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a b s t r a c t

We study an explicit in time and symmetric in space finite-difference scheme with
a kinetic regularization for the 2D and 3D gas dynamics system of equations
linearized at a constant solution (with any velocity). We derive both necessary and
sufficient conditions for L2-dissipativity of the Cauchy problem for the scheme by
the spectral method. The Courant number is uniformly bounded with respect to
the Mach number in them.
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1. Introduction

Among various numerical methods for solving gas dynamics systems of equations, see, in particular, [1,2]
there are methods based on a preliminary regularization of equations, including a kinetic (or quasi-
gasdynamic, QGD) regularization [3,4]. A variety of practical applications of this approach is also presented
there.

In this paper, we study an explicit two-level in time and symmetric in space finite-difference scheme with
such a regularization linearized at a constant solution (with arbitrary velocity). The problem of the stability
analysis for schemes of this type has been known for many years. In the 2D and 3D cases and a uniform
rectangular grid, we derive both necessary and sufficient conditions for the L2-dissipativity of the solutions
to the Cauchy problem for this scheme for the first time. The spectral method [5] is applied to this end.
In these conditions, the Courant number is uniformly bounded with respect to the Mach number which is
significant in computing super- and hypersonic flows. The similar results have previously been obtained in
simpler 1D full and 2D and 3D barotropic cases [6,7].

Schemes related to other regularizations like [8] could be studied by this technique as well.

∗ Corresponding author.
E-mail addresses: azlotnik@hse.ru (A. Zlotnik), tlomonosov@hse.ru (T. Lomonosov).

https://doi.org/10.1016/j.aml.2019.106198
0893-9659/© 2020 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.aml.2019.106198
http://www.elsevier.com/locate/aml
http://www.elsevier.com/locate/aml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.aml.2019.106198&domain=pdf
mailto:azlotnik@hse.ru
mailto:tlomonosov@hse.ru
https://doi.org/10.1016/j.aml.2019.106198


2 A. Zlotnik and T. Lomonosov / Applied Mathematics Letters 103 (2020) 106198

2. L2-dissipativity analysis

The gas dynamics system of equations with the QGD regularization consists of the following mass,
momentum and total energy balance equations [4]

∂tρ + div j = 0, ∂t(ρu) + div(j ⊗ u − Π ) + ∇p = 0, ∂tE + div
[
(E + p) j

ρ
+ q − Πu

]
= 0 (1)

in Rn, n = 2, 3, for t ⩾ 0. The sought functions are the gas density ρ > 0, velocity u = (u1, . . . , un) and the
specific internal energy ε > 0 depending on (x, t), where x = (x1, . . . , xn). Moreover, E = 1

2 ρ|u|2 + ρε > 0
is the total energy and p = (γ − 1)ρε is the gas pressure, γ > 1. The operators div and ∇ = (∂1, . . . , ∂n)
are taken in x and ∂t = ∂/∂t, ∂i = ∂/∂xi. The symbols ⊗ and · denote the tensor and inner products of
vectors, and a tensor divergence is taken with respect to its first index.

The regularized mass flux j, viscous stress tensor Π = ΠNS + Πτ and heat flux q are as follows

j = ρu − m, m = τ
[
div(ρu ⊗ u) + ∇p

]
, m̂ = τ

[
ρ(u · ∇)u + ∇p

]
, (2)

ΠNS = µ
(
∇u + (∇u)T

)
+

(
λ − 2

3 µ
)
(div u)I, Πτ = u ⊗ m̂ + τ(u · ∇p + γp div u)I, (3)

−q = κ̃∇ε + τρ
(

u · ∇ε − p

ρ2 u · ∇ρ
)

u, (4)

where ΠNS is the Navier–Stokes viscous stress tensor with ∇u = {∂iuj}n
i,j=1, I is the unit tensor, m, m̂ and

Πτ are regularizing momenta and tensor, µ > 0, λ > 0 and κ̃ > 0 are the artificial viscosity and (scaled)
heat conductivity coefficients as well as τ > 0 is the relaxation parameter.

