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Abstract. Digital transformation of organizations became a significant research 

and engineering challenge worldwide. Implementing such a transformation re-

quires not only a change in the technical equipment of the enterprise, but also 

developing new methods of knowledge life cycle management which include 

extraction of individual, interpersonal or organizational knowledge to explicit 

machine-readable forms and their conscious application during enterprise reen-

gineering. Successful accomplishment of these tasks vitally relies on a rigorous 

scientific theory and formal methods. This work presents a new approach to 

knowledge life cycle management of different forms of knowledge based on 

combination of ontology engineering and evolvable domain-specific languages. 

Keywords: Digital transformation, Enterprise engineering, Ontology develop-

ment, Domain-specific languages. 

1 Introduction 

During last decades we became witnesses of unprecedented advances in various do-

mains of micro-electronics, communications and computer sciences. These advances 

have great impact on almost every aspect of economic and social structures. Such 

concepts as Industry 4.0 ([5], [56], [64]) Logistics 4.0 ([5], [42]), as well new models 

of government and public administration services ([4], [10], [52]) demonstrate new 

trends in development of organizational theory and business models based on digital 

technologies. That development assumes the wide-scope conversion process from 

mainly analog information into the binary machine-understandable languages, ac-

companied by the notion of digital innovation as ―the concerted orchestration of new 

products, new processes, new services, new platforms, or even new business models 

in a given context‖ [27]. A large-scale combination of these digital innovations has a 

name of digital transformation, emphasizing crucial synergetic effects on an institu-

tional level ([27], [29],[31], [32], [34], [52], [64]). Despite intrinsic processes of digi-

tal transformation in each application domain, common characteristic features are 

clearly visible: institutionalized disruptive changes of social and business domains, 
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intensification of networking and cooperation, emergence of complex cyber-physical 

systems ([27], [29], [32],[34], [52], [56]). 

Radically new conditions of information processing, planning and strategic man-

agement of digitalized enterprises call to engineering of various flexible organization-

al forms on the solid ground of enterprise engineering principles: virtual enterprises 

[44], agile enterprises [36] and distributed autonomous organizations (DAO) [33].  

Recent achievements in enterprise engineering ([14], [54], [65]) provide a design 

blue print as well as offer a certain set of methodological implications. During recent 

years within the enterprise engineering community the notion of Enterprise Architec-

ture (EA) became manifestation of the systemic engineering approach to understand-

ing and redesigning organizations ([26], [27], [56]). First of all, EA-based methods of 

digital transformation should lead to design of cohesive socio-technical systems be-

cause, as it is stated in [5], the digital transformation aim is not to replace humans in 

their works, but to avoid inaccuracies and to have faster processes where the informa-

tion can be shared effortless and in real time. 

Modern researches determine a complicated manner of relations and multiple pers-

pectives on socio-technical systems ([5], [56], [64]). According to [64] vertical inte-

gration requires the intelligent cross-linking and digitalization of business units in 

different hierarchal levels within the organization. Such complexity makes practical 

implementation of digital transformation quite difficult in general and in particular 

domains as well. Recent analysis of Westerman et al. [67] shows that none of the 50 

companies, most of which had a turnover of more than $1 billion, had successfully 

transformed all elements of EA. At the same time Hafsi et al. conclude that despite 

the ongoing research in academia, the benefits and the role of EA management in 

digital context are still a topic of lively discussions, and there is a gap in research on 

how to leverage EA for digital transformation [26]. It is concluded in [31] that the 

characteristics of the industry raise barriers for process innovations and effectively 

constrain application of EA for digital transformation. By a similar manner Oleśków-

Szłapka and Stachowiak [42] point out significant problems of digitalization in Logis-

tics 4.0, while Oliva and Kotabe determine significant barriers to knowledge man-

agement in startups [43]. 

Performed analysis shows, that successful implementation of digital transformation 

strategy vitally depends on further progress in liaison of EA practices and enterprise 

knowledge management in new contexts of virtual organizations and evolvable cyber-

physical systems. Supporting the concept of digital transformation ―as the third and 

ultimate level of digital literacy‖ [26] we have a strong reason to augment the notion 

of digital transformation by the concept of knowledge-based digital transformation as 

a new paradigm of organizational theory. That augmentation revives relevance of the 

pioneering work on design of inquiring systems by C.W. Churchman [11]. 

According to [66] during knowledge-based digital transformation enterprise mod-

eling and knowledge management could combine their efforts to develop reference 

and reusable core enterprise ontologies and behavior representations as required by 

the smart, sensing and sustainable (S3) digital enterprises of tomorrow. Following the 

pioneering work of Fox and Gruninger [19] and the Enterprise Ontology of Uschold 
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et al. [62] several ontology-based modeling approaches were proposed, such as: 

DEMO [13] or MRO [63].  

In the enterprise engineering studies of knowledge management within a digital en-

terprise an important problem arises which is proper extraction of tacit individual, 

interpersonal or organizational knowledge to explicit machine-readable forms and 

their conscious application during enterprise reengineering. In that context research 

multiple researchers show that tacit knowledge greatly influences behavior of enter-

prise ([38], [47]).  

By our view in most applied engineering methods availability of structured exter-

nalized knowledge is usually only a requirement to construct models and necessary 

for enterprise models [44]. Specific features of tacit knowledge require development 

of new forms of its machine-based representation, and support mechanisms for know-

ledge life cycle management. In our studies a following principal research question 

was specified: which theoretical backgrounds facilitate design or integration of arti-

facts which comprise a unified solution to knowledge life cycle management fostering 

knowledge-based digital transformations? Fig.1 depicts such a research framework. 

 

Fig. 1. The research framework of studies. 

In order to pursue an answer we hypothesize that: 

1. Implementation of the knowledge triad model [39], which facilitates mutual trans-

formations of explicit and tacit knowledge, can be a practically achievable form of 

knowledge-based digital transformation if enterprise engineering methods are de-

signed in accordance with social constructivism paradigm. 

