

Факультет физики

Базовая кафедра: ИТФ им. Л.Д. Ландау

УГЛОВАЯ АНИЗОТРОПИЯ КАПИЛЛЯРНЫХ ВОЛН НА МЕЛКОЙ ВОДЕ

Выполнил студент: Скоба Алена Олеговна, гр. МФ3191

Научный руководитель: д.ф.-м.н. Лебедев Владимир Валентинович

ПОСТАНОВКА ЗАДАЧИ

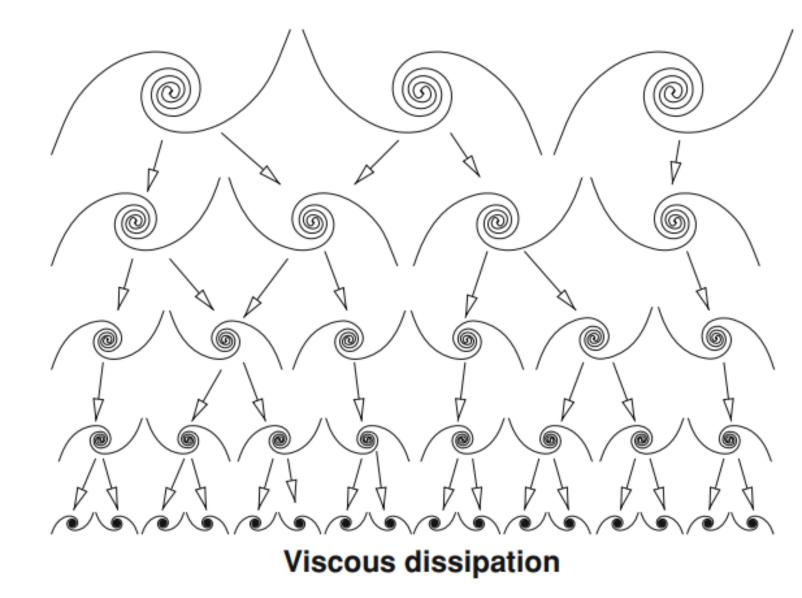
Волновая турбулентность — неравновесная статистическая механика случайных волн*.

Модель энергетического каскада основана на предположении локальности, которое означает, что эффективно взаимодействуют друг с другом лишь те моды, масштабы которых по порядку величины соизмеримы.

Проблема: свойство локальности взаимодействия присуще только Колмогоровскому спектру или оно может иметь место также и в других системах?

Цель работы: численно исследовать свойства сильно анизотропного спектра капиллярных волн на поверхности неглубокой жидкости.

Energy injection



Схематическое представление каскадного переноса энергии

СИСТЕМА КАПИЛЛЯРНЫХ ВОЛН НА МЕЛКОЙ ВОДЕ

Возмущения на поверхности жидкости могут быть описаны двумя скалярными переменными: величиной подъема жидкости $\eta(x,y,t)$ и потенциалом скорости $\psi(x,y,t)$. В пределе тонкого слоя $\eta < h < \lambda$, где h – глубина слоя, λ – характерная длина волны, гамильтониан системы имеет форму

$$\mathcal{H} = \frac{1}{2} \int dx dy \, (\sigma |\nabla \eta|^2 + \rho (h + \eta) |\nabla \psi|^2),$$

где ρ — плотность жидкости, а σ — коэффициент поверхностного натяжения. Пара динамических уравнений в безразмерных переменных η/h , $\psi\sqrt{\rho/\sigma h}$ и $t\sqrt{\sigma/\rho h^3}$ имеет вид

$$\frac{\partial \eta}{\partial t} = -\text{div}((1+\eta)\nabla\psi), \qquad \frac{\partial \psi}{\partial t} = \Delta \eta - \frac{|\nabla \psi|^2}{2}.$$

Комплексные амплитуды: $a_{k} = (\eta_{k} + i\psi_{k})/\sqrt{2}$,

Закон дисперсии: $\omega_{k} = k^{2}$,

Коэффициенты трехволнового взаимодействия: $V_{123} = k_2^2 + k_3^2 + (\boldsymbol{k}_2, \boldsymbol{k}_3)$.

