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Abstract. The article is devoted to the problem of automated formal verifica-
tion of modeling artifacts during engineering of digital transformations.
Automation significantly increases the quality of model transformations since
many manual errors are eliminated. However, the formal checking the cor-
rectness of such automation remains an open question. One more problem is the
dependence of the procedure for checking the correctness of transformations on
the modeling languages of the source and target models. In the article we
represent the solution, based on the formalism of invariant checking, that allows
modelers to formally test the correctness of model transformation regardless of a
modeling language.
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1 Introduction

Engineering of digital transformations became a highly demanded and challenging
topic both for practitioners and academy. New flexible forms of inter-organizational
communication leverage design of dynamically bonded organizational bodies. Fractal
organizations [1] or autonomous distributed organizations (DAO) [2] give bright
examples of such new organizational forms.

Apart from economic and social benefits such new kinds of organizations draw
attention to new problems of decision support [2]. In the context of fully digitalized
information landscape importance of resolving the issue of semantic interoperability
during decision procedures cannot be overestimated.

Typical procedures of situation analysis and decision making involve multiple
kinds of models which mimic different aspects of an enterprise. For better sensemaking
and comprehension of the situation multiple model-to-model (M2M) transformations
are frequently applied. Resent results show that even in the context of a traditional
enterprise available formal methods of model transformations still need improvements.
For example, works [5, 7, 10] demonstrate the insufficient level of formal verification
during model transformations.
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That article aims at proposing a new approach to automated formal verification of
model transformations, which includes a formal model and corresponding algorithms
for verification. Application of our proposals should assist dynamically composed
fractal organizations in the process of semantic integration and decision support. In
comparison with other known results our approach brings several new contributions. At
first, that proposed approach is automated and language-independent. Since we use the
graph-oriented general approach and the corresponding transformation, it is possible to
apply the algorithm of model transformation verification to any modeling (in general
case, domain-specific) language. The second advantage is that proposed approach
implements the mechanisms of invariants in the process of verification of model
transformations, thereby formalizing it. Finally, the verification procedure supports the
verification of direct, as well as bidirectional model transformations.

In the scope of our research we evaluated the models and methods proposed in the
context of software engineering models transformations. The results of evaluation
confirmed by the application of the proposed approach to the transformation from
UML Statechart into Petri net models.

This article describes our approach and presents results as follows. In Sect. 2 we
give main aspects of M2M transformations and define criteria for its verification.
Section 3 contains the algorithm, applied for the automated verification of model
transformation correctness in terms of the approach proposed. Section 4 is devoted to
the application of proposed approach to the case of Statechart and Petri net models. We
conclude the article with the analysis of the proposed approach and further research
steps.

2 Background

2.1 Definition and Approaches to M2M Transformations

Before the analyzing the process of M2M transformations and its validation, the def-
inition of them should be formulated. From the formal point of view, the basic concept
of transformation definition is a production rule which looks like p : L — R, where p is
a rule name, L is a left-hand side of the rule, also called the pattern, and R is a right-
hand side of the rule, which is called the replacement model (or the target model).
Rules are applied to the starting model named the source model. From this point of
view, the model transformation is a sequenced applying to the starting source model M

1 2
of finite set of rules P = (py,p>...pn) : My p—»Ml =, ..ﬂM,,.

Transformations can be classified as horizontal or vertical according to the direc-
tion. The horizontal transformation is the conversion, in which the source and target
models belong to the same hierarchy level, for example, a conversion of model
description from one notation to another. The vertical transformation converts the
models which belong to different hierarchy levels, for example, mapping objects of the
metamodel to domain model objects. In what follows, the authors concentrate on the
horizontal transformations, implemented between different modeling languages.

Depending on the language on which the source and the target models are
described, horizontal transformations can be divided into two types: endogenous and
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exogenous. An endogenous transformation is the transformation of the models, which
are described on the same modeling language. An exogenous transformation is the
transformation of models, which are described on different modeling languages [3].

Such separation is important since there are two main approaches to M2M trans-
formation: operational and declarative. The former is based on rules or instructions
that explicitly state how and when creating the elements of the target model from
elements of the source one occurs. Such a specification mainly combines metamodeling
with graph transformation [4, 5], triple graph grammars [6] or term rewriting rules [7].