2. Combination of three elements becomes critical for developing these new enter-

prise engineering methods: 

a. methodology for extracting tacit knowledge; 

b. a constructivist view – aligned theory of comprehensive ontology-based know-

ledge modeling for proper conceptualization of enterprise; 

c. a theory and methodology for continuous transformation of tacit and explicit 

knowledge according the model of knowledge triad (using phronesis). 

3. Following design artifacts may instantiate the elements a), b) and c): 
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─ mathematical and psychological principles of repertory grids by G. Kelly [20] 

can be used for the purpose of reconstruction of a personal world view and de-

veloping a solid methodology for extracting tacit knowledge by application of 

factual approach to knowledge construction;  

─ a constructivist-based theory of knowledge modeling which combines advances 

of designing top-level ontologies and formal ontology of enterprise proposed by 

J. Dietz;  

─ an ontology-grounded theory of domain-specific languages with proper methods 

of their transformation and evolution, providing an explicit-tacit knowledge 

combination engine. 

In that article we wish overview key results in developing artifacts for the elements 

b) and c)  for comprehensive understanding of socio-technical systems, and providing 

a reliable decision support for digitalization.. These results include Formal Enterprise 

Ontology (FEO), Formal Enterprise Ontology Pattern Language (FEOPL) and a 

specific approach to supporting transformative evolution of ontology-based domain-

specific languages.  

Section 2 provides readers with necessary foundational information concerning 

knowledge management, enterprise engineering and domain-specific languages. 

Section 3 offers description of our research, the practical application of which results 

are shown in Section 4. In the conclusion we overview achieved results and determine 

directions for further investigation. 

2 Foundational principles of knowledge-based digital 

transformation 

2.1 Generic Paradigms of Knowledge Management 

Hafsi et al. in [26] provide a direct connection between digital transformation and 

knowledge management as a specific organizational discipline that aims to acquire, 

transform, store, use and discard knowledge that is important in generating value for 

the organization. Oliva and Kotabe [43] consider the knowledge management as one 

of the key enterprise processes that supports the dynamic capabilities of emerging 

digital organizations. In the context of digital transformation Nonaka et al. [39] argue 

that the company needs to have organizational forms that achieve a dynamic synthesis 

of knowledge exploration and exploitation. Weichhart, Stary and Vernadat provide 

even a more radical viewpoint – the rate of new product introduction is a function of a 

firm’s ability to manage, maintain and create knowledge [66]. 

We may distinguish several aspects of knowledge-based digital transformation. In-

teroperability becomes the first aspect because dynamic synthesis of knowledge ex-

ploration and exploitation during digital transformation raises grand challenges. For 

example, in [44] authors show unprecedented nature of these challenges for the case 

of mapping the Industry 4.0 elements to the European Enterprise Interoperability 

Framework. A detailed set of interoperability includes such elements as interopera-

bility of models and processes, explicit knowledge, knowledge management systems. 
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Undoubtedly, as Weichhart, Stary and Vernadat noted in [66] with respect to semantic 

interoperability, the key element of that set is mutual ontological commitment on the 

basis of machine-readable shared ontologies. For instance, the Ontology of Enterprise 

Interoperability (OoEI) proposed by Naudet et al. [37] can give an example of ontolo-

gy-based support for enterprise modeling.  

We see the second aspect of knowledge-based digital transformation in a more pre-

cise stratification of knowledge onto different types. From the time of ancient Greece 

epistemology determines three subsets of knowledge: techne (the practical skill re-

quired to be able to create), episteme (context-independent knowledge), and phronesis 

(practical wisdom) ([66], [68]). Simultaneously in the modern knowledge creation 

theory, two types of knowledge are distinguished:  tacit and explicit [39]. Polanyi [48] 

defines explicit or codified knowledge as the type of knowledge that can be effective-

ly transferred through a formal language, and tacit knowledge as having a personal 

quality that makes its formalization and communication difficult. At the same time 

tacit knowledge can be shared, developed, and extended by physical collaboration 

[38]. In [47] the authors argue that the distinction between tacit and explicit know-

ledge is the key to understanding organizational knowledge. Nonaka and Nishihara 

even emphasize the importance of tacit knowledge over explicit knowledge, through 

an understanding that tacit knowledge is the foundation of all knowledge [38].  

Distinction of two knowledge types supposes presence of a dynamic approach to 

the knowledge management ([40], [41]). In order to achieve deep understanding of 

such knowledge dynamics, which is very important for digital innovations and digital 

transformations ([43], [47]), some conceptualization of knowledge synthesis is re-

quired. To pursue that goal Nonaka et al. propose to combine traditional and modern 

taxonomies of knowledge within a unified conceptual framework of knowledge triad 

[39]. In that framework dynamic synthesis of knowledge is realized through the 

knowledge dialectics of tacit knowledge, explicit knowledge and phronesis. Accord-

ing that model of ―knowledge triad‖ phronesis drives the conversion of tacit and ex-

plicit knowing. Practical evaluation of that framework in modern conditions of digital 

enterprises has been provided in [35], which confirms existence of four phases of the 

process of generating and converting knowledge phases: Socialization, Externaliza-

tion, Combination, Internalization.  

In that framework dynamic synthesis of knowledge is realized through the know-

ledge dialectics of tacit knowledge, explicit knowledge and phronesis. As it is stated 

in [39] it is the phronesis of the leaders with their practical wisdom that facilitates and 

propels new business models of dynamic fractal organizations. Taking such a holistic 

view point leads to the conclusion that modern foundations of knowledge manage-

ment need ―to synthesize the subjective and the objective, the personal and the orga-

nizational perspective‖ [66]. 

2.2 Foundations for a proper conceptualization of knowledge about enterprise 

Being paired with generic principles of knowledge management Enterprise Engineer-

ing aims at developing a holistic systemic view on the construction and the operation 
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of enterprises [15]. However, there is no agreement about the best shared conceptuali-

zation of enterprises even in terms of a foundational organizational paradigm.  

