
Knowledge life cycle management as a key aspect of

digitalization

Eduard Babkin
1[0000-0003-2597-9043]

, Tanja Poletaeva
1[0000-0002-8267-6316]

and Boris Uli-

tin
1[0000-0003-3774-2457]

1National Research University – Higher School of Economics, B.Pechorskaya St., Nizhny

Novgorod, Russia

{eababkin, tpoletaeva, bulitin}@hse.ru

Abstract. Digital transformation of organizations became a significant research

and engineering challenge worldwide. Implementing such a transformation re-

quires not only a change in the technical equipment of the enterprise, but also

developing new methods of knowledge life cycle management which include

extraction of individual, interpersonal or organizational knowledge to explicit

machine-readable forms and their conscious application during enterprise reen-

gineering. Successful accomplishment of these tasks vitally relies on a rigorous

scientific theory and formal methods. This work presents a new approach to

knowledge life cycle management of different forms of knowledge based on

combination of ontology engineering and evolvable domain-specific languages.

Keywords: Digital transformation, Enterprise engineering, Ontology develop-

ment, Domain-specific languages.

1 Introduction

During last decades we became witnesses of unprecedented advances in various do-

mains of micro-electronics, communications and computer sciences. These advances

have great impact on almost every aspect of economic and social structures. Such

concepts as Industry 4.0 ([5], [56], [64]) Logistics 4.0 ([5], [42]), as well new models

of government and public administration services ([4], [10], [52]) demonstrate new

trends in development of organizational theory and business models based on digital

technologies. That development assumes the wide-scope conversion process from

mainly analog information into the binary machine-understandable languages, ac-

companied by the notion of digital innovation as ―the concerted orchestration of new

products, new processes, new services, new platforms, or even new business models

in a given context‖ [27]. A large-scale combination of these digital innovations has a

name of digital transformation, emphasizing crucial synergetic effects on an institu-

tional level ([27], [29],[31], [32], [34], [52], [64]). Despite intrinsic processes of digi-

tal transformation in each application domain, common characteristic features are

clearly visible: institutionalized disruptive changes of social and business domains,

2

intensification of networking and cooperation, emergence of complex cyber-physical

systems ([27], [29], [32],[34], [52], [56]).

Radically new conditions of information processing, planning and strategic man-

agement of digitalized enterprises call to engineering of various flexible organization-

al forms on the solid ground of enterprise engineering principles: virtual enterprises

[44], agile enterprises [36] and distributed autonomous organizations (DAO) [33].

Recent achievements in enterprise engineering ([14], [54], [65]) provide a design

blue print as well as offer a certain set of methodological implications. During recent

years within the enterprise engineering community the notion of Enterprise Architec-

ture (EA) became manifestation of the systemic engineering approach to understand-

ing and redesigning organizations ([26], [27], [56]). First of all, EA-based methods of

digital transformation should lead to design of cohesive socio-technical systems be-

cause, as it is stated in [5], the digital transformation aim is not to replace humans in

their works, but to avoid inaccuracies and to have faster processes where the informa-

tion can be shared effortless and in real time.

Modern researches determine a complicated manner of relations and multiple pers-

pectives on socio-technical systems ([5], [56], [64]). According to [64] vertical inte-

gration requires the intelligent cross-linking and digitalization of business units in

different hierarchal levels within the organization. Such complexity makes practical

implementation of digital transformation quite difficult in general and in particular

domains as well. Recent analysis of Westerman et al. [67] shows that none of the 50

companies, most of which had a turnover of more than $1 billion, had successfully

transformed all elements of EA. At the same time Hafsi et al. conclude that despite

the ongoing research in academia, the benefits and the role of EA management in

digital context are still a topic of lively discussions, and there is a gap in research on

how to leverage EA for digital transformation [26]. It is concluded in [31] that the

characteristics of the industry raise barriers for process innovations and effectively

constrain application of EA for digital transformation. By a similar manner Oleśków-

Szłapka and Stachowiak [42] point out significant problems of digitalization in Logis-

tics 4.0, while Oliva and Kotabe determine significant barriers to knowledge man-

agement in startups [43].

Performed analysis shows, that successful implementation of digital transformation

strategy vitally depends on further progress in liaison of EA practices and enterprise

knowledge management in new contexts of virtual organizations and evolvable cyber-

physical systems. Supporting the concept of digital transformation ―as the third and

ultimate level of digital literacy‖ [26] we have a strong reason to augment the notion

of digital transformation by the concept of knowledge-based digital transformation as

a new paradigm of organizational theory. That augmentation revives relevance of the

pioneering work on design of inquiring systems by C.W. Churchman [11].

According to [66] during knowledge-based digital transformation enterprise mod-

eling and knowledge management could combine their efforts to develop reference

and reusable core enterprise ontologies and behavior representations as required by

the smart, sensing and sustainable (S3) digital enterprises of tomorrow. Following the

pioneering work of Fox and Gruninger [19] and the Enterprise Ontology of Uschold

3

et al. [62] several ontology-based modeling approaches were proposed, such as:

DEMO [13] or MRO [63].

In the enterprise engineering studies of knowledge management within a digital en-

terprise an important problem arises which is proper extraction of tacit individual,

interpersonal or organizational knowledge to explicit machine-readable forms and

their conscious application during enterprise reengineering. In that context research

multiple researchers show that tacit knowledge greatly influences behavior of enter-

prise ([38], [47]).

By our view in most applied engineering methods availability of structured exter-

nalized knowledge is usually only a requirement to construct models and necessary

for enterprise models [44]. Specific features of tacit knowledge require development

of new forms of its machine-based representation, and support mechanisms for know-

ledge life cycle management. In our studies a following principal research question

was specified: which theoretical backgrounds facilitate design or integration of arti-

facts which comprise a unified solution to knowledge life cycle management fostering

knowledge-based digital transformations? Fig.1 depicts such a research framework.

Fig. 1. The research framework of studies.

In order to pursue an answer we hypothesize that:

1. Implementation of the knowledge triad model [39], which facilitates mutual trans-

formations of explicit and tacit knowledge, can be a practically achievable form of

knowledge-based digital transformation if enterprise engineering methods are de-

signed in accordance with social constructivism paradigm.

2. Combination of three elements becomes critical for developing these new enter-

prise engineering methods:

a. methodology for extracting tacit knowledge;

b. a constructivist view – aligned theory of comprehensive ontology-based know-

ledge modeling for proper conceptualization of enterprise;

c. a theory and methodology for continuous transformation of tacit and explicit

knowledge according the model of knowledge triad (using phronesis).

3. Following design artifacts may instantiate the elements a), b) and c):

4

─ mathematical and psychological principles of repertory grids by G. Kelly [20]

can be used for the purpose of reconstruction of a personal world view and de-

veloping a solid methodology for extracting tacit knowledge by application of

factual approach to knowledge construction;

─ a constructivist-based theory of knowledge modeling which combines advances

of designing top-level ontologies and formal ontology of enterprise proposed by

J. Dietz;

─ an ontology-grounded theory of domain-specific languages with proper methods

of their transformation and evolution, providing an explicit-tacit knowledge

combination engine.

In that article we wish overview key results in developing artifacts for the elements

b) and c) for comprehensive understanding of socio-technical systems, and providing

a reliable decision support for digitalization.. These results include Formal Enterprise

Ontology (FEO), Formal Enterprise Ontology Pattern Language (FEOPL) and a

specific approach to supporting transformative evolution of ontology-based domain-

specific languages.