One can linearize system (1)–(4) at a constant solution (ρ, u, ε)(x, t) ≡ (ρ∗, u∗, ε∗), where ρ∗ > 0,
u∗ = (u∗1, . . . , u∗n), ε∗ > 0 [9]. Let τ = τ∗ > 0 and

c∗ =
√

γ(γ − 1)ε∗, µ∗ = α̂sτ∗ρ∗c2
∗, λ∗ = α̂1sτ∗ρ∗c2

∗, α̂s ⩾ 0, α̂1s ⩾ 0, κ̃∗ = α̂P τ∗ρ∗c2
∗, α̂P ⩾ 0

(see [3,4]), where c∗ is the background sound velocity, αs = γα̂s and 1
α̂P

are the Schmidt and Prandtl
numbers. Substituting the solution in the form (ρ, u, ε) = (ρ∗ +ρ∗ρ̃, u∗ + c∗√

γ ũ, ε∗ +
√

γ − 1ε∗ε̃) into Eqs. (1)–
(4), where z = (ρ̃, ũ, ε̃)T is the vector of dimensionless small perturbations, and omitting the 2nd order terms
with respect to z, one can derive the linearized QGD system of equations

∂tz + c∗B(i)∂iz − τ∗c2
∗
(
A(ii)∂2

i z + (1 − δ(ij))Â(ij)∂i∂jz
)

= 0 (5)

in Rn for t ⩾ 0, where A(ii), Â(ij) and B(i) are matrices of viscous and convective terms of the order n + 2.
Hereafter the summation over the repeated indexes i and j (and only over them) is assumed from 1 to n.
Also δ(ij) is the Kronecker symbol. Let e0, . . . , en+1 be the column vectors of the standard coordinate basis
in Rn+2 and E(k,l) := ekeT

l + eleT
k , then

B(k) = MkIn+2 + 1
√

γ
E(0,k) + 1

√
γ∗

E(k,n+1),

A(kk) = Dγ + M2
k In+2 + 2

√
γ

MkE(0,k) + 2
√

γ∗
MkE(k,n+1) + (â0 + 1)ekeT

k + 1
√

γγ∗
E(0,n+1),

Dγ := diag
{ 1

γ
, α̂s, . . . , α̂s, α̂P + 1

γ∗

}
, â0 = 1

3 α̂s + α̂1s,

Â(kl) = MkMlIn+2 + 1
√

γ

(
MkE(0,l) + MlE

(0,k)) + 1
√

γ∗

(
MkE(l,n+1) + MlE

(k,n+1)) + â0 + 1
2 E(k,l)

for all k and l from 1 to n. Hereafter γ∗ = γ
γ−1 , Mk = u∗k

c∗
, Il is the lth order unit matrix and diag{a1, . . . , al}

is the diagonal matrix with the listed diagonal elements. Clearly B(k), A(kk) and Â(kl) are symmetric
matrices, and Â(kl) = Â(lk).
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The equalities (E(k,l))2 = ekeT
k + eleT

l (k ̸= l), E(0,k)E(k,n+1) = e0eT
n+1, E(k,n+1)E(0,k) = en+1eT

0
(1 ⩽ k ⩽ n) and 1

γ + 1
γ∗

= 1 allow one to check the important formula

A(kk) = (B(k))2 + diag
{

0, α̂s, . . . , α̂s, α̂P

}
+ â0ekeT

k , 1 ⩽ k ⩽ n. (6)

The solution to a system like (5) under the initial condition z|t=0 = z0 satisfies the uniform in t bound [9]

sup
t⩾0

∥z(·, t)∥L2(Rn) ⩽ ∥z0∥L2(Rn) ∀ z0 ∈ L2(Rn). (7)

Let ωkh and ω̄∆t be meshes in xk and t with the nodes lhk, l ∈ Z, and tm = m∆t, m ⩾ 0, and steps
hk > 0 and ∆t > 0, 1 ⩽ k ⩽ n. Define the finite-difference operators

δ̊kvl = vl+1 − vl−1

2hk
, (δ∗

kδkv)l = vl+1 − 2vl + vl−1

h2
k

, δtv = v+ − v

∆t
, v+,m = vm+1.