We strongly believe that it is the social constructivism paradigm which reflects the 

key characteristics of digital transformation and is becoming a prevailing approach in 

construction and evolution of organizational knowledge. According to the construc-

tivist view, individuals actively participate in a construction of their own knowledge 

through interactions within complex social systems [25]. As a clear example of well-

founded conceptualization and a constructivist view on enterprise knowledge evolu-

tion and management   the enterprise ontology [13] can be distinguished. That ap-

proach includes the ontology-based concise, comprehensive, coherent, and consistent 

enterprise modeling language, and the corresponding modeling methodology (DEMO 

- Design & Engineering Methodology for Organizations). Providing a consistent set 

of micro-theories grounded in Language-Action Perspective (PSI – Performance in 

Social Interaction theory), the enterprise ontology represents a coordination viewpoint 

underlying other ontological theories of enterprises. 

2.3 Definition and classification of ontologies 

Ontology is a representational artifact, comprising a taxonomy as a proper part, whose 

representations are intended to designate some combination of universals, defined 

classes, and certain relations between them [3]. 

According to this definition, the following considerations can be deduced: (1) the 

ontology is a representational artifact = def. the scheme of a certain area; (2) the on-

tology contains concepts of a certain area, its properties and relations between them; 

(3) a proper part of relations are taxonomy-type relations. 

Based on these considerations, the ontology can be represented as a triple(𝑂, 𝑅, 𝐹), 

where 𝑂 = 𝑈 𝐶 is a set of objects, where 𝑈 =  𝑢1 , 𝑢2, … , 𝑢𝑁 , 𝑁 ∈ ℕ (where 

𝑢𝑖 , 𝑖 = 1, 𝑁 is a concept (universal) of a certain area an can be represented as a set of 

its attributes 𝑢𝑖 =  𝑎𝑡𝑡𝑟1 , 𝑎𝑡𝑡𝑟2, … , 𝑎𝑡𝑡𝑟𝑀 ,𝑀 ∈ ℕ, , 𝑖 = 1, 𝑁), 

𝐶 class  is a set of 𝑐𝑖 , 𝑖 = 1, 𝐾, 𝐾 ∈ ℕ, where 𝑐i  is an exemplar of some 𝑢𝑗 , 𝑅 is a set 

of relations between elements of 𝑂, and 𝐹 is an interpretation function assigning val-

ues to the non-logical constants of the language [22]. 

From this point of view, the ontology can be naturally perceived as a graph (𝑂, 𝑅), 

with a set of functions of constraints 𝐹. 

On the other hand, the ontology is some kind of representation, created by the de-

signer [23]. From this point of view, development of the ontology has always some 

certain goal, which affects the whole design process and its final result, the ontology 

itself. As a result, the following classification of ontology kinds based on their level 

of dependence on a particular task (or a viewpoint) can be identified [3, 22]: top-level 

ontologies, which describe very general concepts, independent of a particular problem 

or domain; domain (task) ontologies, which describe, respectively, the vocabulary 

related to a generic domain (task) and application ontologies, which describe concepts 

that depend both on a particular domain and a task, and often combine specializations 

of both the corresponding domain and task ontologies. 
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In the current research, we pay attention mostly to the enterprise ontologies, which 

refer to the Application ones. But as the Domain ontology contains only the necessary 

concepts of a subject area, Application ontology operates with a subset of these con-

cepts necessary to achieve a certain goal. That allows us to consider the Application 

ontology as the reduced Domain ontology and can be used as a basis for development 

of DSM which in turn is used in the development of domain-specific languages. 

2.4 Domain Specific Languages 

Static conceptual structures of the enterprise ontology alone are not capable of main-

taining mutual transformations of explicit and tacit knowledge during knowledge life 

cycle management. For that purpose, ontology should be fused with a specific me-

chanism for dynamic generating and converting knowledge. Evolvable domain-

specific languages may be considered for that role. 

A number of research results demonstrate suitability of using Domain-Specific 

Languages (DSL) for defining the context for different knowledge modeling and 

management tasks of modern companies ([16], [17], [22], [23], [46], [51], [53], [57]). 

For example, Sprinkle [57] describes the implementation of DSL for modelling logis-

tic interactions within the organization. Pereira et al. [46] prove the effectiveness of 

DSL usage for the definition of the context of the resource allocation problem. 

In the context of our studies frontiers of DSL application for extraction and trans-

formation of tacit knowledge attract special interest, because as Colins states – lan-

guage plays a role of a repository for tacit knowledge [12]. Indeed, domain-specific 

languages can be considered as a practical implementation of interactional expertise, 

which may be viewed also as an attempt to introduce the tacit dimension of linguistic 

knowledge [55]. In [69] ontologies and domain-specific languages were considered as 

among the primary tools for extraction and representation of explicit and tacit know-

ledge in the safety domain. Gross demonstrates application of visual domain-specific 

languages for grasping tacit knowledge in a complex domain of artistic lighting [21]. 

Formally a domain-specific language is a computer language specialized to a par-

ticular application domain. This is in contrast to a general-purpose language, which is 

broadly applicable across domains, and lacks specialized features for a particular 

domain [18].  In [45] two parts of the DSL are identified: (1) a syntactic part, which 

defines the constructions of DSL; (2) a semantic part, which manifests itself in the 

semantic model. The syntactic part allows us defining the context for working with 

the second one, which defines meaning of DSL commands in terms of the target do-

main. The syntactic part itself contains the domain concepts and rules (abstract syn-

tax), as well as the notation used to represent these concepts – let it be textual or 

graphical (concrete syntax). 

A syntactic part of DSL can also be separated into two levels: the level of objects 

and the level of functions. The object-level is equivalent to the set of objects of the 

meta-model. The functional level contains operations, which specify the operational 

context for the objects. That two-level division of the DSL syntactic part provides the 

maximum correspondence between the ontological model of the target domain and 
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the DSL model, and the most convenient way of organizing conversions between 

them. 

A semantic part of DSL is derived from the conceptual model of the target domain. 

According to Parr [45] we will call such a model as Domain-Semantic Model (DSM). 

DSM can be constituted by either just small pieces of domain knowledge (e.g. small 

taxonomies equipped with few rules) or rich and complex ontologies (obtained, for 

example, by translating existing ontologies). That gives respectively weak or rich and 

detailed representation of a domain [6]. In our research DSM becomes the bridge 

between the enterprise ontologies and DSL. 