Section 2 provides readers with necessary foundational information concerning

knowledge management, enterprise engineering and domain-specific languages.

Section 3 offers description of our research, the practical application of which results

are shown in Section 4. In the conclusion we overview achieved results and determine

directions for further investigation.

2 Foundational principles of knowledge-based digital

transformation

2.1 Generic Paradigms of Knowledge Management

Hafsi et al. in [26] provide a direct connection between digital transformation and

knowledge management as a specific organizational discipline that aims to acquire,

transform, store, use and discard knowledge that is important in generating value for

the organization. Oliva and Kotabe [43] consider the knowledge management as one

of the key enterprise processes that supports the dynamic capabilities of emerging

digital organizations. In the context of digital transformation Nonaka et al. [39] argue

that the company needs to have organizational forms that achieve a dynamic synthesis

of knowledge exploration and exploitation. Weichhart, Stary and Vernadat provide

even a more radical viewpoint – the rate of new product introduction is a function of a

firm’s ability to manage, maintain and create knowledge [66].

We may distinguish several aspects of knowledge-based digital transformation. In-

teroperability becomes the first aspect because dynamic synthesis of knowledge ex-

ploration and exploitation during digital transformation raises grand challenges. For

example, in [44] authors show unprecedented nature of these challenges for the case

of mapping the Industry 4.0 elements to the European Enterprise Interoperability

Framework. A detailed set of interoperability includes such elements as interopera-

bility of models and processes, explicit knowledge, knowledge management systems.

5

Undoubtedly, as Weichhart, Stary and Vernadat noted in [66] with respect to semantic

interoperability, the key element of that set is mutual ontological commitment on the

basis of machine-readable shared ontologies. For instance, the Ontology of Enterprise

Interoperability (OoEI) proposed by Naudet et al. [37] can give an example of ontolo-

gy-based support for enterprise modeling.

We see the second aspect of knowledge-based digital transformation in a more pre-

cise stratification of knowledge onto different types. From the time of ancient Greece

epistemology determines three subsets of knowledge: techne (the practical skill re-

quired to be able to create), episteme (context-independent knowledge), and phronesis

(practical wisdom) ([66], [68]). Simultaneously in the modern knowledge creation

theory, two types of knowledge are distinguished: tacit and explicit [39]. Polanyi [48]

defines explicit or codified knowledge as the type of knowledge that can be effective-

ly transferred through a formal language, and tacit knowledge as having a personal

quality that makes its formalization and communication difficult. At the same time

tacit knowledge can be shared, developed, and extended by physical collaboration

[38]. In [47] the authors argue that the distinction between tacit and explicit know-

ledge is the key to understanding organizational knowledge. Nonaka and Nishihara

even emphasize the importance of tacit knowledge over explicit knowledge, through

an understanding that tacit knowledge is the foundation of all knowledge [38].

Distinction of two knowledge types supposes presence of a dynamic approach to

the knowledge management ([40], [41]). In order to achieve deep understanding of

such knowledge dynamics, which is very important for digital innovations and digital

transformations ([43], [47]), some conceptualization of knowledge synthesis is re-

quired. To pursue that goal Nonaka et al. propose to combine traditional and modern

taxonomies of knowledge within a unified conceptual framework of knowledge triad

[39]. In that framework dynamic synthesis of knowledge is realized through the

knowledge dialectics of tacit knowledge, explicit knowledge and phronesis. Accord-

ing that model of ―knowledge triad‖ phronesis drives the conversion of tacit and ex-

plicit knowing. Practical evaluation of that framework in modern conditions of digital

enterprises has been provided in [35], which confirms existence of four phases of the

process of generating and converting knowledge phases: Socialization, Externaliza-

tion, Combination, Internalization.

In that framework dynamic synthesis of knowledge is realized through the know-

ledge dialectics of tacit knowledge, explicit knowledge and phronesis. As it is stated

in [39] it is the phronesis of the leaders with their practical wisdom that facilitates and

propels new business models of dynamic fractal organizations. Taking such a holistic

view point leads to the conclusion that modern foundations of knowledge manage-

ment need ―to synthesize the subjective and the objective, the personal and the orga-

nizational perspective‖ [66].

2.2 Foundations for a proper conceptualization of knowledge about enterprise

Being paired with generic principles of knowledge management Enterprise Engineer-

ing aims at developing a holistic systemic view on the construction and the operation

6

of enterprises [15]. However, there is no agreement about the best shared conceptuali-

zation of enterprises even in terms of a foundational organizational paradigm.

We strongly believe that it is the social constructivism paradigm which reflects the

key characteristics of digital transformation and is becoming a prevailing approach in

construction and evolution of organizational knowledge. According to the construc-

tivist view, individuals actively participate in a construction of their own knowledge

through interactions within complex social systems [25]. As a clear example of well-

founded conceptualization and a constructivist view on enterprise knowledge evolu-

tion and management the enterprise ontology [13] can be distinguished. That ap-

proach includes the ontology-based concise, comprehensive, coherent, and consistent

enterprise modeling language, and the corresponding modeling methodology (DEMO

- Design & Engineering Methodology for Organizations). Providing a consistent set

of micro-theories grounded in Language-Action Perspective (PSI – Performance in

Social Interaction theory), the enterprise ontology represents a coordination viewpoint

underlying other ontological theories of enterprises.

2.3 Definition and classification of ontologies

Ontology is a representational artifact, comprising a taxonomy as a proper part, whose

representations are intended to designate some combination of universals, defined

classes, and certain relations between them [3].

According to this definition, the following considerations can be deduced: (1) the

ontology is a representational artifact = def. the scheme of a certain area; (2) the on-

tology contains concepts of a certain area, its properties and relations between them;

(3) a proper part of relations are taxonomy-type relations.

Based on these considerations, the ontology can be represented as a triple(𝑂, 𝑅, 𝐹),

where 𝑂 = 𝑈 𝐶 is a set of objects, where 𝑈 = 𝑢1 , 𝑢2, … , 𝑢𝑁 , 𝑁 ∈ ℕ (where

𝑢𝑖 , 𝑖 = 1, 𝑁 is a concept (universal) of a certain area an can be represented as a set of

its attributes 𝑢𝑖 = 𝑎𝑡𝑡𝑟1 , 𝑎𝑡𝑡𝑟2, … , 𝑎𝑡𝑡𝑟𝑀 ,𝑀 ∈ ℕ, , 𝑖 = 1, 𝑁),

𝐶 class is a set of 𝑐𝑖 , 𝑖 = 1, 𝐾, 𝐾 ∈ ℕ, where 𝑐i is an exemplar of some 𝑢𝑗 , 𝑅 is a set

of relations between elements of 𝑂, and 𝐹 is an interpretation function assigning val-

ues to the non-logical constants of the language [22].

From this point of view, the ontology can be naturally perceived as a graph (𝑂, 𝑅),

with a set of functions of constraints 𝐹.

On the other hand, the ontology is some kind of representation, created by the de-

signer [23]. From this point of view, development of the ontology has always some

certain goal, which affects the whole design process and its final result, the ontology

itself. As a result, the following classification of ontology kinds based on their level

of dependence on a particular task (or a viewpoint) can be identified [3, 22]: top-level

ontologies, which describe very general concepts, independent of a particular problem

or domain; domain (task) ontologies, which describe, respectively, the vocabulary

related to a generic domain (task) and application ontologies, which describe concepts

that depend both on a particular domain and a task, and often combine specializations

of both the corresponding domain and task ontologies.