Instead, in declarative approaches, some kind of visual or textual patterns
describing the relations between the source and the target models are provided, from
which operational mechanisms are derived e.g. to perform forward and backward
transformations. These declarative patterns are complemented with additional infor-
mation to express relations between attributes in source and target elements, as well as
to constrain when a certain relation should hold. The Object Constraint Language
(OCL) is frequently used for this purpose [8].

Many of the previous approaches already tackle the problem of automating model
transformations in order to provide a higher quality of transformation programs com-
pared with manually written ad hoc transformation scripts.

However, automation alone cannot protect against conceptual flaws implanted into
the specification of a complicated model transformation. Consequently, a formal
analysis carried out on the source and the target models after an automatic model
transformation might yield false results, and these errors will directly appear in the
target application code. As a summary, it is crucial to realize that model transforma-
tions themselves can also be erroneous and thus may become a quality bottleneck of a
transformation-based verification and validation framework (such as [9]). Therefore,
prior to analyzing the target model, we have to prove that the model transformation
itself is free of conceptual errors.

Unfortunately, it is hard to establish a single notion of correctness for model
transformations. In what follows we analyze existing criteria of M2M transformations
correctness and choose the best ones for automated M2M transformation process.

2.2 Correctness Criteria of Model Transformations

When we talk about correctness of the model transformation, the properties are
introduced, addressed by the verification of the model transformation. There are several
works [5, 10] which introduce the problem of verification by defining the set of
properties to be addressed. However, the contents of these proposals are mostly
included and generalized in [11]. Based on this work, the following categories of
properties can be identified: language-related and transformation-related properties.

Language-related properties refers to the computational nature of transformations
and target properties of transformation languages. As introduced in [11], a transfor-
mation specification conforms to a transformation language which can possess prop-
erties on its own. In this context there are four properties of interest.

e Termination property, which guarantees the existence of a target model, i.e. that the
transformation execution finishes for any well-formed transformation specification;
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o Determinism (Confluence) property, which ensures uniqueness of the target model
for a given source model and transformation specification;

e Typing property, which ensures the well-formedness of the transformation speci-
fication in terms of the transformation language chosen;

e Preservation of Execution Semantics (Dynamic consistency) property, which
states that the transformation execution must behave as expected according to the
definition of the transformation language semantics.

As you can see, these properties are mostly connected with the possibility of the
transformation itself. From this point of view, they form the semantic requirements for
the transformation correctness. In our case, during the analysis of the correctness of
automatically generated transformations, the most interesting are termination, con-
fluence and dynamic consistency properties. These criteria allow us to check not only
the correctness of the constructed models and transformations between them, but also
to make the procedure for such verification independent of the specific model
description languages.

Along with this, syntactic criteria can also be entered. These criteria are represented
by transformation-related properties, which can be separated into two categories.

e Syntactic correctness, which includes Conformance and Model Typing and N-Ary
Transformations Properties, to guarantee that the generated model is a syntacti-
cally well-formed instance of the target language.

o Syntactic completeness, to completely cover the source language by transformation
rules, i.e., to prove that for each construct in the source language there is a corre-
sponding element in the target model.

These properties are responsible for the correctness of the structures used to
describe the source and the target models, as well as the transformations between them.
Syntactic correctness and completeness were tackled in [S] by planner algorithms, and
in [12] by graph transformations. Recently in [4], sufficient conditions were set up that
guarantee the termination and uniqueness of transformations based upon the static
analysis technique of critical pair analysis.

However, no approaches exist to reason about the semantic correctness of arbitrary
model transformations, when transformation specific properties are aimed to be veri-
fied. In what follows, we describe the unified and highly automated approach, allowing
developers to formally verify by model checking that a model transformation (specified
by metamodeling and graph transformation techniques) from an arbitrary well-formed
model instance of the source modeling language into its target equivalent preserves
(language specific) dynamic consistency properties.