Static features of DSL are well studied and a lot of automated tools exists to design 

and exploit DSL in the enterprise practice. However, as a dynamic complex structure, 

any domain demonstrates the tendency to the evolution over time: new concepts may 

arise, while others unite into more general ones or become obsolete. In accordance 

with these changes, DSL should also support the possibility of evolution.  

The simplest option in this case is to rebuild DSL whenever the domain model 

changes. But this process has several disadvantages. First of all, the process of DSL 

development is really time-consuming, since DSL contains internal and external parts, 

connected with the domain model and DSL syntax correspondingly. Secondly, DSL 

development, since DSL is a language, is often associated with the use of grammar 

tools that require special skills from developers. Finally, while a new version of DSL 

is being created, the domain can be changed again. Thus, the DSL changes may not 

be synchronized with the domain changes, making DSL not fully compliant with the 

needs of the end users. 

3 Developing own unified solution 

In that section we perform a synthesis of aforementioned foundations and describe 

own contributions to the theory and practice of knowledge life cycle management and 

knowledge-based digital transformations. At first, an ontology-based conceptualiza-

tion of enterprise is described, which facilitates ontology-based description of corner-

stone enterprise concepts. Secondly, an ontology-based methodology for continuous 

transformations and verification of DSL is given, which can play a role of the me-

chanism for continuous transformation of tacit and explicit knowledge. 

3.1 Building an ontology-based conceptualization of knowledge about 

enterprise 

In order to play a role of an ontological basis for knowledge-based digital transforma-

tion enterprise ontology should be fused with a corresponding foundational ontology 

because the core enterprise theory provided by DEMO is not fully axiomatized yet. 

Rephrasing the definitions made by Guizzardi in [22] with regard to enterprise model-

ing, the domain appropriateness and the comprehensibility appropriateness of an en-

terprise conceptual modeling language is guaranteed by the meta-model of this lan-

guage representing a full axiomatization of enterprise ontology.Despite the plurality 
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of existing foundational ontologies, in our work we exploit the Unified Foundational 

Ontology (UFO) and its compliant conceptual modeling language OntoUML [22] in 

order to build and to represent an ontological theory of enterprise interactions with the 

basis on a solid theoretical framework. 

Practical implementation of such fusion requires performing two intellectual tasks. 

At first hand, a consistent ontology-based conceptual modeling language with a 

strong referential semantics should be designed. Secondly, a set of design-oriented 

practices should be developed which impose relevant constraints on the modeling 

language application during solution of recurrent modeling problems of enterprises. 

For the solution of the task of developing a conceptual modeling language, the On-

toUML conceptual modeling language [22] was taken as a basis. Restating the DEMO 

enterprise ontology in terms of OntoUML allowed us to combine modeling elements 

of enterprise ontology and reference ontology (UFO), as well as to reveal some gaps 

and inconsistencies on the analysis of the DEMO foundations. Moreover, we added 

some additional ontological categories based on their relevance for the theory of en-

terprise ontology. 

This work resulted in a fully axiomatized Formal Enterprise Ontology (FEO) [49]. 

This is the domain- and standard-independent ontological theory that provides a refe-

rential semantics for metadata. The UFO-C part (a foundational ontology of social 

entities) [24] guarantees a well-defined ontological foundation of FEO and expres-

siveness of the essence of an organization in the ontological categories of foundation-

al ontology. 

The OntoUML-based FEO language provides modeling primitives that reflect the 

conceptual categories and axioms defined by the whole ontological theory. For exam-

ple, FEO includes the axioms in first order logic that supplement the forgoing defini-

tions by relevant constraints and formally specify the notion of an ontological transac-

tion. 

The second task aimed at solving recurring conceptual modeling problems of en-

terprises by adapting a generic notion of ontological patterns to FEO.  Ontology pat-

terns [17] were considered as a promising approach to capture standard domain-

specific solutions to recurrent problems of conceptual modeling [16]. In general, each 

pattern has to be dedicated to a particular type of modeling issues, provide a solution, 

be accompanied with the instructions about its applicability in a right situation, and be 

associated with the set of related patterns. A set of interrelated patterns comprises a 

certain pattern language which can be applied systematically depending on require-

ments of the modeled situation and the goals of the modeler.  

Following the method proposed by Guizzardi in [22], we created a set of modeling 

constructs (ontology patterns) represented in OntoUML, and called it the Formal En-

terprise Ontology Pattern Language (FEOPL) [50]. All patterns of that language inhe-

rit axiomatization of the FEO ontology, thus making the meta-model of the language 

isomorphic to this ontology.FEOPL patterns include the following: 

 a Transaction pattern, intended (1) to specify the notion of transaction and (2) to 

tackle problems related to modeling of properties and an evolution of basic units of 

business processes; 
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 the pattern of Coordination actions and their resulting commitments, which puts 

together Actor Role, C-act, C-act Intention, C-act Proposition, Transaction, C-

commitment and their interrelations; 

 the pattern of Production Actions, which states that propositional contents of pro-

duction actions are abstract representations of allowable/desired states of the pro-

duction world of an enterprise; 

 the pattern of Production Facts, which explicitly defines semantics of the notion of 

a production fact. 

A more detailed description and analysis of the presented templates is contained 

in  [50]. As patterns description shows, FEOPL facilitates formalization of rules and 

conditions for social coordination actions based on the information derived from do-

main ontologies. Moreover, the language meta-model correlated with both the upper 

level ontology and the FEO preserves real-world semantics in a broad sense. That is 

reducing the number of semantic conflicts in representation of enterprise domain. 

Grounding FEOPL in the DEMO modelling language leverages application of 

formal methods for knowledge management because the FEOPL patterns define pre-

cise semantics for interrelation between lifecycles of social objects (including transac-

tions, commitments and claims) and lifecycles of enterprise products. 

The modelling power of FEOPL was investigated in application to modelling prob-

lems of test-bed case studies. The results of modelling confirmed relevance and effi-

ciency of FEOPL application for modelling knowledge-based digital transformations. 

