
ML for Finance

Fall 2019

Homework

Provide your solutions inside special code cells.
You can check your functions within magic cells that begin with assert function.
Points for each task are provided in parentheses.
Any kind of plagiarism is assessed as points for such tasks.
Below you can find criteria for transfer such Points to your final grade:

*some tasks are adapted from math-info.hse.ru and made</small>

0

∑
0
4
7

11
16
21
26
31
36
41
46

of pts
− 3
− 6
− 10
− 15
− 20
− 25
− 30
− 35
− 40
− 45
− 50

Final Grade
0
1
2
3
4
5
6
7
8
9

10

#1 (1)
Write function is_prime(n) , which checks n is prime number (returns True) of not (returns False).

In []: # CODE HERE

In []: assert(is_prime(2) and
 is_prime(3) and
 is_prime(139) and
 is_prime(617) and
 is_prime(293) and
 not is_prime(12) and
 not is_prime(13*7))

#2 (4)
Let the ariphmetic expression contains brackets of two types: () , [] . Each open bracket should be
correctly closed within close brackets of the same type.

Examples:

5 * [1 + 2 + (3 + 4) + 5] — correct
4 + (2 + - incorrect
[1 + (2 + 3] + 4) - incorrect

Write function check_brackets(expr) , which take the string input with expression. Returns True if
expr is correct and False otherwise.

In []: # CODE HERE

In []: assert check_brackets('5 * [1 + 2 + (3 + 4) + 5]')
assert not check_brackets('4 + (2 + ')
assert not check_brackets('[1 + (2 + 3] + 4)')
assert check_brackets('[]()[][[([(([]))])]]')
assert not check_brackets(']')
assert not check_brackets(')')
assert not check_brackets('[)]')
assert not check_brackets('[)()]')
assert not check_brackets('[)](')
assert not check_brackets("[[([(]))]]")
assert not check_brackets('[')
assert not check_brackets('(')
assert not check_brackets('(' * 100 + ')' * 99)
assert check_brackets('(' * 1000 + ')' * 1000)
assert not check_brackets('([' + '(' * 998 + ')' * 909 + ']')

#3 (6)
Imagine, you help the producer to choose proper shooting days. The producer asks you to choose two days in
order to ensure that the temperature in such days will be not more than 5 degree different between each other
(by the absolute value). You know the weather forecast for few days (the sequence of integer numbers:

, where - the number of the days in the increasing order, - the temperature in the particular day).
For two choosen days should be true the following: . You know also that the producer do not want
to have long pauses between these days, so, you need also to minimize the distance between two particular
days.

Input: you have the list of numbers (temperature in days, ordered by the number of the day). Output: write the
function mindays(list) , that returns the minimum days of leisure (pause) in between for the producer; if no
such days you can choose - return .

n
, , … ,t1 t2 tn i ti

| − | ≤ 5ti tj

−1

In []: # CODE HERE

In []: assert mindays([4, 12, -5, 8, 14]) == 1
assert mindays([10, 10, 10]) == 0
assert mindays([-20, -14, -8, -2]) == -1
assert mindays([-3, 1, -5, 8, 14]) == 0
assert mindays([-4, 2, 8, 0]) == 1
assert mindays([-4, 2, -5, 0]) == 0