В терминах парной корреляционной функции $n_{k}(t)\delta(k-k') = \langle a_{k}(t)a_{k'}^{*}(t)\rangle$ система имеет два универсальных стационарных решения:

- $n_k \sim \omega_k^{-1}$ тепловое равновесие (поток энергии равен нулю),
- $n_k \sim k^{-4}$ спектр Колмогорова-Захарова (положительный поток энергии).

УСТОЙЧИВОСТЬ СПЕКТРА КОЛМОГОРОВА-ЗАХАРОВА ПО ОТНОШЕНИЮ К МАЛЫМ АНИЗОТРОПНЫМ ВОЗМУЩЕНИЯМ. АНАЛИТИЧЕСКАЯ ТЕОРИЯ

Предположим, что в момент времени t=0 на стационарный изотропный спектра капиллярных волн $n_k \sim k^{-4}$ было наложено малое возмущение произвольной формы $\delta n_k \ll n_k$. Линейная эволюция возмущений определяется линеаризованным кинетическим уравнением

$$\frac{\partial \delta n_{k}}{\partial t} = \int d\mathbf{k}_{1} d\mathbf{k}_{2} U_{123}^{2} [(k^{-4} - k_{2}^{-4}) \delta n_{1} + (k^{-4} - k_{1}^{-4}) \delta n_{2} - (k_{1}^{-4} + k_{2}^{-4}) \delta n_{k}]$$
$$-2U_{123}^{2} [(k_{1}^{-4} - k_{2}^{-4}) \delta n_{k} + (k_{1}^{-4} - k^{-4}) \delta n_{2} - (k^{-4} + k_{2}^{-4}) \delta n_{1}],$$

где
$$U_{123} = |V_{123}|^2 \delta(\mathbf{k} - \mathbf{k}_1 - \mathbf{k}_2) \delta(\omega_{\mathbf{k}} - \omega_1 - \omega_2).$$

Удобно разложить произвольное возмущение δn_k на элементарные

$$\delta n(\mathbf{k}) \xrightarrow{\text{angle Fourier}} \delta n_l(\mathbf{k}) \xrightarrow{\text{Mellin}} \delta n_{ls} \sim \mathbf{k}^{-s}$$