In contrast to related solutions (such as [4]) this approach can be adapted to
arbitrary modeling languages taken from any enterprise engineering (and/or even
mathematical) domains on a very high level of abstraction. As a result, the same visual
notation (based on metamodeling and graph transformation) is used to capture the
semantics of modeling languages and model transformations between them. Finally,
the approach can be automated, during providing the transformation from the source
into the target mathematical domain and subsequent generation of the model checking
description to verify the correctness of the model transformation.
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3 Proposed Approach

After the definition of different approaches to organize the M2M transformations and
choice of the criteria of such transformations correctness, an automated approach can
be described to formally verify the model transformation correctness of a specific
source model into its target equivalent with respect to semantic properties.

In order to organize the automated formal verification of the M2M transformations,
we have to describe the source and target models in a well-formed, strict manner. Such
requirement guarantees the possibility to formalize the checking properties of semantic
correctness of the transformation and generate a transition system in an automatic way.

Assuming a conversion between the two modeling languages A and B, to organize
the automated formal verification of the M2M transformations the following algorithm
have to be applied. This algorithm is a generalized and supplemented version of the
algorithms described in [8] and [12].

1. Specification of modeling languages. First of all, as it was mentioned, both
modeling languages (A and B) should be defined precisely using metamodeling and
graph transformation techniques. For this, the approach described in [13] can be
applied.

2. Specification of model transformations. The M2M transformation from A into B
can also be specified by a set of graph transformation rules. It logically follows from
the opportunity to represent any model in graph-oriented manner as a pair (E, R) of
E entities and R relations between them. The rationale for the effectiveness of such a
decision is given in [13] and [14]. It is important to note, that such transition to
graph transformations is used to apply the automatic program generation facilities
without affecting the independence of the verification technique in general.

3. Automated model generation. During this step, for a certain (but an arbitrary)
well-formed model instance of the source language A is derived the corresponding
target model by automatically generated transformation programs (for example,
VIATRA). The correctness of this automated generation step is proved in [10].

4. Generating transition systems. At this phase, a behaviorally equivalent transition
system is generated automatically for both the source and the target model on the
basis of the provenly correct encoding presented in [10]. In our case we implement
the transition system also as a set of OCL invariants, which state the correspondence
between elements of the source and target models. Such definition of the transition
system allows us to unify and automate the procedure of checking correctness of the
model transformations and make it independent from the modeling language used.
In more details the process of deriving OCL invariants from models’ transforma-
tions is described in Sect. 3.2.

5. Select a semantic correctness property. After the definition of the transition
system we should formulate the property of its correctness. For this goal one
semantic property p (at a time) can be chosen in the source language A which is
structurally expressible as a graphical pattern composed of the elements of the
source metamodel. More details on using graphical patterns to capture static well-
formedness properties can be found in [12].
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6. Model check the source model. Since the property p of semantic correctness over
the model A is chosen, we should check its appropriateness to the transition system
derived. In this case, the discrepancy may be expressed in the following forms:

a. Some inconsistencies detected in the source model itself (a verification problem
occurred),

b. Some informal requirements are not captured properly by property p (a vali-
dation problem occurred),

c. The formal semantics of the source language is inappropriate as a counter
example is found which should hold according to our informal expectations
(also validation problem).

7. Transform and validate the property. Using the transformations system, the
property p in the source language A is transformed into the property g in the target
language B (manually, or using the same transformation program). Unfortunately,
this vital validation step might not be fully automated, because it requires the
participation of an expert, who proves that the property q is really the target
equivalent of the property p or a strengthened variant.

8. Model check the target model. Finally, the transition system B is model-checked
against the property g. The result of checking may be one of the following
alternatives:

a. If the verification succeeds, then we conclude that the model transformation is
correct with respect to the pair (p, g) of properties for the specific pairs of source
and target models having semantics defined by a set of graph transformation
rules.

b. Otherwise, the property p is not preserved by the model transformation and
debugging can be initiated based upon the error traces retrieved by the model
checker. As before, this debugging phase may fix problems in the model
transformation or in the specification of the target language.

It is fair to note that the correctness of a model transformation can only be deduced
if the transformation preserves every semantic correctness property used during the
analysis. As a result, the procedure of verification of M2M transformation can be time-
consuming. However, we leave the performance analysis beyond the scope of this
study, addressing the works [5] and [12].

