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1. Introduction

Among various numerical methods for solving gas dynamics systems of equations, see, in particular, [1,2]
there are methods based on a preliminary regularization of equations, including a kinetic (or quasi-
gasdynamic, QGD) regularization [3,4]. A variety of practical applications of this approach is also presented
there.

In this paper, we study an explicit two-level in time and symmetric in space finite-difference scheme with
such a regularization linearized at a constant solution (with arbitrary velocity). The problem of the stability
analysis for schemes of this type has been known for many years. In the 2D and 3D cases and a uniform
rectangular grid, we derive both necessary and sufficient conditions for the L2-dissipativity of the solutions
to the Cauchy problem for this scheme for the first time. The spectral method [5] is applied to this end.
In these conditions, the Courant number is uniformly bounded with respect to the Mach number which is
significant in computing super- and hypersonic flows. The similar results have previously been obtained in
simpler 1D full and 2D and 3D barotropic cases [6,7].

Schemes related to other regularizations like [8] could be studied by this technique as well.
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2. L2-dissipativity analysis

The gas dynamics system of equations with the QGD regularization consists of the following mass,
momentum and total energy balance equations [4]

Op+divj =0, O(pu) +divje@u—I1I)+ Vp=0, atE—Fdiv[(E—i-p)%—&-q—Hu =0 (1)

in R" n=2,3, for t > 0. The sought functions are the gas density p > 0, velocity u = (uq, ..., u,) and the
specific internal energy ¢ > 0 depending on (z,t), where x = (z1,...,x,). Moreover, £ = %p|u|2 +pe>0
is the total energy and p = (v — 1)pe is the gas pressure, v > 1. The operators div and V = (9y,...,0,)
are taken in x and 9; = 9/0t, 9; = 9/0x;. The symbols ® and - denote the tensor and inner products of
vectors, and a tensor divergence is taken with respect to its first index.

The regularized mass flux j, viscous stress tensor I = IIyg + II- and heat flux q are as follows

j=pu—m, m=r[divijpu®u)+ Vp|, m=r7[p(u-V)u+ Vp|, (2)
Iys = p(Va+ (Va)") + (A — 2p)(divu)l, II, =u®m+ 7(u- Vp+ypdivu)l, (3)
—q = %Vs+7p(ro5f l%u~Vp)u, (4)

where Iy g is the Navier—Stokes viscous stress tensor with Vu = {(’“)iuj} I is the unit tensor, m, m and

n
ij=11
II. are regularizing momenta and tensor, ;& > 0, A > 0 and 3 > 0 are the artificial viscosity and (scaled)

heat conductivity coefficients as well as 7 > 0 is the relaxation parameter.

One can linearize system (1)—(4) at a constant solution (p,u,e)(x,t) = (p«, s, ex), where p, > 0,
Wi = (Usly .oy Unn), €« > 01]9]. Let 7 =7, > 0 and
Cx = ’7(7 - 1>€*7 Hs = asT*P*Cia )\* - alsT*P*Cza as 2 07 6é\ls 2 0; ;{* == aPT*P*Ci7 aP 2 0
(see [3,4]), where c, is the background sound velocity, oy = y@s and =< are the Schmidt and Prandtl

ap
numbers. Substituting the solution in the form (p, u, &) = (p« + puf, W+ %ﬁ, ex+1/7 — 1e,é) into Egs. (1)
(4), where z = (p,@,€)7 is the vector of dimensionless small perturbations, and omitting the 2nd order terms
with respect to z, one can derive the linearized QGD system of equations

Oz + c.BY9z — 1.6 (A2 + (1 — D) A1 9,8,2) = 0 (5)

in R" for ¢t > 0, where A A() and B are matrices of viscous and convective terms of the order n + 2.
Hereafter the summation over the repeated indexes ¢ and j (and only over them) is assumed from 1 to n.
Also 609 is the Kronecker symbol. Let e, . .. ,€nt1 be the column vectors of the standard coordinate basis
in R"*2 and E*D .= erel + ejel, then

1 1
B® = My I, 0 + —E©F 4+ Eknt1)
A Vs

2 2 1
A®R) = D+ M21, 0 + —M,EO® + M E®" Y (@) + 1)epel + ——=EOn D),
vk NG VT ST

1 1 1
D'Y ::dia’g{;7a8a"'7a57ap+7}7 a\0:76‘\5—"_6‘\157

Vx 3
A 1 1 G+ 1
ARD — MM T, 4o + — (MR EOD + MEOR) 4+ —— (M BG4 pgy gty 4 20 T2 plkd)
ot )+ =l )+