3.2 Evolution of Domain-Specific Languages for Managing Knowledge 

Having reliable tools of conceptualization in terms of formal enterprise ontology, 

we may consider further advancing of DSL design on that solid ground. Application 

of the ontology as a model of DSL guarantees that DSL is identical to the correspond-

ing domain, thereby allows the users interacting with it more effectively. 

In our approach [59] we apply the formalization of the semantic DSL level in a 

model-oriented manner as a combination (𝑂, 𝑅) of some objects of the target domain 

and relations between them, where each object is a set of its attributes and 

tions 𝑜𝑖 =  𝐴𝑡𝑡𝑟𝑖 , 𝑂𝑝𝑝𝑖 =  
 𝑎𝑡𝑡𝑟𝑖1 , 𝑎𝑡𝑡𝑟𝑖2 , … , 𝑎𝑡𝑡𝑟𝑖𝑀  ,

 𝑜𝑝𝑝𝑖1 , 𝑜𝑝𝑝𝑖2 , … , 𝑜𝑝𝑝𝑖𝐾  
 ,𝑀, 𝐾 ∈ ℕ, 𝑖 = 1, 𝑁). 

In these terms, the syntactic part of DSL can be represented as a subset of the se-

mantic level, needed for representation of a certain problem situation. The very one 

difference is that the syntactic part may not absolutely reflect the semantic construc-

tions but identify its own definitions (pseudonyms) for the semantic constructions, 

according to the user’s needs. 

As follows, the structure of the syntactic level can be formalized as a 

triple (𝑂𝑠𝑦𝑛𝑡𝑎𝑥 , 𝑅𝑠𝑦𝑛𝑡𝑎𝑥 , 𝐴𝑙𝑖𝑎𝑠𝑠𝑦𝑛𝑡𝑎𝑥 ), where 𝑂𝑠𝑦𝑛𝑡𝑎𝑥 ⊆ 𝑂 and 𝑅𝑠𝑦𝑛𝑡𝑎𝑥 ⊆ 𝑅 are the 

subsets of objects and relations between them of the semantic DSL level respectively, 

and 𝐴𝑙𝑖𝑎𝑠𝑠𝑦𝑛𝑡𝑎𝑥  is a set of pseudonyms for objects’ components (attributes and opera-

tions). 
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By a similar object-oriented manner Domain-Semantic Model can be derived from 

the corresponding FEO and can be represented as a seven-

tuple:𝐷𝑆𝑀 = (ℋ𝐶 ,ℋ𝑅 , 𝑂, 𝑅, 𝐴,𝑀,𝐷), where 

 ℋC  and ℋR are sets of classes and relations schema. Each schema is constituted by 

a set of attributes, the type of each attribute is a class. In both ℋC  and ℋR  are de-

fined partial orders for the representation of concepts and relation taxonomies; 

 𝑂 and 𝑅 are sets of class and relation instances also called objects and tuples; 

 𝐴 is a set of axioms represented by special rules expressing constraints about the 

represented knowledge; 

 𝑀 is a set of reasoning modules that are logic programs constituted by a set of 

(disjunctive) rules that enables reasoning about the represented and stored knowl-

edge, so new knowledge not explicitly declared can be inferred; 

 𝐷 is a set of descriptors (i.e. production rules in a two-dimensional object-oriented 

attribute grammar) enabling the recognition of class (concept) instances contained 

in 𝑂, so their annotation, extraction and storing is possible. 

In our research, we focus only on the sets 𝑂 and 𝑅. Consideration of other parts of 

DSM is beyond the scope of our study, since it determines more meta-characteristics 

of DSM itself, rather than the objects and connections between them, which are the 

most interesting for the further development of the DSL semantic model. 

Finally, taking into account previously mentioned formalization of the ontology as 

a triple(𝑂, 𝑅, 𝐹) [22], we can argue, that the ontology can be naturally perceived as a 

set (𝑂, 𝑅), with a set of functions of constraints 𝐹. Such definition of the ontology 

guarantee, that an ontology can be completely transformed into DSM, which ensures 

complete consistency of all three models (ontology, DSM and DSL model) with each 

other. 

Under these circumstances, we can tell about the complete ontology-based and 

model-oriented representation of the DSL structure. That representation corresponds 

to principles of model-driven engineering [7]. From this point of view, we can derive 

DSL semantics as result of transformation of DSM. Similarly, using transformation 

rules on entities and relationships between them from the DSM, the meta-model of a 

DSL can also be defined. Finally, reflecting DSL abstract syntax terms on the con-

crete visual icons or textual constructions DSL concrete syntax can be defined. 

Such a hierarchical model-driven approach allows us not only to describe both le-

vels of DSL in structured and unified manner but optimize the process of DSL devel-

opment and evolution by introducing several syntactic DSL dialects on one fixed 

semantic level. Furthermore, the versification of DSL can be provided in a similar 

way on the semantic level as well as on the syntactic level, without need to re-create 

the whole DSL structure every time, when the changes are required. All these features 

open practical opportunities for proper reflection of transition between tacit and expli-

cit knowledge of the users in a corresponding evolution of different DSL dialects with 

varying syntactic or semantic elements.  Also, automation of DSL syntactic and se-

mantic transformation using MDE principles forces traceability between different 

DSL dialects and allow us to use advanced methods of formal verification, as it will 

show later.  
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Combining the object-oriented model of the DSL structure with the formal defini-

tion of DSM on the basis of a single meta-meta-model, we can specialize a well-

known semantic hierarchy of meta-models for our approach to model-oriented devel-

opment and evolution of DSL (fig.2). In our case this hierarchy is separated into four 

layers, according to the stages of the DSL development. Each lower level is based on 

the model artefacts of the upper level A single M3 meta-meta-model determines 

common grounds for all meta- and models of the lower levels. This meta-level defines 

also notations in which concrete models will be defined and what rules for their trans-

formations will be used. 