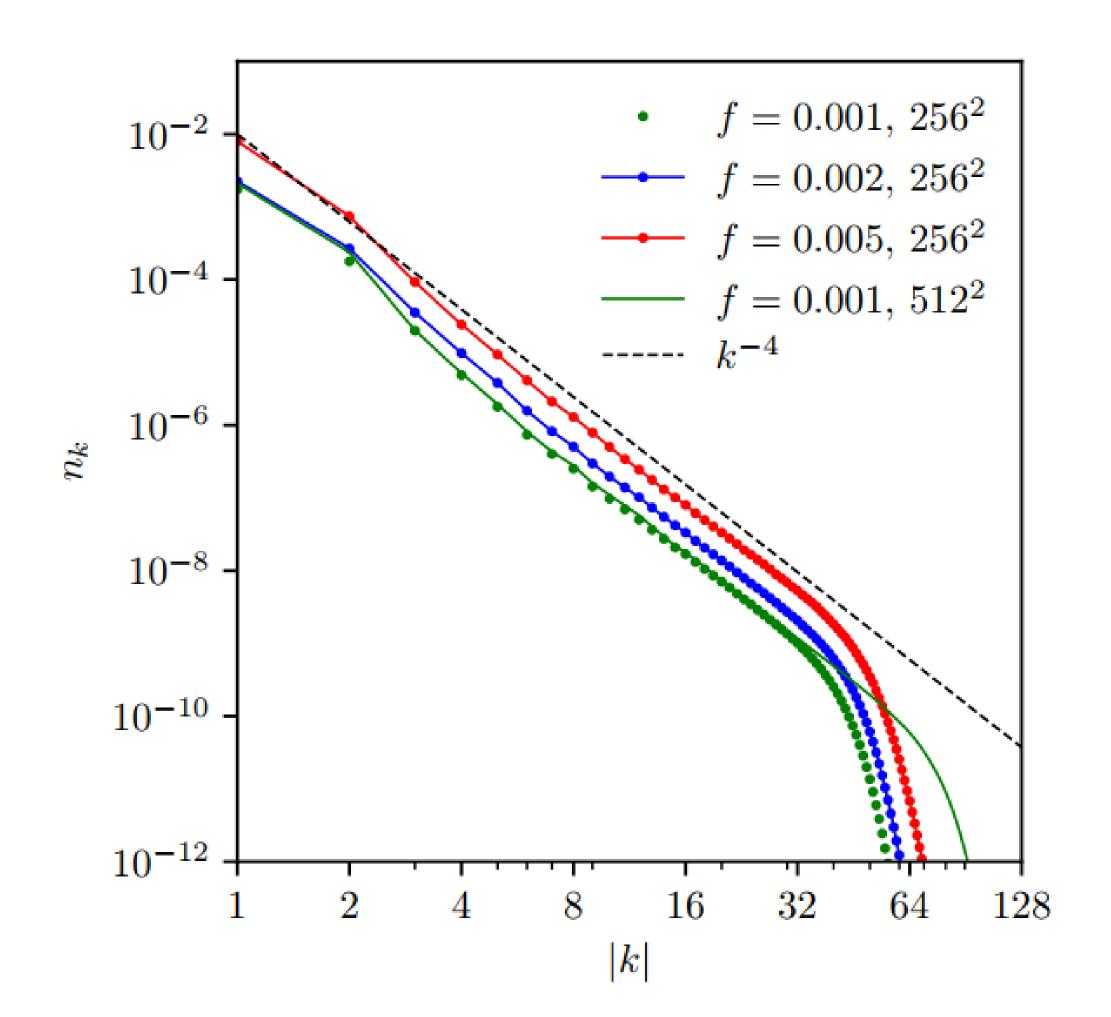
Тогда для нечетных гармоник

$$\frac{\partial \delta n_{ls}}{\partial t} \sim (-1)^{j} lk^{-4} \left(\int_{\kappa}^{\infty} dk_{1} k_{1}^{3-s} + \int_{0}^{K} dk_{1} k_{1}^{3-s} \right), l = 2j + 1, j = 1, 2, \dots$$

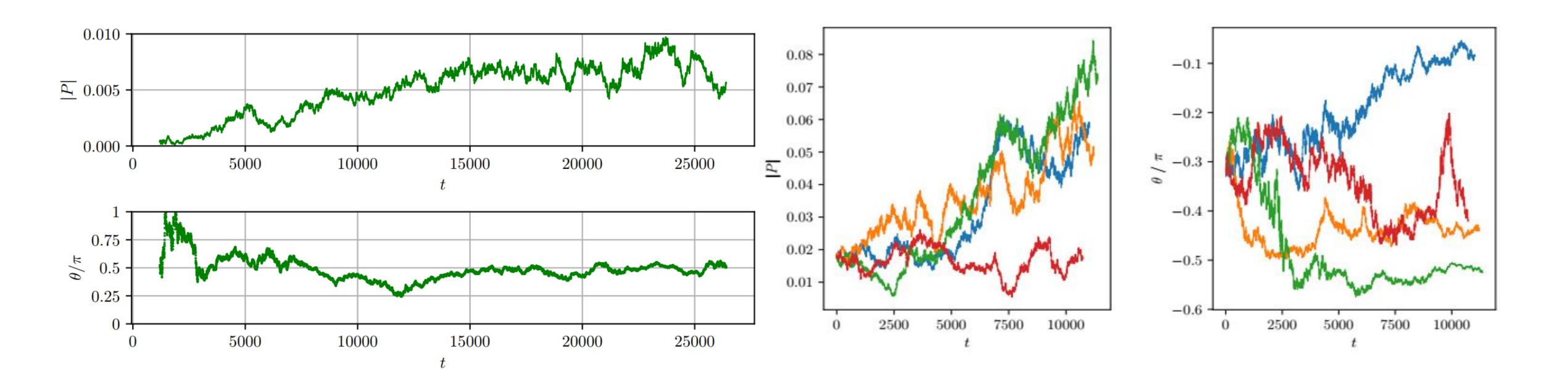
ПОДГОТОВКА К ЧИСЛЕННОМУ СЧЕТУ

$$\frac{\partial \eta}{\partial t} = -\text{div}((1+\eta)\nabla \psi), \qquad \frac{\partial \psi}{\partial t} = \Delta \eta - \frac{|\nabla \psi|^2}{2}.$$

