on regular networks. Model of evolution of time
profile in optimistic PDES algorithm is introduced in [9]. Dynamical behaviour
of the optimistic PDES model is quite different from the conservative PDES
model. The optimistic model corresponds to another surface growing model and
demonstrates features of the roughening transition and directed percolation [10].

Conservative PDES models on small-world like networks. All models de-
scribed above consider PDES algorithms with short-range connections. The idea
of studying the model with other type of communication topology is proposed
in [11]. Authors investigate the behaviour of the local virtual time profile on a
small-world like network [12]. The network is build as a regular one-dimensional
lattice with additional long-range connections randomly wired above it. The links
are used dynamically, i.e. at each time step additional synchronisation check be-
tween distant neighbours is made with some probability p. Small value of the
p significantly improves synchronisation. Variance between local times becomes
finite, while utilisation decreases just slightly.

In present paper we revise the approach of [11], considering more realistic
topology, and compare with the result of [11]. In addition we compare our results
with the case-study [13].
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3 Model Definition

We build a model of evolution of LVTs profile for analysis of the desynchro-
nisation processes in conservative PDES algorithm. The PEs are said to be
synchronised when the differences between LVTs stay finite with the simulation
process. The efficiency of the algorithm is measured as a number of PEs working
at a given moment of time. It reflects the load of the processing elements (CPU,
core, or thread). When the efficiency of the algorithm is strictly greater than
zero, one can say that the algorithm is deadlock free. These properties of the
synchronisation algorithm can be extracted from the analysis of the LVT profile.

The model is constructed on the small-world communication networks [12].
Long-range connections in addition to short-range reflect real systems prop-
erties. For example, computer networks, social networks, electric power grid,
and network of brain neurones are known to be small-world networks. Addi-
tional communication links between distant nodes also enhance synchronisation
of simulation.

First we build a communication topology. For simplicity of the model we
assume that each PE does process only one LP. Nodes in the communication
graph represent PEs, and edges represent dependencies between them. Each PE
has its local variable τ , which is the value of LVT. The set of all LVTs is stored
as an array. Two observables are computed: the efficiency 〈u〉 and the profile
width 〈w2〉. We run the simulation program with different set of parameters N
and p. Finally we take an average over multiple samples.

Topology. Denote number of processing elements as N . We build a small-
world topology of PEs using the parameter p – the fraction of random long-
range connections. First we connect all PEs into a regular one-dimensional lattice
(equivalent to the ring) and then add pN random long-range connections. Each
edge is chosen only once. The result is a communication graph of N nodes and
N(1 + p) edges stored as adjacency list.

Initialisation. We set the parameter p of the network to some value from 0.002
to 0.01, build a topology, and set all local times to zero: τi(0) = 0, i = 1..N .

Simulation. We are interested in evolution of LVTs profile in conservative
algorithm. We assume that only those PEs, whose current time is lower than the
time of their neighbours (i.e. the PEs which it is connected with), may proceed
with computations. These PEs are called active. Such scheme guarantees that
causality will be preserved [2].

In our model we implement an ideal scheme of message passing. At each time
step t every LP broadcasts the message with the time stamp equal to its LVT to
all LPs connected with it. We assume that time needed for message distribution
is negligibly small, so there is no difference between sending and receiving time.
The PEs who have received only messages with higher time stamp than their
LVT, may proceed. These PEs have minimal LVT among their neighbours.

At each simulation step t we find PEs with the lowest LVTs among their
neighbouring nodes and increment local time of those PEs by an exponentially
distributed random amount:
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τi(t+ 1) =

{
τi(t) + η if τi(t) ≤ τK(t),

τi(t) otherwise,
(1)

where η is a random value drawn from the Poisson distribution, K is a set of
all PEs which are connected to i-th PE by local or long-range communication
links, and i = 1..N .

After updating array of LVTs the observables are computed, and PDES goes
to the next simulation cycle.

Observables. We compute two essential features of the model: the efficiency
〈u〉, which is equivalent to the average utilisation of the algorithm, and the width
of the profile 〈w2〉, i.e. the variance of local virtual times, which is associated to
the desynchronisation of PEs.

1. The efficiency (utilisation) of the algorithm is equivalent to the density of lo-
cal minima of the LVT profile. The efficiency shows how many PEs is working
at a given moment of time. In basic conservative scheme on a ring topology
(when each PE is connected with exactly two neighbours) the efficiency is
approximately 1/4. The figure is derived analytically from the observation
of all possible combination of LVTs of neighbouring PEs. Numerical result
is equal to 0.24641(7) [5]. The number shows that only approximately one
quarter of all PEs are working at a given moment of time and other three
quarters are idling.

We calculate the efficiency of the algorithm 〈u〉 as an average fraction of
active PEs at each time step:

〈u〉 =
〈NactivePE〉

N
. (2)

The underlined average is taken over all time steps and 〈·〉 states for the
average over independent 1500 runs with fixed parameters N and p.