Let ωh := ω1h × · · · × ωnh, h = (h1, . . . , hn), hmin := min1⩽k⩽n hk and hV = (h1 . . . hn)1/n.
We approximate system (5) using the defined finite-difference operators and get an explicit two-level in t

and three-point in each direction x1, . . . , xn finite-difference scheme

δty + c∗B(i)δ̊iy − τ∗c2
∗
(
A(ii)δ∗

i δiy + (1 − δ(ij))Â(ij)δ̊iδ̊jy
)

= 0 (8)

on ωh × ω̄∆t. Similar schemes arise also after the linearization of schemes for the original equations (1)–(4)
including those from [3,4].

Let H be a Hilbert space of vector-functions v: ωh → Cn+2 that are square summable over ωh and be
endowed with the inner product

(v, y)H = h1 . . . hn

∑
k∈Zn

(vk, yk)Cn+2 , k = (k1, . . . , kn).

The question is about conditions related to validity of the mesh counterpart of bound (7):

sup
m⩾0

∥ym∥H ⩽ ∥y0∥H ∀ y0 ∈ H. (9)

Recall that this bound is equivalent to both the bound ∥A∥L[H] ⩽ 1 for the transition operator

A = I − ∆t
[
c∗B(i)δ̊i − τ∗c2

∗
(
A(ii)δ∗

i δi + (1 − δ(ij))Â(ij)δ̊iδ̊j

)]
and H–dissipativity of the scheme: ∥ym∥H ⩽ ∥ym−1∥H ⩽ · · · ⩽ ∥y0∥H for any y0 ∈ H, m ⩾ 1.

Let ∆t and τ∗ be given by the formulas

∆t ≡ βhmin

(M + 1)c∗
= β̃hmin

c∗
, τ∗ ≡ αhτ

c∗
= α̂hτ

(M + 1)c∗
= αhτ hmin

c∗
= α̂hτ hmin

(M + 1)c∗
(10)

with the parameters β > 0 (the Courant number) and α > 0; M = |u∗|/c∗ is the background Mach number.
Also hτ = hτ (h) > 0 (in particular, hτ = hmin or hV ) whereas β̃, α̂, αhτ and α̂hτ are defined for convenience
(here αhτ = α and α̂hτ = α̂ if hτ = hmin). Below we derive conditions on β̃ depending on αhτ , or β depending
on α̂hτ , related to the validity of bound (9).

Following [5–7], we take particular solutions to scheme (8) in the form ym
k (ξ) = eik·ξwm(ξ), where k ∈ Zn,

m ⩾ 0, i is the imaginary unit and ξ = (ξ1, . . . , ξn)T ∈ [0, 2π]n is a parameter. Substituting them into (8)
and using formulas (10) lead to the explicit formula w+ = Gsw on ω̄∆t, with the matrices

Gs = In+2 − β̃Fs, Fs = 4αhτ As + 2iBs, Bs = disiB
(i), As = d2

i A(ii) + (1 − δ(ij))didjsisjÂ(ij),
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where Gs is the symbol of the operator A, s = (s1, . . . , sn) and

σk = sin2 ξk
2 ∈ [0, 1], dk = rk

√
σk, rk = hmin

hk
⩽ 1, sk = (−1)lk

√
1 − σk ∈ [−1, 1], 1 ⩽ k ⩽ n,

with lk = 0 for 0 ⩽ ξk ⩽ π or lk = 1 for π < ξk ⩽ 2π.
Define a column vector M = (M1, . . . , Mn)T (then |M| = M is the background Mach number) and a row

vector ζ = (ζ1, . . . , ζn) with ζk = dksk, 1 ⩽ k ⩽ n, and set d = (d2
1 + · · · + d2

n)1/2.