7

In the current research, we pay attention mostly to the enterprise ontologies, which

refer to the Application ones. But as the Domain ontology contains only the necessary

concepts of a subject area, Application ontology operates with a subset of these con-

cepts necessary to achieve a certain goal. That allows us to consider the Application

ontology as the reduced Domain ontology and can be used as a basis for development

of DSM which in turn is used in the development of domain-specific languages.

2.4 Domain Specific Languages

Static conceptual structures of the enterprise ontology alone are not capable of main-

taining mutual transformations of explicit and tacit knowledge during knowledge life

cycle management. For that purpose, ontology should be fused with a specific me-

chanism for dynamic generating and converting knowledge. Evolvable domain-

specific languages may be considered for that role.

A number of research results demonstrate suitability of using Domain-Specific

Languages (DSL) for defining the context for different knowledge modeling and

management tasks of modern companies ([16], [17], [22], [23], [46], [51], [53], [57]).

For example, Sprinkle [57] describes the implementation of DSL for modelling logis-

tic interactions within the organization. Pereira et al. [46] prove the effectiveness of

DSL usage for the definition of the context of the resource allocation problem.

In the context of our studies frontiers of DSL application for extraction and trans-

formation of tacit knowledge attract special interest, because as Colins states – lan-

guage plays a role of a repository for tacit knowledge [12]. Indeed, domain-specific

languages can be considered as a practical implementation of interactional expertise,

which may be viewed also as an attempt to introduce the tacit dimension of linguistic

knowledge [55]. In [69] ontologies and domain-specific languages were considered as

among the primary tools for extraction and representation of explicit and tacit know-

ledge in the safety domain. Gross demonstrates application of visual domain-specific

languages for grasping tacit knowledge in a complex domain of artistic lighting [21].

Formally a domain-specific language is a computer language specialized to a par-

ticular application domain. This is in contrast to a general-purpose language, which is

broadly applicable across domains, and lacks specialized features for a particular

domain [18]. In [45] two parts of the DSL are identified: (1) a syntactic part, which

defines the constructions of DSL; (2) a semantic part, which manifests itself in the

semantic model. The syntactic part allows us defining the context for working with

the second one, which defines meaning of DSL commands in terms of the target do-

main. The syntactic part itself contains the domain concepts and rules (abstract syn-

tax), as well as the notation used to represent these concepts – let it be textual or

graphical (concrete syntax).

A syntactic part of DSL can also be separated into two levels: the level of objects

and the level of functions. The object-level is equivalent to the set of objects of the

meta-model. The functional level contains operations, which specify the operational

context for the objects. That two-level division of the DSL syntactic part provides the

maximum correspondence between the ontological model of the target domain and

8

the DSL model, and the most convenient way of organizing conversions between

them.

A semantic part of DSL is derived from the conceptual model of the target domain.

According to Parr [45] we will call such a model as Domain-Semantic Model (DSM).

DSM can be constituted by either just small pieces of domain knowledge (e.g. small

taxonomies equipped with few rules) or rich and complex ontologies (obtained, for

example, by translating existing ontologies). That gives respectively weak or rich and

detailed representation of a domain [6]. In our research DSM becomes the bridge

between the enterprise ontologies and DSL.

Static features of DSL are well studied and a lot of automated tools exists to design

and exploit DSL in the enterprise practice. However, as a dynamic complex structure,

any domain demonstrates the tendency to the evolution over time: new concepts may

arise, while others unite into more general ones or become obsolete. In accordance

with these changes, DSL should also support the possibility of evolution.

The simplest option in this case is to rebuild DSL whenever the domain model

changes. But this process has several disadvantages. First of all, the process of DSL

development is really time-consuming, since DSL contains internal and external parts,

connected with the domain model and DSL syntax correspondingly. Secondly, DSL

development, since DSL is a language, is often associated with the use of grammar

tools that require special skills from developers. Finally, while a new version of DSL

is being created, the domain can be changed again. Thus, the DSL changes may not

be synchronized with the domain changes, making DSL not fully compliant with the

needs of the end users.

3 Developing own unified solution

In that section we perform a synthesis of aforementioned foundations and describe

own contributions to the theory and practice of knowledge life cycle management and

knowledge-based digital transformations. At first, an ontology-based conceptualiza-

tion of enterprise is described, which facilitates ontology-based description of corner-

stone enterprise concepts. Secondly, an ontology-based methodology for continuous

transformations and verification of DSL is given, which can play a role of the me-

chanism for continuous transformation of tacit and explicit knowledge.

3.1 Building an ontology-based conceptualization of knowledge about

enterprise

In order to play a role of an ontological basis for knowledge-based digital transforma-

tion enterprise ontology should be fused with a corresponding foundational ontology

because the core enterprise theory provided by DEMO is not fully axiomatized yet.

Rephrasing the definitions made by Guizzardi in [22] with regard to enterprise model-

ing, the domain appropriateness and the comprehensibility appropriateness of an en-

terprise conceptual modeling language is guaranteed by the meta-model of this lan-

guage representing a full axiomatization of enterprise ontology.Despite the plurality

9

of existing foundational ontologies, in our work we exploit the Unified Foundational

Ontology (UFO) and its compliant conceptual modeling language OntoUML [22] in

order to build and to represent an ontological theory of enterprise interactions with the

basis on a solid theoretical framework.

Practical implementation of such fusion requires performing two intellectual tasks.

At first hand, a consistent ontology-based conceptual modeling language with a

strong referential semantics should be designed. Secondly, a set of design-oriented

practices should be developed which impose relevant constraints on the modeling

language application during solution of recurrent modeling problems of enterprises.

For the solution of the task of developing a conceptual modeling language, the On-

toUML conceptual modeling language [22] was taken as a basis. Restating the DEMO

enterprise ontology in terms of OntoUML allowed us to combine modeling elements

of enterprise ontology and reference ontology (UFO), as well as to reveal some gaps

and inconsistencies on the analysis of the DEMO foundations. Moreover, we added

some additional ontological categories based on their relevance for the theory of en-

terprise ontology.

This work resulted in a fully axiomatized Formal Enterprise Ontology (FEO) [49].

This is the domain- and standard-independent ontological theory that provides a refe-

rential semantics for metadata. The UFO-C part (a foundational ontology of social

entities) [24] guarantees a well-defined ontological foundation of FEO and expres-

siveness of the essence of an organization in the ontological categories of foundation-

al ontology.

The OntoUML-based FEO language provides modeling primitives that reflect the

conceptual categories and axioms defined by the whole ontological theory. For exam-

ple, FEO includes the axioms in first order logic that supplement the forgoing defini-

tions by relevant constraints and formally specify the notion of an ontological transac-

tion.

The second task aimed at solving recurring conceptual modeling problems of en-

terprises by adapting a generic notion of ontological patterns to FEO. Ontology pat-

terns [17] were considered as a promising approach to capture standard domain-

specific solutions to recurrent problems of conceptual modeling [16]. In general, each

pattern has to be dedicated to a particular type of modeling issues, provide a solution,

be accompanied with the instructions about its applicability in a right situation, and be

associated with the set of related patterns. A set of interrelated patterns comprises a

certain pattern language which can be applied systematically depending on require-

ments of the modeled situation and the goals of the modeler.