3.1 Defining Models Transformations Through Graphs and Invariants

Since the modeling language may represent an example of a domain-specific language
(DSL), we assume to use a graph-oriented approach to the organization of model
transformations, like described in the study [13]. Such approach is reasonable, since
any model can be generalized as a set of interconnected entities in object-oriented
manner with subsequent application of graph-transformations for its development or
evolution.

Graph transformation (see [6] for theoretical foundations) provides a rule-based
manipulation of graphs, which is conceptually similar to the well-known Chomsky
grammar rules but using graph patterns instead of textual ones. From the formal point
of view, any graph transformation rule is represented be a triple Rule = (L, Neg, R),
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where L is the left-hand side graph, R is the right-hand side graph, Neg is (an optional)
negative application condition.

In these conditions, the application of a rule to a model (graph) M results in
replacing the pattern defined by L with the pattern of the R. From an algorithmic point
of view, this means that we find a match of the L pattern in model M, check the
negative application condition Neg, remove a part of model M, mapped to the pattern L
and finally add new elements to the intermediate model IM, which exists in the R but
cannot be mapped to the L yielding the derived model M.

Such mechanism is very close to the mechanism of finding inductive invariants,
which describe the connection between components of two (or more) sets of objects
and are denoted with inv,. For this type of invariants two types of specifications are
defined, next and inv:

next,.(p,q).F = [p = W.F.q] A inv..p.F = next..(p,p).F A |[J.F = p]

Informally, next..(p,q) means that whenever a transition is fired from a state that
satisfies p, the resulting state satisfies g. Similarly, inv..p specifies that p is true in any
initial state and is preserved by every atomic transition. Therefore, by induction, p is
true in every state. It should be noted that, since [W.F.q = g| because of possible
stuttering next..(p, q).F = [p = q.

According to the above definition, inductive invariant means, that there is a strong
correspondence between elements of two sets of objects, which are connected during
some relation (transformation). Such definition is very close to the relational approach
for model transformation definition, when relationship between objects (and links) of
the source and target language are declared. That results in the idea, that inductive
invariant can be an effective mechanism for the definition of such model transforma-
tions and for the validation of the possibility of obtaining one model by transforming
another.

In this case, graph transformation rules serve as elementary operations while the
entire operational semantics of a language or a model transformation is defined by a
model transformation system, where the allowed transformation sequences are con-
strained by a control flow graph (CFG) applying a transformation rule in a specific rule
application mode at each node. From this point of view, the transition system consists
of the operational invariants and can be associated with a subset O.F of (%, F)* of
(in)finite sequences of states defined as follows.

An infinite computation ¢ = (g9, 01,...,0,,...) belongs to the set O.F if and
only if
j.F.O’o
VieN: W.F.{O-iJrl}-o-i

where {0, 1} is the state predicate that evaluates to frue for the state g, 1 and to false
for any other state.

Informally, O consists of those sequences of states that begin with an initial state
that satisfies J (Neg negative application condition in our case) and in which each state
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has a successor in accordance with the transition VW (Rule transformation rule in our
case). The set O is nonempty because 7 is satisfiable and VV includes stuttering steps.

Once the computations of a transition system are built, next and inv specifications
are defined as expected:

nexto.(p,q).F2Vo € O.F :Vi € N:p, g, = q,0i,
invo.p.FEYo € O.F :YieN:p,a;

Informally, nextp.(p,q) means that, in any computation of the system, any state
that satisfies p is immediately followed by a state that satisfies g. Although computa-
tions include stuttering steps, nexto.(p,q) does not imply that [p = g|. In the same
way, invp.p means that any state of any computation of a system satisfies p. Naturally,
nexto and invy are related in a way similar to the relationship between next; and inv,,
namely: invp.p.F = nexto.(p,q).F A [J.F = p).

According to these principles, we can conclude, that validation of the model
transformation correctness can be fully described through invariant mechanisms. Such
definition can allow us to automate the process of formal validation of the model
transformation, reducing it to verifying the presence of invariants of both types among
defined model (graph) transformations.

3.2 Deriving OCL Invariants from QVT Transformations

Since we describe the model transformation using the graph-oriented approach (see
[13] for more details) in QVT transformation language, the procedure to derive the
OCL invariants need be implemented. Using the principals of inductive invariants, we
need to describe the correspondence between different components of the source and
the target models.