Lemma 1. 1. The matrices Bs and As can be written in the 3 × 3-block form

Bs =

⎛⎜⎜⎝
ζM 1√

γ ζ 0
1√
γ ζT (ζM)In

1√
γ∗

ζT

0 1√
γ∗

ζ ζM

⎞⎟⎟⎠ , As =

⎛⎜⎜⎝
aM + 1

γ d2 2√
γ p 1√

γγ∗
d2

2√
γ pT aMIn + C0

2√
γ∗

pT

1√
γγ∗

d2 2√
γ∗

p aM +
(
α̂P + 1

γ∗

)
d2

⎞⎟⎟⎠ ,

where

aM = (ζM)2 + MT QM = pM, p = (ζM)ζ + MT Q, C0 = α̂sd2In +
(
â0 + 1

)(
ζT ζ + Q

)
and Q = diag{q1, . . . , qn} with qk := d2

kσk = r2
kσ2

k, 1 ⩽ k ⩽ n.
2. The following matrix inequality holds: B2

s ⩽ As for any s ∈ S := [−1, 1]n.

Proof. 1. The matrix Bs satisfies the formulas

Bs = ζiB
(i) = ζiMiIn+2 + 1

√
γ

ζiE
(0,i) + 1

√
γ∗

ζiE
(i,n+1)

= (ζM)In+2 +

⎛⎜⎝ 0 1√
γ ζ 0

1√
γ ζT On 0T

0 0 0

⎞⎟⎠ +

⎛⎜⎝ 0 0 0
0T On

1√
γ∗

ζT

0 1√
γ∗

ζ 0

⎞⎟⎠ ,

where 0 and On are zero row vector and matrix of the nth order.
We write down the formula As = d2

i A(ii) − ζ2
i Â(ii) + ζiζjÂ(ij), and since d2

i = qi + ζ2
i , we further obtain

d2
i A(ii) − ζ2

i Â(ii) = d2Dγ + qiM
2
i In+2 + 2

√
γ

qiMiE
(0,i) + 2

√
γ∗

qiMiE
(i,n+1)

+
(
â0 + 1

)
qieieT

i + d2 1
√

γγ∗
E(0,n+1) = d2Dγ + MT QMIn+2 + 2

√
γ

⎛⎝ 0 MT Q 0
QM On 0T

0 0 0

⎞⎠
+ 2

√
γ∗

⎛⎝ 0 0 0
0T On QM
0 MT Q 0

⎞⎠ +
(
â0 + 1

) ⎛⎝ 0 0 0
0T Q 0T

0 0 0

⎞⎠ + d2
√

γγ∗

⎛⎝ 1 0 1
0T On 0T

1 0 1

⎞⎠ ,

ζiζjÂ(ij) = ζiMiζjMjIn+2 + 1
√

γ

(
ζiMiζjE(0,j) + ζjMjζiE

(0,i))
+ 1

√
γ∗

(
ζiMiζjE(j,n+1) + ζjMjζiE

(i,n+1)) + 1
2(â0 + 1)ζiζjE(i,j) = (ζM)2In+2

+ 2
√

γ
ζM

⎛⎝ 0 ζ 0
ζT On 0T

0 0 0

⎞⎠ + 2
√

γ∗
ζM

⎛⎝ 0 0 0
0T On ζT

0 ζ 0

⎞⎠ +
(
â0 + 1

) ⎛⎝ 0 0 0
0T ζT ζ 0T

0 0 0

⎞⎠ .

The specified form of matrices Bs and As follows from the presented formulas.
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2. For the matrix Ãs := ζ2
i A(ii) + (1 − δ(ij))ζiζjÂ(ij), from the same formulas it follows that

Ãs − B2
s =

⎛⎝ 0 0 0
0T α̂s|ζ|2In + â0ζT ζ 0T

0 0 α̂P |ζ|2

⎞⎠ ⩾ 0

since ζT ζ ⩾ 0. Since also A(ii) ⩾ 0, see (6), we derive As = qiA
(ii) + Ãs ⩾ Ãs ⩾ B2

s . □

Denote by λmax(A) the maximal eigenvalue of a Hermitian matrix A.