Following the method proposed by Guizzardi in [22], we created a set of modeling

constructs (ontology patterns) represented in OntoUML, and called it the Formal En-

terprise Ontology Pattern Language (FEOPL) [50]. All patterns of that language inhe-

rit axiomatization of the FEO ontology, thus making the meta-model of the language

isomorphic to this ontology.FEOPL patterns include the following:

 a Transaction pattern, intended (1) to specify the notion of transaction and (2) to

tackle problems related to modeling of properties and an evolution of basic units of

business processes;

10

 the pattern of Coordination actions and their resulting commitments, which puts

together Actor Role, C-act, C-act Intention, C-act Proposition, Transaction, C-

commitment and their interrelations;

 the pattern of Production Actions, which states that propositional contents of pro-

duction actions are abstract representations of allowable/desired states of the pro-

duction world of an enterprise;

 the pattern of Production Facts, which explicitly defines semantics of the notion of

a production fact.

A more detailed description and analysis of the presented templates is contained

in [50]. As patterns description shows, FEOPL facilitates formalization of rules and

conditions for social coordination actions based on the information derived from do-

main ontologies. Moreover, the language meta-model correlated with both the upper

level ontology and the FEO preserves real-world semantics in a broad sense. That is

reducing the number of semantic conflicts in representation of enterprise domain.

Grounding FEOPL in the DEMO modelling language leverages application of

formal methods for knowledge management because the FEOPL patterns define pre-

cise semantics for interrelation between lifecycles of social objects (including transac-

tions, commitments and claims) and lifecycles of enterprise products.

The modelling power of FEOPL was investigated in application to modelling prob-

lems of test-bed case studies. The results of modelling confirmed relevance and effi-

ciency of FEOPL application for modelling knowledge-based digital transformations.

3.2 Evolution of Domain-Specific Languages for Managing Knowledge

Having reliable tools of conceptualization in terms of formal enterprise ontology,

we may consider further advancing of DSL design on that solid ground. Application

of the ontology as a model of DSL guarantees that DSL is identical to the correspond-

ing domain, thereby allows the users interacting with it more effectively.

In our approach [59] we apply the formalization of the semantic DSL level in a

model-oriented manner as a combination (𝑂, 𝑅) of some objects of the target domain

and relations between them, where each object is a set of its attributes and

tions 𝑜𝑖 = 𝐴𝑡𝑡𝑟𝑖 , 𝑂𝑝𝑝𝑖 =
 𝑎𝑡𝑡𝑟𝑖1 , 𝑎𝑡𝑡𝑟𝑖2 , … , 𝑎𝑡𝑡𝑟𝑖𝑀 ,

 𝑜𝑝𝑝𝑖1 , 𝑜𝑝𝑝𝑖2 , … , 𝑜𝑝𝑝𝑖𝐾
 ,𝑀, 𝐾 ∈ ℕ, 𝑖 = 1, 𝑁).

In these terms, the syntactic part of DSL can be represented as a subset of the se-

mantic level, needed for representation of a certain problem situation. The very one

difference is that the syntactic part may not absolutely reflect the semantic construc-

tions but identify its own definitions (pseudonyms) for the semantic constructions,

according to the user’s needs.

As follows, the structure of the syntactic level can be formalized as a

triple (𝑂𝑠𝑦𝑛𝑡𝑎𝑥 , 𝑅𝑠𝑦𝑛𝑡𝑎𝑥 , 𝐴𝑙𝑖𝑎𝑠𝑠𝑦𝑛𝑡𝑎𝑥), where 𝑂𝑠𝑦𝑛𝑡𝑎𝑥 ⊆ 𝑂 and 𝑅𝑠𝑦𝑛𝑡𝑎𝑥 ⊆ 𝑅 are the

subsets of objects and relations between them of the semantic DSL level respectively,

and 𝐴𝑙𝑖𝑎𝑠𝑠𝑦𝑛𝑡𝑎𝑥 is a set of pseudonyms for objects’ components (attributes and opera-

tions).

11

By a similar object-oriented manner Domain-Semantic Model can be derived from

the corresponding FEO and can be represented as a seven-

tuple:𝐷𝑆𝑀 = (ℋ𝐶 ,ℋ𝑅 , 𝑂, 𝑅, 𝐴,𝑀,𝐷), where

 ℋC and ℋR are sets of classes and relations schema. Each schema is constituted by

a set of attributes, the type of each attribute is a class. In both ℋC and ℋR are de-

fined partial orders for the representation of concepts and relation taxonomies;

 𝑂 and 𝑅 are sets of class and relation instances also called objects and tuples;

 𝐴 is a set of axioms represented by special rules expressing constraints about the

represented knowledge;

 𝑀 is a set of reasoning modules that are logic programs constituted by a set of

(disjunctive) rules that enables reasoning about the represented and stored knowl-

edge, so new knowledge not explicitly declared can be inferred;

 𝐷 is a set of descriptors (i.e. production rules in a two-dimensional object-oriented

attribute grammar) enabling the recognition of class (concept) instances contained

in 𝑂, so their annotation, extraction and storing is possible.

In our research, we focus only on the sets 𝑂 and 𝑅. Consideration of other parts of

DSM is beyond the scope of our study, since it determines more meta-characteristics

of DSM itself, rather than the objects and connections between them, which are the

most interesting for the further development of the DSL semantic model.

Finally, taking into account previously mentioned formalization of the ontology as

a triple(𝑂, 𝑅, 𝐹) [22], we can argue, that the ontology can be naturally perceived as a

set (𝑂, 𝑅), with a set of functions of constraints 𝐹. Such definition of the ontology

guarantee, that an ontology can be completely transformed into DSM, which ensures

complete consistency of all three models (ontology, DSM and DSL model) with each

other.

Under these circumstances, we can tell about the complete ontology-based and

model-oriented representation of the DSL structure. That representation corresponds

to principles of model-driven engineering [7]. From this point of view, we can derive

DSL semantics as result of transformation of DSM. Similarly, using transformation

rules on entities and relationships between them from the DSM, the meta-model of a

DSL can also be defined. Finally, reflecting DSL abstract syntax terms on the con-

crete visual icons or textual constructions DSL concrete syntax can be defined.

Such a hierarchical model-driven approach allows us not only to describe both le-

vels of DSL in structured and unified manner but optimize the process of DSL devel-

opment and evolution by introducing several syntactic DSL dialects on one fixed

semantic level. Furthermore, the versification of DSL can be provided in a similar

way on the semantic level as well as on the syntactic level, without need to re-create

the whole DSL structure every time, when the changes are required. All these features

open practical opportunities for proper reflection of transition between tacit and expli-

cit knowledge of the users in a corresponding evolution of different DSL dialects with

varying syntactic or semantic elements. Also, automation of DSL syntactic and se-

mantic transformation using MDE principles forces traceability between different

DSL dialects and allow us to use advanced methods of formal verification, as it will

show later.

12

Combining the object-oriented model of the DSL structure with the formal defini-

tion of DSM on the basis of a single meta-meta-model, we can specialize a well-

known semantic hierarchy of meta-models for our approach to model-oriented devel-

opment and evolution of DSL (fig.2). In our case this hierarchy is separated into four

layers, according to the stages of the DSL development. Each lower level is based on

the model artefacts of the upper level A single M3 meta-meta-model determines

common grounds for all meta- and models of the lower levels. This meta-level defines

also notations in which concrete models will be defined and what rules for their trans-

formations will be used.

We propose to create a DSL structure from the Domain-semantic model (DSM)

through the so-called semantic projection mechanism. The semantic projection is an

operation, which is conducted over DSM. Any semantic projection performs a certain

model-to-model transformation (M2M) of DSM to some its fragment. Thus, semantic

projection fully determines the semantic model of a particular dialect of DSL.