Геометрия системы представляла собой двумерный квадратный ящик в Фурье-пространстве раазмера 256 \times 256. Частные пространственные производные вычислялись в пространстве Фурье методом FFTW, производная по времени была аппроксимирована методом Рунге-Кутта четвертого порядка. Моделирование мелкомасштабной диссипации производилось с помощью принудительного зануления амплитуд одной трети наибольших волновых мод. Система приводится в турбулентное состояния с помощью внешней случайной силы $f\zeta \ k^{-2}\sqrt{\Delta t}$ на 44 модах с $0 < |\mathbf{k}| < 4$, f — постоянная во времени величина, характеризующая амплитуду накачки (варьировалась в различных реализациях), а ζ — белый во времени шум, равномерно распределенный в интервале [-1,1]. Внешняя сила существенно анизотропна, однако статистически инвариантна к преобразованиям отражения $\mathbf{k} \to -\mathbf{k}$.

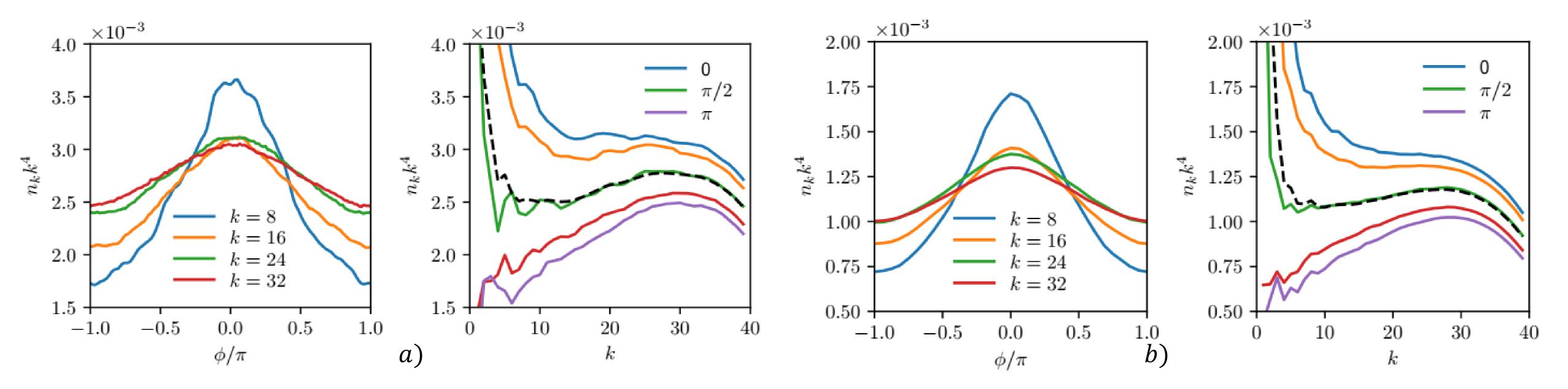


Спектр капиллярных волн $n_{k} = \langle a_{k} a_{k}^{*} \rangle$, усредненный по углам вектора k, при различных значениях амплитуды внешней накачки. Пунктирной линией обозначен спектр Колмогорова-Захарова k^{-4} . Усредненный спектр в целом близок к теоретическому предсказанию и заметно отклоняется от него лишь вблизи границы инерционного интервала.