We propose to create a DSL structure from the Domain-semantic model (DSM) 

through the so-called semantic projection mechanism. The semantic projection is an 

operation, which is conducted over DSM. Any semantic projection performs a certain 

model-to-model transformation (M2M) of DSM to some its fragment. Thus, semantic 

projection fully determines the semantic model of a particular dialect of DSL.  

We suggest application of a group of model-to-model transformations for practical 

implementation of semantic projections and producing corresponding DSL artefacts. 

In this case the semantic model becomes an object-temporal structure, because it 

should be adopted according changes in DSM over the time, thereby defining a new 

object filling of the DSM. 

 

Fig. 2.The semantic hierarchy of projection-based DSL development. 

After the semantic projection was performed, the syntactic level of DSL can be de-

veloped by a M2M transformation of the result of the corresponding projection. What 

is important, these DSL syntactic models are independent of each other and are de-

termined by end-users in accordance with the adaptation of the semantic projection to 

their own tasks. Finally, created syntaxes are used by the end-users of DSL, who de-

termine the set of DSL dialects within the single specific syntactic model. 

Fig.3 shows differences between traditional approaches and our proposals. Tradi-

tional approaches start with the manual definition of the DSL concrete syntax which 

is followed by the translation of the syntax in terms of grammars. Consequently, 

every change in the target domain leads to the need to redefine the DSL concrete syn-

tax and re-create the corresponding grammar. A similar process repeats in a case, 

when changes in DSL are caused by the end-users. As a result, outcomes of tradi-
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tional approaches contain inconsistent dialects of DSL, which cannot be mapped 

among themselves due to differences in all levels of the DSL structure. 

In order to provide such transformations, it is sufficient to adjust the system of 

matching rules between the components of the ontological model of the target domain 

and the components of the DSL model. One of the possible solutions to this problem 

can be the mechanism of graph transformations between the graph representation of 

the ontology and the DSL model. If we interpret the entities of our model as vertices 

of the corresponding graph and relations between them as corresponding edges, we 

can postulate, that any model can be described using graph-oriented manner. This fact 

logically results in the opportunity to describe model transformations and the corre-

sponding dynamic operational semantics of DSL using graph transformations rules. It 

is important to note, that such advanced methods of graph transformation as Graph 

Grammars (TGGs) [28] enable specification of direct and inverse transformation rules 

facilitating bi-directional DSL transformation. 

 

Fig. 3.The scheme of differences between traditional (top) and projection-based (bottom) DSL 

development approaches. 

Practical implementation of such transformation can be achieved by using one of 

specialized graph-transformation languages such as ATL Transformation Language, 

GReAT (Graph REwriting and Transformation) [1], AGG (Attributed Graph Gram-

mar), QVT. In our current research, we propose to use QVT, because this language 

allows us to describe the transformation rules from any original model into any target 

model, conducting a transformation at the level of meta-models. Using that instrument 

we demonstrated evolution of DSL in the railway allocation domain as an example of 

knowledge-based digital transformation [58]. In that case our method enabled evolu-

tionary changes of syntax and semantics of DSL in response to changing the knowl-

edge model of the users. Such changes frequently occur during modification of the 

business model of the railway services. 

In the scope of automated transformation between different variants of DSL an im-

portant issue of transformation verification arises. If the verification succeeds, then 

we conclude that the model transformation is correct with respect to each pair (𝑝, 𝑞) 

of properties (objects, relations) for the specific pairs of source and target models 

having semantics defined by a set of graph transformation rules. Otherwise, property 

𝑝 is not preserved by the model transformation and debugging can be initiated based 

upon the error traces retrieved by the model checker. That debugging phase may fix 

problems in the model transformation or in the specification of the target language. 

In what follows, we offer the unified and highly automated approach, allowing de-

velopers to formally verify by model checking that a model transformation (specified 
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by meta-modeling and graph transformation techniques) from an arbitrary well-

formed model instance of the source modelling language into its target equivalent 

preserves (language specific) dynamic consistency properties. In that approach the 

notion of invariants is specialized for a particular case of DSL verification.  

In terms of the most general approach [8], the invariant is a property, held by a 

class of objects, which remains unchanged when transformations of a certain type are 

applied to the objects. From this point of view, invariant can be interpreted in two 

ways: (i) a set of objects, which leave unchanged during the transformation provided, 

(ii) an operation, which can be applied to several objects at the same time (e.g. opera-

tion RENAME, which change the name of the object, regardless of its type). Taking 

into account these ideas, invariants are separated into two classes: structural and func-

tional (inductive and operational) invariants. In both cases invariants are defined on 

top of some transformation (transition) of the set of objects. 

For example, consider an inductive invariant. Usually it determines that there is a 

strong correspondence between elements of two sets of objects, which are connected 

during some relation (transformation). Such definition is very close to the relational 

approach for model transformation definition, when the relationship between objects 

(and links) of the source and the target language are declared. That results in the in-

sight, that the inductive invariant can be an effective mechanism for the definition of 

such model transformations and for the validation of the feasibility of obtaining one 

model by transforming another. We may conclude that the process of graph transfor-

mation resembles the search for various structural invariants in the source and the 

target with consequent application of corresponding graph transformation rules to 

them. Consequently, we can reformulate model transformations using the double-

pushout approach (DPO) with injective matching for graph transformations and an 

invariant technique. 

According to these principles, we can conclude, that validation of the model trans-

formation correctness can be fully described through invariant mechanisms. Such 

definition allows us to automate the process of formal validation of the model trans-

formation, reducing it to verifying the presence of invariants of both types among 

defined model (graph) transformations.  

Since we describe the model transformation using the graph-oriented approach in 

QVT transformation language, the procedure to derive the OCL invariants need be 

implemented.  With application of OCL invariants both problems can be solved using 

existing OCL verification and validation tools for the analysis of model transforma-

tions. With these inputs, verification tools provide means to automatically check the 

consistency of the transformation model without user intervention. Checking consis-

tency enables the verification of the executability of the transformation and the use of 

all validation scenarios. 