This is fully consistent with the concept of the QVT transformation language. In
this language, a bidirectional transformation consists of a set of relations between two
models. There are two types of relations: top-level and non-toplevel. The execution of a
transformation requires that all its top-level relations hold, whereas non-top-level ones
only need to hold when invoked directly or transitively from another relation [15].

Each relation defines two domain patterns, one for each model, and a pair of
optional when and where OCL predicates. These optional predicates define the link
with other relations in the transformation: the when clause indicates the constraints
under which the relation needs to hold and the where clause provides additional
conditions, apart from the ones expressed by the relation itself, that must be satisfied by
all model elements in the relation [15].

Among all nodes in a domain pattern, one is marked as a root element. Definition of
root nodes is purely for the sake of clarity, that does not affect the semantics of the
matching process. When referring to other relations in when or where clauses,
parameters can be specified, and thus it is possible to pass bound variables from one
relation to another. Note that the bound objects received as parameters are necessary
preconditions to enforce the pattern. According to these principles, when we talk about
deriving the transformation system from the QVT transformation, we need to identify
the invariants of both levels, Top-relation as well as Non-top relation to provide the
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whole consistence between the source and the target models. In what follows, we use
OCL constraints to define the specific invariants of both types.

Definition 1: Let p be a top-relation with domain patterns S = {rooty, s1, . . .,s,}, and
T = {root;, 11, .. ..t }, and Tpe, CT be the set of elements of T referenced in p’s
‘when’ section. Then, the following top-relation invariant takes place for the § — T

context type(root,) inv p:
type(x;) :: alllnstances() — forAll(x;]
<type (xj) == alllnstances() — forAll(x;]. . . i € (S\{roots}) U Tunen
if self .p — enabled(x,-,xj, .. ) then
type(x,) :: alllnstances() — exists(x,|
<type(xv) :: alllnstances() — exists(x,|. .. iw € T\Tsshen
self .p — mapping (X, Xj, . . ., Xu, Xy, ...)...)) endif . ..))
context type(root,) :: p — enabled(x; : type(x;), .. .)
body : when and enabling conditions
context type(rooty) :: p — mapping(x; : type(x;), .. .)
body : where and mapping conditions

Definition 2: Let p be a non-top relation with domain patterns S = {root,, s1, . .., Sy }.
and T = {root,, t1,. .., ty}, and T, CT be the set of elements of T referenced in p’s
‘when’ section, and P = {ay,...,a;}CSUT the set of elements passed as parameters
in the call to p from other relations.

Then, the following non-top relation invariant (a boolean operation) takes place for
the S —» T:

context type(root,) :: p(a; : type(ay), . .., ax : type(ay))
type(x;) :: alllnstances() — forAll(x;]
(type (xj) = alllnstances() — forAll(xj]. . . i € (S\{root }\P) U Toen
if self p — enabled(x,-,xj, .. ) then
type(x,) :: alllnstances() — exists(x,|
(type(xv) :: alllnstances() — exists(x,|. . . Pw € T\Tunen \P

self . p — mapping(xi,xj, ey ALy ey Xy Xy - - ) ..)) endif . ..))

After such extraction of the invariants from the QVT transformations, the cor-
rectness of the model transformation can be applied for solving two problems:
(1) verification of correctness properties of transformations, that is, finding defects in
them and (2) validation of transformations, that is, identifying transformations whose
definition does not match the designer intent.

With application of OCL invariants both problems can be solved using existing
OCL verification and validation tools for the analysis of model transformations. With
these inputs, verification tools provide means to automatically check the consistency of
the transformation model without user intervention. Checking consistency allows the
verification of the executability of the transformation and the use of all validation
scenarios. Other properties checked automatically by OCL analysis tools (e.g. redun-
dancy of an invariant) lead to the verification of other properties, chosen as a cor-
rectness property, described in the previous sections.



68 B. Ulitin et al.

4 Example: Transformations of Statecharts and Petri Nets

In order to show the feasibility of our approach in practice, we show its application in
the case of transformation between UML Statecharts and Petri Nets models.

To do this, we will go through all the steps of the proposed algorithm, applying it to
the specified languages.