We suggest application of a group of model-to-model transformations for practical

implementation of semantic projections and producing corresponding DSL artefacts.

In this case the semantic model becomes an object-temporal structure, because it

should be adopted according changes in DSM over the time, thereby defining a new

object filling of the DSM.

Fig. 2.The semantic hierarchy of projection-based DSL development.

After the semantic projection was performed, the syntactic level of DSL can be de-

veloped by a M2M transformation of the result of the corresponding projection. What

is important, these DSL syntactic models are independent of each other and are de-

termined by end-users in accordance with the adaptation of the semantic projection to

their own tasks. Finally, created syntaxes are used by the end-users of DSL, who de-

termine the set of DSL dialects within the single specific syntactic model.

Fig.3 shows differences between traditional approaches and our proposals. Tradi-

tional approaches start with the manual definition of the DSL concrete syntax which

is followed by the translation of the syntax in terms of grammars. Consequently,

every change in the target domain leads to the need to redefine the DSL concrete syn-

tax and re-create the corresponding grammar. A similar process repeats in a case,

when changes in DSL are caused by the end-users. As a result, outcomes of tradi-

M3: Meta-meta-
modelM

e
ta

-
le

ve
l

Se
m

an
ti

c
le

ve
l

Sy
n

ta
ct

ic

le
ve

l

U
se

r-
d

ia
le

ct
s

le
ve

l

DSM

Projection1 Projectionk...

Syntax11 Syntax1s Syntaxk1

Dialect111 Dialect11m Dialect1s1 Dialect1sl Dialectik11

13

tional approaches contain inconsistent dialects of DSL, which cannot be mapped

among themselves due to differences in all levels of the DSL structure.

In order to provide such transformations, it is sufficient to adjust the system of

matching rules between the components of the ontological model of the target domain

and the components of the DSL model. One of the possible solutions to this problem

can be the mechanism of graph transformations between the graph representation of

the ontology and the DSL model. If we interpret the entities of our model as vertices

of the corresponding graph and relations between them as corresponding edges, we

can postulate, that any model can be described using graph-oriented manner. This fact

logically results in the opportunity to describe model transformations and the corre-

sponding dynamic operational semantics of DSL using graph transformations rules. It

is important to note, that such advanced methods of graph transformation as Graph

Grammars (TGGs) [28] enable specification of direct and inverse transformation rules

facilitating bi-directional DSL transformation.

Fig. 3.The scheme of differences between traditional (top) and projection-based (bottom) DSL

development approaches.

Practical implementation of such transformation can be achieved by using one of

specialized graph-transformation languages such as ATL Transformation Language,

GReAT (Graph REwriting and Transformation) [1], AGG (Attributed Graph Gram-

mar), QVT. In our current research, we propose to use QVT, because this language

allows us to describe the transformation rules from any original model into any target

model, conducting a transformation at the level of meta-models. Using that instrument

we demonstrated evolution of DSL in the railway allocation domain as an example of

knowledge-based digital transformation [58]. In that case our method enabled evolu-

tionary changes of syntax and semantics of DSL in response to changing the knowl-

edge model of the users. Such changes frequently occur during modification of the

business model of the railway services.

In the scope of automated transformation between different variants of DSL an im-

portant issue of transformation verification arises. If the verification succeeds, then

we conclude that the model transformation is correct with respect to each pair (𝑝, 𝑞)

of properties (objects, relations) for the specific pairs of source and target models

having semantics defined by a set of graph transformation rules. Otherwise, property

𝑝 is not preserved by the model transformation and debugging can be initiated based

upon the error traces retrieved by the model checker. That debugging phase may fix

problems in the model transformation or in the specification of the target language.

In what follows, we offer the unified and highly automated approach, allowing de-

velopers to formally verify by model checking that a model transformation (specified

DSL concrete

syntax
DSL semantic

model

DSM
DSL semantic

model

DSL
syntax

Grammar generator

M2M M2M

The target
domain

14

by meta-modeling and graph transformation techniques) from an arbitrary well-

formed model instance of the source modelling language into its target equivalent

preserves (language specific) dynamic consistency properties. In that approach the

notion of invariants is specialized for a particular case of DSL verification.

In terms of the most general approach [8], the invariant is a property, held by a

class of objects, which remains unchanged when transformations of a certain type are

applied to the objects. From this point of view, invariant can be interpreted in two

ways: (i) a set of objects, which leave unchanged during the transformation provided,

(ii) an operation, which can be applied to several objects at the same time (e.g. opera-

tion RENAME, which change the name of the object, regardless of its type). Taking

into account these ideas, invariants are separated into two classes: structural and func-

tional (inductive and operational) invariants. In both cases invariants are defined on

top of some transformation (transition) of the set of objects.

For example, consider an inductive invariant. Usually it determines that there is a

strong correspondence between elements of two sets of objects, which are connected

during some relation (transformation). Such definition is very close to the relational

approach for model transformation definition, when the relationship between objects

(and links) of the source and the target language are declared. That results in the in-

sight, that the inductive invariant can be an effective mechanism for the definition of

such model transformations and for the validation of the feasibility of obtaining one

model by transforming another. We may conclude that the process of graph transfor-

mation resembles the search for various structural invariants in the source and the

target with consequent application of corresponding graph transformation rules to

them. Consequently, we can reformulate model transformations using the double-

pushout approach (DPO) with injective matching for graph transformations and an

invariant technique.

According to these principles, we can conclude, that validation of the model trans-

formation correctness can be fully described through invariant mechanisms. Such

definition allows us to automate the process of formal validation of the model trans-

formation, reducing it to verifying the presence of invariants of both types among

defined model (graph) transformations.

Since we describe the model transformation using the graph-oriented approach in

QVT transformation language, the procedure to derive the OCL invariants need be

implemented. With application of OCL invariants both problems can be solved using

existing OCL verification and validation tools for the analysis of model transforma-

tions. With these inputs, verification tools provide means to automatically check the

consistency of the transformation model without user intervention. Checking consis-

tency enables the verification of the executability of the transformation and the use of

all validation scenarios.

In our resent work [60] details of our approach to invariant-based transformation

are provided together with the overview of an actual implementation of the verifica-

tion algorithm for a case of transformation between different enterprise models.

15

4 Demonstration in a practical case

In that section we demonstrate practical application of our approach for the case of

the railway station resource allocation domain. Partially aspects of this evolution were

considered in our previous works [58, 59], therefore, here we will pay more attention

directly to demonstrating the evolution of the language than to analyzing the process

of its development and content.

4.1 DSM for railway allocation domain

The domain of railways services represents an interesting and significant case of dy-

namic management of knowledge and enterprise digitalization. In particular the con-

text of the railway allocation problem can change frequently because of arrivals of

new trains, or changing the priority of existing services. As a result, we have to have a

clear and simple way to adapt new changes in terms of the proposed framework, re-

sponsible for finding the optimal resource allocation. In the process of DSL design for

the railway allocation process, it’s vital to identify all the types of resources in this

domain.

There are three general resources for any railway station, each with specific

attributes: railways, trains and service brigades. All of them are represented in the

DSM for the corresponding domain, which is more complete in comparison with that

considered in our previous work [59], since it contains the specification of the re-

quirements (Skills) both for the Services and for the Brigades providing them.