*

for all k and [ from 1 to n. Hereafter v, = ﬁv M), = =2k [} is the Ith order unit matrix and diag{a,...,a;}

Cx

is the diagonal matrix with the listed diagonal elements. Clearly B®*), A**) and A are symmetric
matrices, and AR — ()
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The equalities (E*V)2 = erel + eel (k # 1), EORERD = epel | EEntDEOR = ¢, el
(I <k<n)and % + 7% =1 allow one to check the important formula

AR — (B®N)2 4 diag{0, @, ..., a5, ap} + Goerer, 1<k <n. (6)
The solution to a system like (5) under the initial condition z|;—g = z¢ satisfies the uniform in ¢ bound [9]

SSEHZ('J)HL%W) < ||Z0HL2(R”) Vzo € LQ(Rn)- (7)

3

Let wyp, and ©@2* be meshes in 25 and t with the nodes lhy, | € Z, and t,, = mAt, m > 0, and steps
hir > 0 and At > 0, 1 < k < n. Define the finite-difference operators

° V41 — V-1 Vi+1 — 2u + v v = +,m m+1
opuy = T7 (030kv); = h2 , O = YR v = .
Let wp = wip X -+ X Wopy, h = (h1,..., hp), hain = Minjcpepn by and hy = (hy ... hy)Y/"™.
We approximate system (5) using the defined finite-difference operators and get an explicit two-level in ¢
and three-point in each direction z1, ..., z, finite-difference scheme
1y + . By — 1.¢2 (A(”)tﬁkéiy +(1- 5(ij))ﬁ(ij)5i(§jy) =0 (8)

on wy X @4, Similar schemes arise also after the linearization of schemes for the original equations (1)—(4)
including those from [3,4].

Let H be a Hilbert space of vector-functions v: wy, — C"*2 that are square summable over wy and be
endowed with the inner product

Vo¥) i = b S (Vieyidenea, k= (i, ... k).
kezn

The question is about conditions related to validity of the mesh counterpart of bound (7):

sup Iy™ e < Iy°llz Vy® € H. 9)

m/

Recall that this bound is equivalent to both the bound [| A2z < 1 for the transition operator
A=1— At[e,BYS; — 7.2 (AW 576, + (1 — §0D) A §,5,)]

and H-dissipativity of the scheme: ||y™| g < |ly™ g < - < ||yY||g for any y* € H, m > 1.
Let At and 7, be given by the formulas
6hmin main ahr ahT Qp. hmin ahT hmin

M+ De. - e "= o ~(M+De o MM+ (10)

with the parameters 5 > 0 (the Courant number) and o > 0; M = |u.|/c, is the background Mach number.

Also h; = h(h) > 0 (in particular, b, = hmin Or hy) whereas B, @, ap. and aj,,. are defined for convenience

(here ap, = aand @, = aif hy = hyin). Below we derive conditions on B depending on ap,., or 8 depending
on @y, , related to the validity of bound (9).

Following [5-7], we take particular solutions to scheme (8) in the form yJ*(¢) = e*éw™ (&), where k € Z",

> 0, i is the imaginary unit and & = (£1,...,&,)T € [0,27]" is a parameter. Substituting them into (8)

At

and using formulas (10) lead to the explicit formula wt = Ggw on @“!, with the matrices

Gs = Inys — BFs, Fy =4ay, As +2iBs, By = d;s;BY), Ag = d?A" + (1 —607))d;d;s;5;,A0),
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where Gs is the symbol of the operator A, s = (s1,...,s,) and

hmin
op =sin? & € [0,1], dy = re/oE, TH= S Los= (-1 1—0p €[-1,1], 1<k<n,

with [ =0 for 0 < & < morly =1 for m < & < 27.
Define a column vector M = (M, ..., M,)T (then |[M| = M is the background Mach number) and a row
vector ¢ = (Ci,...,Cn) with Cx = dpsg, 1 <k <n, and set d = (d? 4 --- +d?)'/2,

Lemma 1. 1. The matrices Bs and As can be written in the 38 x 3-block form

1 132 2 1 2
M 56 0 am + 5d el WA
1 T 1 T 2 T 2 T
Bs = *\HC (CM)In 7\/’T*C s AS = 7ﬁp aMIn + Co 77* P s
1 2 ~ 1
0 \/%C CM NaG d2 /»y*’p am + (O[P + ,Yi*)dz

where
am = ((M)? + MTQM = pM, p = (CM)¢ +M”Q, Cy = a,d’I, + (ao+ 1) (C"¢ + Q)

and Q = diag{q1,...,qn} with q, == dio, =rici, 1 <k < n.
2. The following matriz inequality holds: B2 < Ag for any s € S := [—1,1]".