4.1 Analysis of the UML Statechart and Petri Net Modeling Languages

UML Statecharts as the Source Modeling Language
The formalization of UML Statecharts was in details described in [7], therefore here we
describe only a simple UML model as running example. In our case we analyze the
UML models of a voting process which requires a consensus from the participants.
In the system (Fig. 1), a specific task is handled by several calculation units
CalcUnit, which send their local decision to the Voter buffer (where decision is ‘yes’ or
‘no’). The decision is considered accepted if all responses received by the Voter are
‘yes’. At the final stage, the Voter notify all calculation units about decision taken
(where decision is ‘accept’ or ‘decline’). In what follows, we consider the system with
two calculation units, that rather simplifies more general parameterized case.

Petri Nets as the Target Modeling Language

Petri Nets are often used to formally describe the dynamic semantics of the system.
This popularity can be explained by the simplicity of this model, as well as the
possibility of converting to other similar notations.

According to the metamodel of this modeling language (Fig. 2), a simple Petri Net
consists of Places, Transitions, InArcs, and OutArcs as depicted by the corresponding
classes. InArcs are leading from (incoming) places to transitions, and OutArcs are
leading from transitions to (outgoing) places as shown by the associations. Addition-
ally, each place contains an arbitrary (non-negative) number of tokens) [9].

Dynamic concepts, which can be manipulated by rules (i.e., attributes tokens, and
fires) are printed in bold italic. The operational behavior of Petri Net models is captured
by the notion of firing a transition. Example of algorithm for transition between is
described in [7] and consists of four stages, which are responsible for applying the
rules, adding new and removing unmatched nodes.

4.2 Defining the Model Transformation

Modeling Statecharts by Petri Nets
In this section we describe main rules, used to translate Statecharts components into the
Petri Net model.

First of all, each state in Statechart is translated into a corresponding place in the
Petri Net model. Using tokens in the place, we can identify, that the original state for
this place was an active state. From this point of view, one token is allowed on each
level of the state hierarchy (forming a token ring, or formally, a place invariant).
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May accept

no”theCalcUnit.decline T yes”theCalcUnit.accept
Processing

yes

) Wait for vote
accept decline

no

finishedAtheVoter.yes
0U"J910A\3Y3y PYSIULY

Wait for decision no”theCalcUnit.decline l yestheCalcUnit.decline

Decline

Fig. 1. Statemachines of CalcUnit (left) and Voter (right)

After the states, model messages from the event queues of a statemachine are
translated into corresponding places. This stage of the transformation is not always
straightforward, but we leave it out the scope of this study, assuming the approach
described in [7].

Finally, each step in Statechart is transformed into a corresponding Petri Net tran-
sition. To do this, in fired transitions tokens are removed from source places (including
event queue places) and new tokens are generated for all the target places and receiver
message queues.

Applying previously provided rules to our Statechart, the following Petri Net can be
derived (Fig. 3). In Fig. 3, for improving legibility, only a single transition (leading
from state may_accept to wait_for_vote and triggered by the yes event) is shown. In
this target model all original places of the Voter are replaced with the corresponding
states and message queues for valid events, the initial state is marked by a token.
Transitions have two incoming arcs as well, one from its source state.

Formalizing Model Transformations

In Sect. 3 we mentioned, that model transformations can be formalized using graph-
oriented approach like [13]. Such formalization can be automated using special tools,
for example VIATRA with a set of graph-transformation rules (in XMI or QVT) as its
input.

The main element of such automation is the definition of inductive invariants, which
establish correspondences between the elements of the source and target models. For
example, in our case the following invariant for transforming Statechart states into Petri
Net places can be derived (Fig. 4).

According to this pair of rules (Fig. 4), each initial state in the source model is
transformed into a corresponding place containing a single token, while each non-initial
state is projected into a place without a token.

Such triple structure of the invariants (and corresponding transformation rules) with
reference elements allows us to organize the bidirectional transformations, that simplify
the process of verification of model transformation correctness in the following stages.
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Fig. 2. A fragment of operational semantics of Petri Nets by graph transformation
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Fig. 3. A part of the Petri Net of the voter
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Fig. 4. Invariants for transforming active (passive) states into places
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4.3 Verification of the Model Transformation

Generating Transition Systems
Transition systems are a common mathematical formalism that serves as the input
specification of various model checker tools. In all practical cases, we have to restrict
the state variables to have finite domains, since model checkers typically traverse the
entire state space of the system to decide whether a certain property is satisfied [15].
In what follows, we use the SAL syntax for the concrete representation of transition
systems. This system is derived automatically from graph-oriented definition of model
transformations between source and target model using the approach, described in [5].