After the DSM created, we can identify the semantic level of DSL, describing the

DSL meta-model. For this purpose, M2M transformation rules can be used, as it was

described in [58]. This is reasonable since both DSM and DSL meta-model are de-

scribed in a model-oriented way. In addition, M2M transformations are independent

from the notation of model definition, that allows us to describe DSM and DSL meta-

model independently, in the most appropriate way. As a result, we will have the com-

plete DSL meta-model, which can be used during the following DSL syntax defini-

tion. This definition includes two parts: definition of objects for DSL syntax, which

are the equivalents to the objects, described on the semantic level of DSL, and gram-

mar, describing the operations and correct terms for the future DSL syntax. In our

case, we used the Backus-Naur form of grammar definition, because this form allows

us to identify rules, based on the previously created objects, and automatically convert

the resulting rules into an abstract, language-independent form.

As a result, the created DSL semantic and syntactic levels are wholly coherent and

can be evolved using transformations in real time. In addition, such changes are pro-

vided separately, since the invariants on both levels are identified.

In order to demonstrate how the evolution of users’ knowledge reflects into the

transformation of DSL terms we analyze to states of the DSL: original one, derived

from the DSM, and its further development using evolution tools.

16

4.2 The original DSL

As a starting point for our DSL development we consider, that DSL supports only

basic constructions and operations on objects defined in the DSM (railways, trains

and service brigades) and the relationship between them. As a result, the following

structure of DSL terms exists (fig. 4and fig. 5). As you can see, these constructions

are sufficient to perform the basic operations of the domain: creating objects and es-

tablishing links between them (fig. 6).

Fig. 4. DSL objects.

Fig. 5. DSL functions.

Fig. 6.Example of scenario in terms of the original DSL.

17

On the other hand, these commands do not reflect the time perspective of the do-

main, distributing only the set of resources available at a given moment in time be-

tween arriving trains.

In order to improve the quality of DSL and provide the user with the ability to plan

resource allocation over time, it is necessary to make changes to the original DSL. As

a result, we need to provide the user with the ability to change the design of the DSL,

which creates a more complex version of the subject-oriented interface.

4.3 Subject-oriented GUI

Developing subject-oriented GUI we should take into account, that it pursues two

goals: writing and executing scenarios in the current version of DSL, as well as mak-

ing changes (evolution) into DSL.

As a result, the interface created contains two parts: the first one, responsible for

the DSL scenario definition and processing, and another one, needed for evolution of

DSL. The first part, which contains only a visual panel, representing all the DSL

components needed for definition of DSL scenarios, was properly described in our

previous work [61] and mentioned in previous section. In what follows, the second

part of the interface (see fig. 7 and fig. 8) responsible for DSL evolution is more in-

teresting for us.

This part of interface allows us to adopt DSL automatically whenever the evolution

is provided. Such automation allows us to support DSL evolution by end-users with-

out the need to re-compile the whole framework and to have special programming

skills.

Fig. 7.Evolution of DSL implementation.

Fig. 8.Scenario with added command.

18

In order to design such evolution, the second part of the interface is used (fig. 7).

This part contains three main components: the component to define/change a

new/existing command of DSL, the component for definition of constraints, con-

nected with the command and the component for definition of syntactic terms, related

to the new command. All these components are identified in accordance with the

structure of DSL: objects, which contain attributes and operations and relations be-

tween them. As a result, the created interface allows us to define the whole DSL

structure and change it in real time without need to re-create the DSL manually.

4.4 Evolution of DSL

The first change we want to provide to the user is to add a time perspective to all ob-

jects. In fact, this means that each of the objects will have an additional attribute asso-

ciated with time. For example, arrival time at the trains, the start and end time of ser-

vicing at the servicing brigades, etc.

From a formal point of view, this DSL development scenario is an example hori-

zontal evolution. In more details, this classification of evolution was described in [58,

59].

In this case, using the evolution part of the interface, we add a new attribute arri-

valTime to the TrainInfo object. For this purpose, the corresponding interface compo-

nent can be used (fig. 7, right). Similarly, we add other time attributes to other ob-

jects. After making such changes, we can argue that the structure of DSL objects has

changed. However, more importantly, we can reflect these changes at the DSM level,

using the model-to-model (M2M) transformations, as it as in details described in our

previous work [59].As a result, we can argue that in this case there was a transfer of

tacit knowledge of users to explicit knowledge.

It is important to note that the changes made are immediately applied to the lan-

guage and can be used in further evolution and scenarios.

For example, we can extend syntactic part of DSL by adding new command: proc-

ess train trainId by brigade brigadeId from timeStart till timeEnd. This command

uses existing objects for the DSL semantic level: a train and a brigade, but imple-

ments a new syntactic term and new attribute added in the previous case of evolution.

In order to implement this command, the second part of GUI is used. First of all, the

user should define a needed command, using the block of available fields of DSL

objects. As a result, the following construction and constraints, related to this, are

defined (fig. 7). Finally, the created term is compiled and added to the DSL, ready to

use.

What is the most important, in this case, we only define new commands, without

need to re-create the DSL structure and can use them in sceneries in real time. For

example, the result of added command is represented in fig. 8. As follows, the ap-

proach proposed allows us to implement all types of DSL evolution in real time, cor-

rectly transforming new commands into DSL syntactic and semantic objects and

terms.

Currently existing approaches, allowing also to allocate resources of railway sta-

tion, are targeted to one concrete type of resources (for example, to brigades by Wang

19

et al. [66], or to trains by Chen et al. [9]). Furthermore, such approaches use static

models of resource allocation and cannot be adopted according to new types of re-

sources or solving models in real time. In comparison to existing approaches, the

approach proposed is independent from the nature of the resources and can be adopted

to any other domain.

The only limitation for our approach is the fact, that it can provide the opportunity

to define only unidirectional transformation of DSL, according to changes in the do-

main model. This limitation can be explained by the fact, that languages of model

transformations do not support bidirectional transformations, because symmetric

transformation means using the opposite to the original operation (delete instead of

add, etc.). However, such limitation can be resolved using the idea of closure opera-

tions necessary for organizing the DSL evolution [59].

5 Conclusion

Critical aspects of digital transformations, including the cross-institutional level of

changes, dynamic nature of emerging business models and increasing importance of

knowledge management strategies in the course of designing digital enterprises as

inquiring systems, lead us to the conclusion that successful digital transformation

requires application of a systemic engineering approach.

That article aimed at observing a complex phenomenon of digital transformation

from the systemic viewpoint of enterprise engineering. Our attention was attracted to

further progress in combination of enterprise engineering techniques and different

knowledge types in order to facilitate knowledge life cycle management in the context

of knowledge-based digital transformations because the practice of continuous defin-

ing, acquiring, disseminating, storing, applying, and assessing knowledge in organiza-

tions prepares people and potentializes internal changes.

Along that way several contributions were proposed in the ontology engineering. A

new ontology modelling language of Formal Enterprise Ontology (FEO) was pro-

posed which restates DEMO in precise terms of UFO. FEO gives a modeling lan-

guage with precisely defined formal semantics provides an input for inference proce-

dures and engines with a minimal information loss. Represented in OntoUML the

FEOPL patterns fully inherit the FEO. In addition to a modeling power inherited from

OntoUML, the FEOPL patterns enforce a correlated modeling of changes (the beha-

vioral perspective of an organization) and objects undergoing these changes (the

structural perspective of an organization).