Theorem 1. Let H = [L2(S)]K with K = n + 2. Then the following equalities hold

∥A∥L[H] = ∥G·∥L[H] ≡ sup
∥w∥H=1

∥Gsw(s)∥H = max
s∈S

∥Gs∥L[CK ] = max
s∈S

λ1/2
max(G∗

sGs).

The first equality follows from the isomorphism of the complex Hilbert spaces (ℓ2)K and H estab-
lished by means of the complex Fourier series, and the last one (without maxs∈S) is well known. The
inequality ∥G·∥L[H] ⩽ maxs∈S ∥Gs∥L[CK ] is obvious whereas the opposite inequality maxs∈S λmax(G∗

sGs) =
λmax(G∗

s0Gs0) ⩽ ∥G·∥2
L[H], s0 ∈ S, is proved by contradiction (taking the function w(s) = w0 ̸= 0 for

|s − s0| ⩽ δ or w(s) = 0 otherwise, where G∗
s0Gs0w0 = λmax(G∗

s0Gs0)w0, for sufficiently small δ > 0, and
using the continuity of G∗

sGs in s).
One can generalize Theorem 1 for any A ∈ L[H] with the continuous symbol G(ξ) and K ⩾ 1.
Now we give necessary conditions and sufficient conditions for bound (9) to hold [7].

Theorem 2. Let [As, Bs] := AsBs − BsAs. The validity of the following matrix inequalities

β̃
(
2αhτ A2

s + 1
2αhτ

B2
s + i[As, Bs]

)
⩽ As ∀s ∈ S, (11)

2αhτ r2
kβ̃A(kk) ⩽ In+2, β̃

2αhτ
(B(k))2 ⩽ A(kk) ∀1 ⩽ k ⩽ n, (12)

β̃
[
2αhτ (1 + ε)A2

s + 1
2αhτ

(
1 + ε−1)

B2
s
]
⩽ As ∀s ∈ S, for some ε > 0 (13)

respectively is necessary and sufficient, or necessary, or sufficient for bound (9) to hold.
For maxs∈S λmax(As) ⩽ λ̄, bound (9) holds under the validity of the number inequality

β̃
[
(2αhτ λ̄)1/2 + (2αhτ )−1/2]2

⩽ 1. (14)

Condition (11) follows from Theorem 1, and (14) follows from (13) using the above inequality B2
s ⩽ As.

The derivation of conditions (12) and (13) from (11) is similar to [7].
Next we derive from condition (12) a specific necessary condition.

Theorem 3. For bound (9) to hold, the following condition is necessary:

β ⩽ βnec(α̂hτ ) := min
{

2α̂hτ ,
1

2α̂hτ

min
1⩽k⩽n

h2
k

h2
min

(M + 1)2

M2
k + λ̃[Mk]

}
= βnec(α̂rhτ ), (15)

where rhτ = hτ /hmin and M2
k + λ̃[Mk] ⩽ λmax(A(kk)) with

λ̃[Mk] := max
{ α̂P + 1

2 +

√( α̂P − 1
2

)2
+ 1

γ∗
α̂P ,

1
2

(
ã0 + 1 + 1

γ

)
+

√
1
4

(
ã0 + 1

γ∗

)2
+ 4

γ
M2

k ,

1
2

(
ã0 + α̂P + 1 + 1

γ∗

)
+

√
1
4

(
ã0 − α̂P + 1

γ

)2
+ 4

γ∗
M2

k

}
⩾ max

{
ã0 + 1, α̂P + 1

γ∗

}
and ã0 = α̂s + â0 = 4

3 α̂s + α̂1s.
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If h1 = · · · = hn = hτ = h, then rhτ = 1 and βnec(α̂) is independent of h and takes the form

βnec(α̂) = min
{

2α̂,
(M + 1)2

2α̂
(
M2

max + λ̃[Mmax]
)}

with Mmax := max
1⩽k⩽n

|Mk|.

Proof. Similarly to [7], since A(kk) ⩾ 0, the first inequality (12) is equivalent to the following one

β̃ ⩽
h2

k

h2
min

1
2αhτ λmax(A(kk))

.