2. The width (variance) of the LVT profile shows the average spread between
local virtual times. If the width remains constant during the simulation, then
PEs are well synchronised. The increasing of the profile width corresponds
to the growing of the desynchronisation with simulation time.

The width of the LVT profile is calculated according the formula below:

〈w2(N, t)〉 =
〈 1

N

N∑
i=1

[τi(t)− τ(t)]2
〉
, (3)

where τ(t) = 1
N

∑N
i=1 τi(t) is the mean value of the time profile.

In our simulation program we use random number generation library RN-
GAVXLIB [14]. We run program on the Manticore cluster using MVAPICH2
[15].



6 Liliia Ziganurova1,2 and Lev Shchur1,2,3

4 Results

We are interested in scalability properties of the synchronisation of conservative
PDES model with the long-range connections. We perform simulation of con-
servative PDES model on the ring topology with long-range connections. We
simulate systems of size N (number of PEs) varying from N = 103 to N = 105,
and for number of values of fraction p for the long-range connections. Note that
p = 0 corresponds to the basic conservative model with only short-range con-
nections studied in [5].

The main results are: 1) efficiency of the algorithm remains finite and slightly
reduces with adding long-range connections p; 2) profile width for any p grows
with the system size; 3) profile width saturates for system sizes larger than 104;
4) degree of desynchronisation depends logarithmically with p.

The efficiency. We observe that for any system size the average density of
local minima 〈u(t)〉monotonically decreases as a function of time and approaches
a constant. The constant depends on the fraction of random connections p and
system size N . For small p the utilisation of events reduces slightly. The small-
world-synchronised simulation scheme maintains an average rate greater than
zero. For example, for p = 0.01 it is 〈u〉 = 0.22137(7), while for basic conservative
scheme 〈u0〉 = 0.24641(7) [5].

The efficiency 〈u〉 has nonlinear dependence on the parameter p. It is possible
to fit utilisation dependence on p by expression:

〈u(p)〉 = u0 −A(N)pB(N). (4)

The coefficient A and the exponent B depend on the system size, and can
be fit using logarithmic or exponential dependencies. Using logarithmic fit we

obtain A = 0.078(3) + 0.345(9)
logN and B = 0.092(3)) + 1.26(1)

logN . Using power-law fit

we obtain A = 0.08(2)+ 0.253(5)
N0.12(3) and B = 0.24(1)+ 1.14(5)

N0.21(1) . We could not choose
which fit is better.

Finally, we found that as N goes to infinity, 〈u(p)〉 = u0− 0.078(3)p0.092(3) if
we approximate A and B with logarithm, or 〈u(p)〉 = u0 − 0.08(2)p0.24(1) in the
case of the power-law approximation for the coefficients A and the exponent B.

The width. We observed that the profile width grows as 〈w2(t)〉 ∼ t2β and
saturates at some time t? reaching the value 〈w2

∞〉. We measured the growth
exponent β for each combination of the parameters N and p. For large systems
(N > 104) exponent β becomes almost constant. The asymptotic value of β is
found to behave logarithmically with p

β = −0.137(4)− 0.162(1) ln(p). (5)

We remind that without long-range connections (p = 0) it is β = 1/3.
It is interesting, that during the simulation on more then ten thousand PEs

the desynchronisation of PEs will grow equally fast for systems of any sizes.
For large systems synchronisation depends only on the amount of long-range

connections. The profile width approaches a constant value 〈w2
∞〉 with growing
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system size. In contrary, in the basic short-range conservative scheme (p = 0)
the width is increasing with the system size as 〈w2

∞〉 ∼ N2α, α = 0.49(1).
The topology with additional distant connections allows the simulation of large
systems to preserve the same degree of synchronisation.

Since the small-world conservative PDES scheme progresses with positive
rate and the profile width becomes finite in the limit of infinitely many PEs,
one can say that the conservative algorithm with long-range connections is fully
scalable.

5 Discussion and future work

In the paper we present analysis of the synchronisation in conservative PDES
algorithm on the small-world networks.

Paper [13] presents detailed results of the case-study simulations of different
models. Two optimistic simulators were used: ROSS [16] and WARPED2 [17].
Simulation results of three models were reported: traffic model, wireless network
model, and epidemic model. Average utilisation 〈u〉 varied from 0.47 for epidemic
model to 0.0043 for traffic model, and down to 5·10−5 for wireless network model.

We guess that the results of case-study [13] can be explained in part by
the concept of small-world network with varying parameter p. To answer this
question in details it is necessary to perform case-studies of the mentioned models
measuring quantities, which can be mapped on the parameters of our model.

In addition, it is interesting to investigate properties of the optimistic algo-
rithm of PDES on small-world networks provided with the comparison with the
results of case-studies.
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