We believe that proper combination of FEO and FEOPL with evolvable domain-

specific languages facilitate continuous transformation of explicit and tacit know-

ledge. In our research, we explored an opportunity to provide the method of co-

evolution of the ontology, used as a model of the subject area, and DSL. We proposed

a formal ontology-based DSL structure together with a method of semantic projec-

tions. This method combines graph representation of the ontology and DSL with the

set of rules, formulated in terms of an automated graph-transformation language. This

mechanism has several advantages: the DSL designer does not need to know the se-

20

mantic domain(s), nor the relationship between the concepts of his/her DSL and the

concepts of the semantic domain, and he/she can still be benefited from its analysis

tools. We call semantic bridges to those general mappings between different domains

from which DSL-specific semantic mappings can be automatically derived. Models

can then cross these bridges to benefit from each world without being aware of how

they were constructed.

In comparison to traditional approaches, the proposed projection-based method of

DSL development is organized in the strong correspondence of the target domain.

Such correspondence is provided by the consequent projections among different mod-

els in a semi-automatic way through M2M transformations: from DSM into a DSL

semantic model and then into a syntactic model of the specific DSL dialect. In com-

parison with existing approaches to transformation verification like [2] and [30],

which also use the ideas of automated model generation with subsequent correctness

property checking, our approach doesn’t depend on the modelling language and prop-

erty chosen. Such independency follows from deriving invariants as stable logical

structures from the model transformation rules. As a result, the verification procedure

reduces to a simple check of two sets of OCL constraints between themselves.

Using our approach, we can define several DSL syntactic dialects over one specific

DSL semantic model expressed in the form of FEO, which will be consistent and can

be transformed between themselves without the redefinition of the DSL semantic

models. Applicability of the proposed approach was demonstrated using a real-life

example of co-evolution of the ontology and DSL in the railway transportation do-

main. Evaluation of the software prototypes has demonstrated that our approach to

fusion practically enables continuous transformation of domain-specific languages in

response to changes of the underlying enterprise ontology or knowledge of the users.

That example demonstrated an attractive feature of our method regarding the ratio

of explicitly formulated knowledge. As fig.9 shows, evolution of DSL leads to in-

creasing complexity of the user interface in terms of number of available elements

and relations between these elements. As far as the user expresses knowledge about

the subject area in terms of DSL more and more implicit knowledge can be reformu-

lated explicitly.

Fig. 9.Growth of explicit knowledge alongside using DSL.

Changing the focus to the second pillar of our approach, namely ontology-based

methods of dynamical evolution of domain-specific languages, we also can recognize

21

some important directions of further research. In present kind our software prototypes

require manual elaboration of user’s insights and transformation of their tacit know-

ledge to the explicit knowledge via modification of ontology. It will be beneficial to

adapt machine learning algorithms for automatic production of recommendations for

ontology changes on the basis of intellectual analysis of users’ interactions with a

DSL. Another improvement includes design of more efficient model transformation

algorithms for cases of complex domains.

In our vision achieved results and prospective plans clearly envisage importance

and great potential of designing deep interconnections between such elements of en-

terprise engineering as enterprise ontologies and domain specific languages. We hope

that results of such interconnections will facilitate efficient and effective knowledge-

based digital transformations.

6 References

1. Agrawal, A., Karsai, G., Shi, F., 2003. Graph Transformations on Domain-Specific

Models. In: International Journal on Software and Systems Modeling, pp. 1-43.

Nashville: Vanderbilt University Press.

2. Akehurst, D., Kent, S., 2002. A relational approach to defining transformations in a

meta-model. In Proc. Fifth International Conference on the Unified Modeling

Language – The Language and its Applications, LNCS, vol. 2460, pp. 243–258.

Springer.

3. Arp, R., Smith, B., and Spear, A.D., 2015. Building Ontologies with Basic Formal

Ontology. The MIT Press.

4. Bani, M., De Paoli, S., 2013. Ideas for a new civic reputation system for the rising

of digital civics: digital badges and their role in democratic process. In:

ECEG2013–13th European Conference on eGovernment: ECEG.

5. Barreto, L.,Amaral, A., and Pereira, T., 2017. Industry 4.0 implications in logistics:

an overview. Procedia Manufacturing, 13, pp. 1245-1252.

6. Bell, P., 2007. Automated Transformation of Statements within Evolving Domain

Specific Languages. Computer Science and Information System Reports, pp. 172–

177.

7. Beydeda, S., Book, M., 2005. Model-driven software development. Heidelberg:

Springer.

8. Chandy, K.M., 1989. Parallel program design. In Opportunities and Constraints of

Parallel Computing (pp. 21-24). Springer, New York, NY.

9. Chen, W., Dong, M., 2018. Optimal resource allocation across related channels.

Operations Research Letters, pp. 397-401.

10. Chou, J., Hsu, S., Lin, C., Chang, Y., 2016. Classifying influential for project in-

formation to discover rule sets for project disputes and possible resolutions. Int. J.

Project Manag. 34, pp.1706–1716.

11. Churchman, C. 1971. The Design of Inquiring Systems: Basic Concepts of Sys-

tems and Organization. Basic Books Inc., Publishers. NY, London.

22

12. Collins, H., 2012. Language as a repository of tacit knowledge. In The symbolic

species evolved. pp. 225-239). Springer, Dordrecht.

13. Dietz, J. L.G., 2006. Enterprise Ontology: Theory and Methodology. Springer,

2006.

14. Dietz, J.L., Hoogervorst, J.A., Albani, A., Aveiro, D., Babkin, E., Barjis, J., Caeta-

no, A., Huysmans, P., Iijima, J., Van Kervel, S.J. and Mulder, H., 2013. The dis-

cipline of enterprise engineering. International Journal of Organisational Design

and Engineering, 3(1), pp.86-114.

15. Dietz, J.L.G., Hoogervorst, J.A.P., 2008. Enterprise Ontology In Enterprise Engi-

neering, In Proceedings of the 2008 ACM symposium on Applied Computing, pp.

572-579.

16. Falbo, R.A., Barcellos, M.P., Ruy, F.B., Guizzardi, G., Guizzardi, R.S.S., 2016.

Ontology Pattern Languages. Ontology Engineering with Ontology Design Pat-

terns: Foundations and Applications. IOS Press.

17. Falbo, R.A., Ruy, F.B., Guizzardi, G., Barcellos, M.P., and Almeida, J.P.A., 2014.

Towards an Enterprise Ontology Pattern Language. Proceedings of 29th Annual

ACM Symposium on Applied Computing (ACM 2014), pp. 323–330.

18. Fowler, M., 2010. Domain Specific Languages. Addison Wesley.

19. Fox, M. S., Gruninger, M. 1998. Enterprise Modeling. AI Magazine, 19 (3),

pp.109–121.

20. Fransella, F., Bannister, D., 1977. A Manual For Repertory Grid Technique. Aca-

demic Press.

21. Gross, J.B., 2005. Programming for artists: a visual language for expressive light-

ing design. In 2005 IEEE Symposium on Visual Languages and Human-Centric

Computing (VL/HCC'05), pp. 331-332. IEEE.

22. Guizzardi, G., 2005. Ontological foundations for structural conceptual models. Te-

lematics Instituut Fundamental Research Series, The Netherlands.

23. Guizzardi, G., 2007. On Ontology, Ontologies, Conceptualizations, Modeling Lan-

guages, and (Meta)Models. In: Proceedings of the 2007 conference on Databases

and Information Systems IV, pp. 18-39. IOS Press, Amsterdam.

24. Guizzardi, G., Falbo, R.A., Guizzardi, R.S.S., 2008. Grounding software domain

ontologies in the Unified Foundational Ontology (UFO): the case of the ODE

software process ontology. In: XI Iberoamerican Workshop on Requirements En-

gineering and Software Environments, pp. 244–251.