Due to (6) we have (B(k))2 ⩽ A(kk), and the second inequality (12) is valid under β̃ ⩽ 2αhτ . On the other
hand, (B(k))2

11 = A
(kk)
11 > 0, thus the second inequality (12) implies the inequality β̃ ⩽ 2αhτ and finally is

equivalent to it (as in [6,7]). The presented lower bound for λmax(A(kk)) follows from the Cauchy theorem
on separation of eigenvalues of a symmetric matrix and considering the 2nd order main minors of A(kk) (it
coincides with the bound given in the 1D case in [6]). The transition from β̃ and αhτ to β and α̂hτ leads to
condition (15). □

The sufficient condition (14) can be rewritten in the form

β ⩽ βsuf(α̂hτ ) := 1
/(√

2α̂hτ

λ̄1/2

M + 1 + 1√
2α̂hτ

)2
, (16)

cp. [10]. The maximum of the right-hand side is achieved for α̂hτ = α̂hτ ∗ := (M + 1)/(2λ̄1/2) and equals
α̂hτ ∗/2. Note that both βnec(α̂hτ ) → 0 and βsuf(α̂hτ ) → 0 as α̂hτ → +0 or α̂hτ → +∞.

To apply condition (16), we also need to bound λmax(As) from above. Let r = (r1, . . . , rn).

Theorem 4. For n = 2, 3, the following bounds hold

max
s∈S

λmax(As) ⩽ λ̄ := max
{

α̂s|r|2 + cn

(
â0 + 1

)
, |r|2λ̄(α̂P , γ)

}
+ cnr2

i M2
i + 2

(
δ(ii)r4

i

)1/2
M

⩽ max
{

α̂sn + cn

(
â0 + 1

)
, nλ̄(α̂P , γ)

}
+ cnM2 + 2

√
nM

with c2 = 1, c3 = 9
8 and λ̄(α̂P , γ) := α̂P +1

2 +
√( α̂P +1

2
)2 − α̂P

γ .
If h1 = · · · = hn, then the second inequality turns into equality.

Proof. We apply the decomposition As = As0 + aMIn+2 + 2AM1, where

As0 := As|M=0 =

⎛⎜⎝
1
γ d2 0 1√

γγ∗
d2

0T C0 0T

1√
γγ∗

d2 0
(
α̂P + 1

γ∗

)
d2

⎞⎟⎠ , AM1 =

⎛⎜⎜⎝
0 1√

γ p 0
1√
γ pT On

1√
γ∗

pT

0 1√
γ∗

p 0

⎞⎟⎟⎠ .

Due to the classical Rayleigh formula for λmax(A) the inequality λmax(As) ⩽ λmax(As0)+aM +2λmax(AM1)
is valid. Moreover, due to [7] the following estimates hold

λmax(ζζT + Q) ⩽ cn, aM ⩽ cnr2
i M2

i , |p|2 ⩽ δ(ii)r4
i M2. (17)

We have Sp As0 = Sp C0 ∪Sp C1, where the 2nd order matrix C1 is obtained from As0 by deleting all rows
and columns except the first and last ones. It is straightforward to calculate that λmax(C1) = d2λ̄(α̂P , γ)
(using 1

γ + 1
γ∗

= 1). Since also d2 ⩽ |r|2, we derive

λmax(As0) ⩽ max
{

α̂sd2 +
(
â0 + 1

)
λmax(ζζT + Q), d2λ̄(α̂P , γ)

}
⩽

⩽ max
{

α̂s|r|2 + cn

(
â0 + 1

)
, |r|2λ̄(α̂P , γ)

}
.

The eigenvalue problem for AM1 is solved easily, and Sp AM1 = {0, ±|p|} (using 1
γ + 1

γ∗
= 1 once again)

thus λmax(AM1) = |p|. Now from (17) we obtain the result. □

Importantly, both βnec(α̂hτ ) and βsuf(α̂hτ ) are uniformly bounded in M .
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