In our resent work [60] details of our approach to invariant-based transformation 

are provided together with the overview of an actual implementation of the verifica-

tion algorithm for a case of transformation between different enterprise models. 
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4 Demonstration in a practical case 

In that section we demonstrate practical application of our approach for the case of 

the railway station resource allocation domain. Partially aspects of this evolution were 

considered in our previous works [58, 59], therefore, here we will pay more attention 

directly to demonstrating the evolution of the language than to analyzing the process 

of its development and content. 

4.1 DSM for railway allocation domain 

The domain of railways services represents an interesting and significant case of dy-

namic management of knowledge and enterprise digitalization. In particular the con-

text of the railway allocation problem can change frequently because of arrivals of 

new trains, or changing the priority of existing services. As a result, we have to have a 

clear and simple way to adapt new changes in terms of the proposed framework, re-

sponsible for finding the optimal resource allocation. In the process of DSL design for 

the railway allocation process, it’s vital to identify all the types of resources in this 

domain.  

There are three general resources for any railway station, each with specific 

attributes: railways, trains and service brigades. All of them are represented in the 

DSM for the corresponding domain, which is more complete in comparison with that 

considered in our previous work [59], since it contains the specification of the re-

quirements (Skills) both for the Services and for the Brigades providing them. 

After the DSM created, we can identify the semantic level of DSL, describing the 

DSL meta-model. For this purpose, M2M transformation rules can be used, as it was 

described in [58]. This is reasonable since both DSM and DSL meta-model are de-

scribed in a model-oriented way. In addition, M2M transformations are independent 

from the notation of model definition, that allows us to describe DSM and DSL meta-

model independently, in the most appropriate way. As a result, we will have the com-

plete DSL meta-model, which can be used during the following DSL syntax defini-

tion. This definition includes two parts: definition of objects for DSL syntax, which 

are the equivalents to the objects, described on the semantic level of DSL, and gram-

mar, describing the operations and correct terms for the future DSL syntax. In our 

case, we used the Backus-Naur form of grammar definition, because this form allows 

us to identify rules, based on the previously created objects, and automatically convert 

the resulting rules into an abstract, language-independent form. 

As a result, the created DSL semantic and syntactic levels are wholly coherent and 

can be evolved using transformations in real time. In addition, such changes are pro-

vided separately, since the invariants on both levels are identified. 

In order to demonstrate how the evolution of users’ knowledge reflects into the 

transformation of DSL terms we analyze to states of the DSL: original one, derived 

from the DSM, and its further development using evolution tools. 
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4.2 The original DSL 

As a starting point for our DSL development we consider, that DSL supports only 

basic constructions and operations on objects defined in the DSM (railways, trains 

and service brigades) and the relationship between them. As a result, the following 

structure of DSL terms exists (fig. 4and fig. 5). As you can see, these constructions 

are sufficient to perform the basic operations of the domain: creating objects and es-

tablishing links between them (fig. 6). 

 

Fig. 4. DSL objects. 

 

Fig. 5. DSL functions. 

 

Fig. 6.Example of scenario in terms of the original DSL. 
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On the other hand, these commands do not reflect the time perspective of the do-

main, distributing only the set of resources available at a given moment in time be-

tween arriving trains. 

In order to improve the quality of DSL and provide the user with the ability to plan 

resource allocation over time, it is necessary to make changes to the original DSL. As 

a result, we need to provide the user with the ability to change the design of the DSL, 

which creates a more complex version of the subject-oriented interface. 

4.3 Subject-oriented GUI 

Developing subject-oriented GUI we should take into account, that it pursues two 

goals: writing and executing scenarios in the current version of DSL, as well as mak-

ing changes (evolution) into DSL. 

As a result, the interface created contains two parts: the first one, responsible for 

the DSL scenario definition and processing, and another one, needed for evolution of 

DSL. The first part, which contains only a visual panel, representing all the DSL 

components needed for definition of DSL scenarios, was properly described in our 

previous work [61] and mentioned in previous section. In what follows, the second 

part of the interface (see fig. 7 and fig. 8) responsible for DSL evolution is more in-

teresting for us. 

This part of interface allows us to adopt DSL automatically whenever the evolution 

is provided. Such automation allows us to support DSL evolution by end-users with-

out the need to re-compile the whole framework and to have special programming 

skills. 

 

Fig. 7.Evolution of DSL implementation. 

 

Fig. 8.Scenario with added command. 
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In order to design such evolution, the second part of the interface is used (fig. 7). 

This part contains three main components: the component to define/change a 

new/existing command of DSL, the component for definition of constraints, con-

nected with the command and the component for definition of syntactic terms, related 

to the new command. All these components are identified in accordance with the 

structure of DSL: objects, which contain attributes and operations and relations be-

tween them. As a result, the created interface allows us to define the whole DSL 

structure and change it in real time without need to re-create the DSL manually. 

4.4 Evolution of DSL 

The first change we want to provide to the user is to add a time perspective to all ob-

jects. In fact, this means that each of the objects will have an additional attribute asso-

ciated with time. For example, arrival time at the trains, the start and end time of ser-

vicing at the servicing brigades, etc. 

From a formal point of view, this DSL development scenario is an example hori-

zontal evolution. In more details, this classification of evolution was described in [58, 

59]. 

In this case, using the evolution part of the interface, we add a new attribute arri-

valTime to the TrainInfo object. For this purpose, the corresponding interface compo-

nent can be used (fig. 7, right). Similarly, we add other time attributes to other ob-

jects. After making such changes, we can argue that the structure of DSL objects has 

changed. However, more importantly, we can reflect these changes at the DSM level, 

using the model-to-model (M2M) transformations, as it as in details described in our 

previous work [59].As a result, we can argue that in this case there was a transfer of 

tacit knowledge of users to explicit knowledge. 

It is important to note that the changes made are immediately applied to the lan-

guage and can be used in further evolution and scenarios. 

For example, we can extend syntactic part of DSL by adding new command: proc-

ess train trainId by brigade brigadeId from timeStart till timeEnd. This command 

uses existing objects for the DSL semantic level: a train and a brigade, but imple-

ments a new syntactic term and new attribute added in the previous case of evolution. 