Proof. 1. The matrix By satisfies the formulas

; 1 ; 1 ,
By = (B = (i Milnia + —GE®D + —— BT
° 2 Nal Vs
0 =¢ 0 0 0 0
VA
T 1 T
= (M) + [ ¢ O, 07|+ [0 (1)n =¢ |,
0 0 0 0 #=¢ 0

where 0 and O,, are zero row vector and matrix of the nth order.
We write down the formula Aq = d? A — Cffl(”) + CiCjA(ij)7 and since d? = ¢; + (7, we further obtain

g e 2 ) 2 )
dZAW — 2A = @D+ ;Mo + — ¢ M; BV  —— g, M D
’ A NeE
1 0 MTQ o0
+ (Ao + 1)gieie] +d*——=EO" ) = @D, + MTQMI,, o+ — [ QM 0O, 07
VY \/77 0 0 0
5 [0 0 0 0 0 0 P2 1 0 1
+— 10" 0, QM|+ (G+1)(0" @ o |+ — (0" 0, 07|,
Vi<\o MTQ o 0 0 0 m\1 o0 1
o 1 . .
GGAY) = GMGM; Ly + — (GMiGECY) + G M;GEOD)
\ﬁ
1 . : 1. y
- \/WT*(Cz’MiCjE(j’nH) + CijCzE(Z’"H)) + §(ao + 1)GGE™) = (CM)? 1,40
5 0 ¢ 0 5 0 0 0 0 0 0
+—¢M|(¢" 0, o7 |+—=—=¢M|0" O, ¢"|+(@+1)|0" ¢"¢ o
el o o o) V¥ 0 ¢ 0 0 0 0

The specified form of matrices Bs and Ag follows from the presented formulas.
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2. For the matrix Ag == AW 4 (1 - 5(1']‘))(1,(],/1(1‘]‘)7 from the same formulas it follows that

0 0 0
As—B2= (0T G,¢)’L, +aocT¢  oT | >0
0 0 apl¢)?

since ¢T'¢ > 0. Since also AU > 0, see (6), we derive Ag = AU + Ay > Ag > B2, O
Denote by Apax(A4) the maximal eigenvalue of a Hermitian matrix A.

Theorem 1. Let H = [L*(S)]¥ with K = n + 2. Then the following equalities hold

[Mlleim = 1G lepg = sup [ Gow(®)lln = max Gl en = mag A2 (GiG).

Iwlig=1

The first equality follows from the isomorphism of the complex Hilbert spaces (¢2)X and H estab-
lished by means of the complex Fourier series, and the last one (without maxscg) is well known. The
inequality [|G [ z3) < maxses [|Gsllzcx) is obvious whereas the opposite inequality maxses Amax(GGs) =
Amax (G5, Gsy) < ||G.||2£[H], so € S, is proved by contradiction (taking the function w(s) = wy # 0 for
|s —sp| < 0 or w(s) = 0 otherwise, where G35, GsoWo = )\max(G;OGSO)WO, for sufficiently small 6 > 0, and

using the continuity of GGs in s).
One can generalize Theorem 1 for any A € L[H] with the continuous symbol G(£) and K > 1.
Now we give necessary conditions and sufficient conditions for bound (9) to hold [7].

Theorem 2. Let [Ag, Bs] := AsBs — BsAs. The validity of the following matriz inequalities

B(2an, AZ + 55— BZ +1[As, Bs]) < As Vs €S,

200, T2 BAFR) Ty, (B2 < A®R) w1 <k <,

20‘h7—

B[QahT(l +¢)AZ + ﬁ(l +e B2 < As Vs €S, for somee >0

respectively is necessary and sufficient, or necessary, or sufficient for bound (9) to hold.
For maxses Amax(As) < A, bound (9) holds under the validity of the number inequality

B(2an, N2 + (2an,)"V?]* < 1.