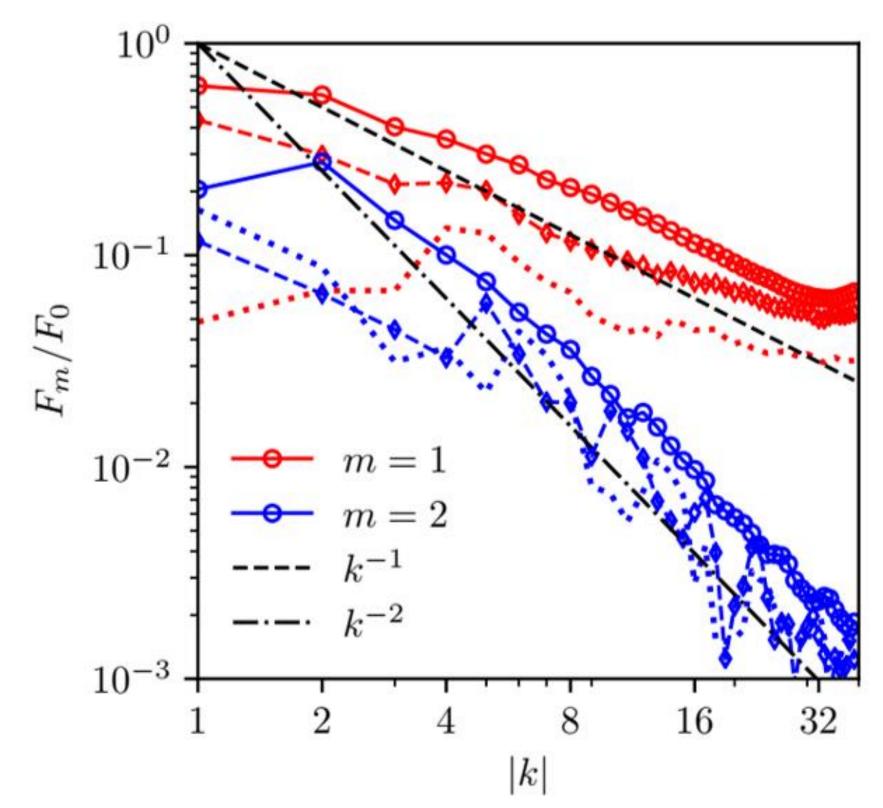


Временная зависимость модуля и угла вектора импульса $P(t) = \sum_k k n_k(t)$. Слева — одна длинная реализация, f = 0.005, справа — четыре коротких реализаций, характеризуемые одинаковым начальным условием, но различными реализациями силы, f = 0.002.

Для описания степени анизотропии спектра в целом вводится вектор анизотропии $q = \sum_k k^4 n_k(t) \, k/k$ компенсированного спектра $k^4 n_k$.



Угловой (слева) и радиальный (справа) срезы компенсированного спектра k^4n_k , усредненного по времени и по 10 различными реализациям в локальной системе отчета, связанной с вектором анизотропии, a) f = 0.002, b) f = 0.005.



Линии с круговыми маркерами соответствуют спектру, полученному путем усреднения 10 коротких реализаций в локальной системе отчета вектора анизотропии. Линия с ромбообразными маркерами соответствуют одной длинной реализации, усредненной в локальной системе отчета вектора анизотропии; пунктирная линия соответствует одной длинной реализации, усредненной в неподвижной системе отчета. f = 0.002

Угловые гармоники спектра

$$F_m = \int_{0}^{2\pi} d\theta \, n_k \cos m\theta \, .$$

Аналитическая теория устойчивости малых возмущений предсказывает

$$\frac{F_m(k)}{F_0(k)} \sim k.$$

Однако наблюдаемая зависимость лучше аппроксимируется соотношением

$$\frac{F_m(k)}{F_0(k)} \sim k^{-m},$$

возникающем в случае системы в состоянии теплового равновесия.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Классическая теория слабой турбулентности предсказывает изотропный спектр, характеризуемый локальностью взаимодействия волновых мод, однако изотропный спектр неустойчив по отношению к анизотропным возмущениям. Эта неустойчивость приводит к спонтанному нарушению зеркальной симметрии спектра и возникновению ненулевого импульса.

Прямые численные симуляции подтверждают теорию и демонстрируют развитие существенно анизотропного спектра. Степень анизотропии спектра убывает вдоль энергетического каскада и претерпевает насыщение внутри инерционного интервала.