In order to implement this command, the second part of GUI is used. First of all, the 

user should define a needed command, using the block of available fields of DSL 

objects. As a result, the following construction and constraints, related to this, are 

defined (fig. 7). Finally, the created term is compiled and added to the DSL, ready to 

use. 

What is the most important, in this case, we only define new commands, without 

need to re-create the DSL structure and can use them in sceneries in real time. For 

example, the result of added command is represented in fig. 8. As follows, the ap-

proach proposed allows us to implement all types of DSL evolution in real time, cor-

rectly transforming new commands into DSL syntactic and semantic objects and 

terms. 

Currently existing approaches, allowing also to allocate resources of railway sta-

tion, are targeted to one concrete type of resources (for example, to brigades by Wang 
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et al. [66], or to trains by Chen et al. [9]). Furthermore, such approaches use static 

models of resource allocation and cannot be adopted according to new types of re-

sources or solving models in real time. In comparison to existing approaches, the 

approach proposed is independent from the nature of the resources and can be adopted 

to any other domain. 

The only limitation for our approach is the fact, that it can provide the opportunity 

to define only unidirectional transformation of DSL, according to changes in the do-

main model. This limitation can be explained by the fact, that languages of model 

transformations do not support bidirectional transformations, because symmetric 

transformation means using the opposite to the original operation (delete instead of 

add, etc.). However, such limitation can be resolved using the idea of closure opera-

tions necessary for organizing the DSL evolution [59]. 

5 Conclusion 

Critical aspects of digital transformations, including the cross-institutional level of 

changes, dynamic nature of emerging business models and increasing importance of 

knowledge management strategies in the course of designing digital enterprises as 

inquiring systems, lead us to the conclusion that successful digital transformation 

requires application of a systemic engineering approach. 

That article aimed at observing a complex phenomenon of digital transformation 

from the systemic viewpoint of enterprise engineering. Our attention was attracted to 

further progress in combination of enterprise engineering techniques and different 

knowledge types in order to facilitate knowledge life cycle management in the context 

of knowledge-based digital transformations because the practice of continuous defin-

ing, acquiring, disseminating, storing, applying, and assessing knowledge in organiza-

tions prepares people and potentializes internal changes. 

Along that way several contributions were proposed in the ontology engineering. A 

new ontology modelling language of Formal Enterprise Ontology (FEO) was pro-

posed which restates DEMO in precise terms of UFO. FEO gives a modeling lan-

guage with precisely defined formal semantics provides an input for inference proce-

dures and engines with a minimal information loss. Represented in OntoUML the 

FEOPL patterns fully inherit the FEO. In addition to a modeling power inherited from 

OntoUML, the FEOPL patterns enforce a correlated modeling of changes (the beha-

vioral perspective of an organization) and objects undergoing these changes (the 

structural perspective of an organization). 

We believe that proper combination of FEO and FEOPL with evolvable domain-

specific languages facilitate continuous transformation of explicit and tacit know-

ledge. In our research, we explored an opportunity to provide the method of co-

evolution of the ontology, used as a model of the subject area, and DSL. We proposed 

a formal ontology-based DSL structure together with a method of semantic projec-

tions. This method combines graph representation of the ontology and DSL with the 

set of rules, formulated in terms of an automated graph-transformation language. This 

mechanism has several advantages: the DSL designer does not need to know the se-



20 

mantic domain(s), nor the relationship between the concepts of his/her DSL and the 

concepts of the semantic domain, and he/she can still be benefited from its analysis 

tools. We call semantic bridges to those general mappings between different domains 

from which DSL-specific semantic mappings can be automatically derived. Models 

can then cross these bridges to benefit from each world without being aware of how 

they were constructed. 

In comparison to traditional approaches, the proposed projection-based method of 

DSL development is organized in the strong correspondence of the target domain. 

Such correspondence is provided by the consequent projections among different mod-

els in a semi-automatic way through M2M transformations: from DSM into a DSL 

semantic model and then into a syntactic model of the specific DSL dialect. In com-

parison with existing approaches to transformation verification like [2] and [30], 

which also use the ideas of automated model generation with subsequent correctness 

property checking, our approach doesn’t depend on the modelling language and prop-

erty chosen. Such independency follows from deriving invariants as stable logical 

structures from the model transformation rules. As a result, the verification procedure 

reduces to a simple check of two sets of OCL constraints between themselves. 

Using our approach, we can define several DSL syntactic dialects over one specific 

DSL semantic model expressed in the form of FEO, which will be consistent and can 

be transformed between themselves without the redefinition of the DSL semantic 

models. Applicability of the proposed approach was demonstrated using a real-life 

example of co-evolution of the ontology and DSL in the railway transportation do-

main. Evaluation of the software prototypes has demonstrated that our approach to 

fusion practically enables continuous transformation of domain-specific languages in 

response to changes of the underlying enterprise ontology or knowledge of the users. 

That example demonstrated an attractive feature of our method regarding the ratio 

of explicitly formulated knowledge. As fig.9 shows, evolution of DSL leads to in-

creasing complexity of the user interface in terms of number of available elements 

and relations between these elements. As far as the user expresses knowledge about 

the subject area in terms of DSL more and more implicit knowledge can be reformu-

lated explicitly. 

 

Fig. 9.Growth of explicit knowledge alongside using DSL. 

Changing the focus to the second pillar of our approach, namely ontology-based 

methods of dynamical evolution of domain-specific languages, we also can recognize 
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some important directions of further research. In present kind our software prototypes 

require manual elaboration of user’s insights and transformation of their tacit know-

ledge to the explicit knowledge via modification of ontology. It will be beneficial to 

adapt machine learning algorithms for automatic production of recommendations for 

ontology changes on the basis of intellectual analysis of users’ interactions with a 

DSL. Another improvement includes design of more efficient model transformation 

algorithms for cases of complex domains.  

In our vision achieved results and prospective plans clearly envisage importance 

and great potential of designing deep interconnections between such elements of en-

terprise engineering as enterprise ontologies and domain specific languages. We hope 

that results of such interconnections will facilitate efficient and effective knowledge-

based digital transformations. 
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