Formalizing the Correctness Property
Finally, we define the property, which is used to validate both source and target
models. The only prerequisite for such a property is the ability to formalize it, that
allow a designer to automate the validation process.
In our case the following property will be used for Statechart model. For all OR-
states (non-concurrent composite states), only a single substate is allowed to be active
at any time during execution. From the formal point of view, this property can be
formalized by the following invariant:

A0 : ORState, S : State, S, : State : subvertex(O, S1) N subvertex(0,S,) A
isAct(Sy) N isAct(S2) NSy # i

Informally, it prohibits the simultaneous activeness of two distinct substates S; and
S, of the same OR-state.

Unfortunately, this criterion is difficult to check in terms of the target Petri Net
model, since both states, and message queues of objects, are transformed into places. In
order to resolve this contradictory, the property can be concretized for the model-level,
using specific states from our model. As a result, the invariant above will be re-written
for all possible states of the original Statechart (Fig. 1), for example for states
wait_for_vote and may_accept the following invariant is generated:

—(subvertex(O, wait_for_vote) N subvertex(O, may_accept)
isAct(wait_for_vote) N isAct(may_accept) A wait_for_vote # may_accept)

After this concretization we have three different, non-conflicting correctness prop-
erties, which are appropriate to be transferred to the target Petri Net model. Since the
state hierarchy of Statecharts is not structurally preserved in Petri Net, the equivalents
of the OR states are not projected into the target model. As a result, the corresponding
property (see Table 1) contain only specific pairs of places having a token.

Table 1. Table of state transitions Petri nets.

Place Place

wait_for_vote (token = 1) | may_accept (token = 1)
wait_for_vote (token = 1) | decline (token = 1)
decline (token = 1) may_accept (token = 1)
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At this point, we need to validate whether the equality (one) or inequality checks
(more than one) are required in the property to be proved. We may conclude that
checking equality is also sufficient.

As we mentioned before, constructing the pair of properties to be proved for
property preservation is not always straightforward and cannot always be automated,
since it requires a certain insight into the source and target languages and their
transformation.

Model Checking the Target Model

At the final stage of the algorithm, taking into account the definition of Transition
system 7S with semantics defined as a Kripke structure), a correctness property p, the
model checking problem can be defined as to decide whether p holds on all execution
paths of the system.

Therefore, at this stage, the model checker is supplied with the transition system of
the Petri Net model and the textual representation of the property g. As the places
derived from the states of the same OR-state form a place invariant (with a single token
circulating around), the model checker easily verifies even the strengthened property.

As a conclusion for our case study, the model transformation preserved the defined
above correctness property for a specific source Statechart model and its target Petri
Net equivalent.

5 Conclusion

In current research we demonstrated the model-level, modeling language independent
and highly automated approach to formally verify the model transformations between
different (in the general case) modeling languages. Proposed approach is based on the
idea of finding invariants between entities of such modeling languages with the sub-
sequent checking of them with dynamic consistency properties. Such consistency is a
key element in ensuring semantic interoperability in the process of digital transfor-
mations. The ability to describe an enterprise from different points of view through
consistent modeling languages allows stakeholders to achieve a single vision for the
enterprise as a whole. Our approach can be one of the means to achieve such coher-
ence. To demonstrate the feasibility of the approach, the case with transition from UML
Statechart model into Petri Net model was analyzed.

In comparison with existing approaches like [8] and [10], which also use the ideas
of automated model generation with subsequent correctness property checking, our
approach doesn’t depend on the modelling language and property chosen. Such
independency follows from deriving invariants as stable logical structures from the
model transformation rules. As a result, the verification procedure reduces to a simple
check of two sets of OCL constraints between themselves.

Among the limitations on the proposed approach the state explosion problem may
be noted. To resolve this limitation, we propose to improve the automated encoding
into transition systems to improve the technics and extend it on larger scale model
transformations.
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