Condition (11) follows from Theorem 1, and (14) follows from (13) using the above inequality B2 <

The derivation of conditions (12) and (13) from (11) is similar to [7].
Next we derive from condition (12) a specific necessary condition.

Theorem 3. For bound (9) to hold, the following condition is necessary:

1 B (M +1)?
—— min =
20p, 1<k<n Bl M2 + A[My]

ﬁ < ﬁnec(ahT) = min{2ah-ra

} = Bnec(arhf)a
where Ty, = hr/hmin and M} +2[Mk] < Amax (AFR)) with

5 ap+1 ap —1\2 1 . 1/ 1
A[M] 5:maX{ z Jr\/( r ) +aP,(ao+1+)+\/
2 2 Ve 2 y

1, 1 1, 1\2 4 I |
§(ao+ap+1+’7>+ Z(ao—ap—&-;) +—Mk} >max{ao+1,ap+—}

1(~ 1\2 4
= ao+—> + — M,
4 e yF

~ ~ ~ 4~ ~
and ap = Qs +ap = 305 + Q1.

As.
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Ifhy =+ =hy=h; =h, thenr,_ =1 and Bre.(Q) is independent of h and takes the form
(M +1)? }
(Mr%lax + ;[Mmax])

with Mpax = max |Myg]|.

1<k<n

Brec(@) = min{Za
2a

(kk)

Proof. Similarly to [7], since A > 0, the first inequality (12) is equivalent to the following one

hi 1

h2 0 20 Amax (AKR))

Due to (6) we have (B®))2 < A¥F) " and the second inequality (12) is valid under § < 2ay,,. On the other
hand, (B*)}, = A(llik) > 0, thus the second inequality (12) implies the inequality B < 2arp, and finally is
equivalent to it (as in [6,7]). The presented lower bound for Apay(A**)) follows from the Cauchy theorem
on separation of eigenvalues of a symmetric matrix and considering the 2nd order main minors of A®*) (it

B <

coincides with the bound given in the 1D case in [6]). The transition from f and ap, to B and @y, leads to
condition (15). O

The sufficient condition (14) can be rewritten in the form

N _ A1/2 1 2
B < Bsut(Qn, ) = 1/(\/ 2ahTM+ 1T m) , (16)

cp. [10]. The maximum of the right-hand side is achieved for @y, = @, . == (M + 1)/(2A/?) and equals
ap.«/2. Note that both Bpec(@n,.) — 0 and Bsue(@n,.) — 0 as ap,. — 40 or @y, — +o0.
To apply condition (16), we also need to bound Apax(As) from above. Let r = (r1,...,7,).

Theorem 4. Forn = 2,3, the following bounds hold
Y. ~ 2 ~ 2772 ii),.4\1/2
r;leasx)\max(As) < A= max{as|r| + cn(ao + 1) |r\ Nap, } + cnr; M7 + 2((5( ) ) M

< max{@sn + ¢, (ap + 1), n\(@p,vy }Jrch +2vnM

with Ccy = 1, c3 = % and /_\(ap,’y) — ap2+1 + (Otp;rl) - an

If hy = -+ = hy, then the second inequality turns into equality.

Proof. We apply the decomposition As = Aso + amInt2 + 2Am1, where

192 1 g2 1

;d 0 \/Wd 0 /P 0
Aso = As|M=0 = OT C() OT s AM1 - %PT On \/}T*pT

amd 0 (@rt)d 0 mp 0

Due to the classical Rayleigh formula for Apax(A) the inequality Apax(As) < Amax(Aso) +am +2Amax (An)
is valid. Moreover, due to [7] the following estimates hold

Amax (C¢T + Q) < ¢, am < enrZMZ, |p|2 < 62, (17)

We have Sp Agp = Sp CoUSp C1, where the 2nd order matrix C; is obtained from Agg by deleting all rows
and columns except the first and last ones. It is straightforward to calculate that Apa.x(C1) = d*A(ap,7)
(using % + 'y% = 1). Since also d? < |r|*, we derive
/\max(ASO) < max{&sdQ + (aO + 1))\maX(CCT + Q)a dz;\(anl‘/)} <
< max{@,|r” + ¢, (@0 + 1), [r[*A(@p,7)}.

The eigenvalue problem for App; is solved easily, and Sp Ay = {0, +|p|} (using % + 7% =1 once again)
thus Apax(Ami1) = |p|- Now from (17) we obtain the result. O

Importantly, both Syec(@n.) and Bsut(@n, ) are uniformly bounded in M.
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