СПИСОК ЛИТЕРАТУРЫ

- [1] L. F. Richardson, Proc. R. Soc. Lond., vol. 110, 1926.
- [2] A. M. Obukhov, "On the distribution of energy in the spectrum of turbulent flow," Dokl. Akad. Nauk SSSR, vol. 32, pp. 22-24, 1941.
- [3] A. N. Kolmogorov, "Dissipation of energy in a locally isotropic turbulence," Dokl. Akad. Nauk SSSR, vol. 32, 1941 (English translation in: American Mathematical Society Translations 1958, Series 2, 8, 87, Providence, RI).
- [4] A. N. Kolmogorov, "The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers," Dokl. Akad. Nauk SSSR, vol. 30, 1941.
- [5] V. E. Zakharov, «Weak turbulence in media with decay spectrum,» Zh. Priklad. Tech. Fiz, T. 4, 1965.
- [6] S. Nazarenko, Wave Turbulence, Berlin: Springer-Verlag, 2011.
- [7] Y. Choi, Y. V. Lvov and S. Nazarenko, "Wave Turbulence," Springer, Lectures Notes in Phisics, 2005.
- [8] V. E. Zakharov, V. S. Lvov and G. E. Falkovich, Kolmogorov Spectra of Turbulence 1: Wave Turbulence, Berlin: Springer, 1992.
- [9] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov, Cambridge: Cambridge University Press, 1995.
- [10] G. E. Falkovich and . M. D. Spector, "Nonlocal angular instability of a Kolmogorov-like wave turbulence spectrum," Physics Letters A, vol. 168, 1992.
- [11] A. O. Korotkevich, A. I. Dyachenko and V. E. Zakharov, "Numerical simulation of surface waves instability on a homogeneous grid," Phys. D Nonlinear Phenom., 2016.
- [12] A. N. Pushkarev и V. E. Zakharov, «Turbulence of capillary waves—theory and numerical simulation,» Phys. D Nonlinear Phenom., 2000.
- [13] V. S. Lvov, "Introduction to Nonlinear Wave Dynamics," in Wave Turbulence Under Parametric Excitation, Berlin, Springer-Verlag, 1994.
- [14] Л. Д. Ландау, Е. М. Лифшиц, В. Б. Берестецкий и Л. П. Питаевский, Квантовая электродинамика. Теоретическая физика, т. 4, Москва: Наука. Гл. ред. физ.-мат. лит., 1989.
- [15] М. А. Лаврентьев и Б. В. Шабат, Методы теории функций комплексного переменного, Москва: Наука, 1972.
- [16] Л. Д. Ландау и Е. М. Лифшиц, Статистическая физика. Часть І. Теоретическая физика, т. 5, Москва: Наука. Гл. ред. физ.-мат. лит., 1976.
- [17] Г. Фалькович, Современная гидродинамика. Краткий курс, М.–Ижевск: НИЦ Регулярная и хаотическая динамика, 2014.
- [18] Л. Д. Ландау и Е. М. Лифшиц, Гидродинамика. Теоретическая физика, т. 6, Москва: Наука. Гл. ред. физ-мат. лит., 1986.
- [19] N. Vladimirova, I. Vointsev, A. Skoba and G. Falkovich, "Turbulence of Capillary Waves on Shallow Water," Fluids, vol. 6, no. 5, 2021.
- [20] H. Bateman, Higher Transcendental Functions, vol. 1, New York: McGraw-Hill Book Company, 1953.
- [21] A. D. Polyanin and A. V. Manzhirov, Handbook of Integral Equations, Boca Raton, London, New York, Washington: CRC Press, 1998.
- [22] A. V. Kats and V. M. Kontorovich, Zh. PriN. Mekh. Tekh. Fiz., vol. 6, p. 97, 1974.
- [23] Н. С. Бахвалов, Н. П. Жидков и Г. М. Кобельков, Численные методы, Бином, 2011.
- [24] А. Н. Тихонов и А. А. Самарский, Уравнения математической физики, Москва: Издательствово МГУ, 1999.
- [25] N. Vladimirova, S. Derevyanko and G. Falkovich, arXiv preprint arXiv:1108.1541, 2011.
- [26] N. Vladimirova и G. Falkovich, arXiv preprint arXiv:1411.3060v3, 2018.
- [27] A. Kats and V. Kontorovich, "Symmetry properties of the collision integral and non isotropic stationary solutions in weak turbulence theory," Sov. Phys. JETP, 1973.