25. Guizzardi, R.S.S., 2006. Agent-Oriented Constructivist Knowledge Management.

Centre For Telematics and Information Technology PhD.-thesis series, The Neth-

erlands.

26. Hafsi, M., Assar, S., 2016. What enterprise architecture can bring for digital trans-

formation: An exploratory study. In 2016 IEEE 18th Conference on Business In-

formatics (CBI), vol. 2, pp. 83-89. IEEE.

27. Hinings, B., Gegenhuber, T., and Greenwood, R., 2018. Digital innovation and

transformation: An institutional perspective. Information and Organization, 28(1),

pp.: 52-61.

28. Königs, A., Schürr, A., 2006. Tool integration with triple graph grammars-a sur-

vey. Electronic Notes in Theoretical Computer Science, 148(1), pp.113-150.

23

29. Krimpmann, D., 2015. IT/IS organisation design in the digital age – A literature

review. International Journal of Social, Behavioral, Educational, Economic, Busi-

ness and Industrial Engineering, 9(4), pp.1189–1199.

30. Küster, J. M., Abd-El-Razik, M., 2006. Validation of model transformations - first

experiences using a white box approach. In: MoDELS Workshops, LNCS, vol.

4364, pp. 193–204.

31. Linderoth, H. CJ, Jacobsson M., and Elbanna A., 2018. Barriers for Digital Trans-

formation: The Role of Industry. In Australasian Conference on Information Sys-

tems, vol. 48.

32. Loebbecke, C., Picot, A., 2015. Reflections on societal and business model trans-

formation arising from digitization and big data analytics: A research agenda.

Journal of Strategic Information Systems, 24(3), pp.149–157.

33. MacDonald, T.J., Allen, D., and Potts, J., 2016. Blockchains and the boundaries of

self-organized economies: Predictions for the future of banking. In Banking

beyond banks and money, pp. 279-296. Springer, Cham.

34. Mangematin, V., Sapsed, J., and Schüßler, E., 2014. Disassembly and reassembly:

An introduction to the special issue on digital technology and creative industries.

Technological Forecasting and Social Change, 83, pp.1–9.

35. Maravilhas, S., Martins, J., 2019. Strategic knowledge management a digital envi-

ronment: Tacit and explicit knowledge in Fab Labs. Journal of business research,

pp. 353-359.

36. Moreira, M. E., 2017. Agile Enterprise. Apress.

37. Naudet, Y., Latour, T., Guédria, W., and Chen, D., 2010. Towards a Systemic

Formalisation of Interoperability. Computers in Industry. 61, pp.176–185.

38. Nonaka, I., Hirose, A., 2018. Introduction to the Concepts and Frameworks of

Knowledge-Creating Theory. In Knowledge Creation in Community Development,

pp. 1-15. Palgrave Macmillan, Cham.

39. Nonaka, I., Kodama, M., Hirose, A., and Kohlbacher, F., 2014. Dynamic fractal

organizations for promoting knowledge-based transformation–A new paradigm for

organizational theory. European Management Journal, 32(1), pp. 137-146.

40. Nonaka, I., Toyama, R., and Hirata, T., 2008. Managing Flow: A Process Theory

of the Knowledge-Based Firm. New York: Palgrave Macmillan.

41. Nonaka, I., von Krogh, G., 2009. Perspective—tacit knowledge and knowledge

conversion: Controversy and advancement in organizational knowledge creation

theory. Organization Science, 20, pp.635–652.

42. Oleśków-Szłapka, J., Stachowiak, A., 2018. The Framework of Logistics 4.0 Ma-

turity Model. In International Conference on Intelligent Systems in Production En-

gineering and Maintenance, pp. 771-781. Springer, Cham.

43. Oliva, F. L., Kotabe, M., 2019. Barriers, practices, methods and knowledge man-

agement tools in startups. Journal of Knowledge Management.

44. Panetto, H., Iung, B., Ivanov, D., Weichhart, G., and Wang, X., 2019. Challenges

for the cyber-physical manufacturing enterprises of the future. Annual Reviews in

Control.

45. Parr, T., 2012. Language Implementation Patterns: Create Your Own Domain-

Specific and General Programming Languages. Pragmatic Bookshelf.

24

46. Pereira, M., Fonseca, J., and Henriques, P., 2016. Ontological approach for DSL

development. Computer Languages, Systems&Structures, pp. 35–52.

47. Pérez-Luño, A., Alegre, J., and Valle-Cabrera, R., 2019. The role of tacit know-

ledge in connecting knowledge exchange and combination with innovation. Tech-

nology Analysis & Strategic Management, 31(2), pp. 186-198.

48. Polanyi, M., 1966. The tacit dimension. Chicago: University of Chicago Press.

49. Poletaeva, T., Babkin, E., Abdulrab, H., 2014. Ontological Framework Aimed to

Facilitate Business Transformations, 1st Joint Workshop ONTO.COM co-located

with 8th International Conference on Formal Ontology in Information Systems

(FOIS 2014). Vol. 1301.

50. Poletaeva, T., Abdulrab, H., Babkin, E., 2016. From the Essence of an Enterprise

Towards Enterprise Ontology Patterns. In Enterprise Engineering Working Confe-

rence, pp. 118-131. Springer, Cham.

51. Quirino, G.K., Nardi, J.C., Barcellos, M.P., Falbo, R.A., Guizzardi, G., Guarino,

N., Bochicchio, M., Longo, A., Zappatore, M.S., Livieri, B., 2015. Towards a Ser-

vice Ontology Pattern Language. In: 34th International Conference ER 2015.

LNCS, vol. 9381, pp. 187-195. Springer International Publishing, Switzerland.

52. Reis, J., Espírito Santo, P., and Melão, N., 2019. Artificial Intelligence in Govern-

ment Services: A Systematic Literature Review. In World Conference on Informa-

tion Systems and Technologies, pp. 241-252. Springer, Cham.

53. Ruy, F.B., Falbo, R.A., Barcellos, M.P., Guizzardi, G., 2015. Towards an Ontology

Pattern Language for Harmonizing Software Process related ISO Standards. In:

29th Annual ACM Symposium on Applied Computing, pp. 388-395.

54. Sandkuhl, K., Fill, H.G., Hoppenbrouwers, S., Krogstie, J., Matthes, F., Opdahl,

A., Schwabe, G., Uludag, Ö. and Winter, R., 2018. From expert discipline to com-

mon practice: a vision and research agenda for extending the reach of enterprise

modeling. Business & Information Systems Engineering, 60(1), pp.69-80.

55. Schilhab, Theresa. Derived embodiment in abstract language. Springer, 2017.

56. Schmidt, R., Zimmermann, A., Möhring, M., Nurcan, S., Keller B., and Bär, F.,

2015. Digitization–perspectives for conceptualization. In European Conference on

Service-Oriented and Cloud Computing, pp. 263-275. Springer, Cham.

57. Sprinkle, J., 2016. A safe autonomous vehicle trajectory domain specific modelling

language for non-expert development. Proceedings of the International Workshop

on Domain-Specific Modeling, pp. 42-48.

58. Ulitin, B., Babkin, E. and Babkina, T., 2018. Ontology-based DSL development

using graph transformations methods. Journal of Systems Integration, 9(2), pp.37-

51.

59. Ulitin, B., Babkin, E., 2017. Ontology and DSL co-evolution using graph trans-

formations methods. In: Lecture Notes in Business Information Processing Issue

295: Perspectives in Business Informatics Research, pp. 233-247. Springer.

60. Ulitin, B., Babkin, E., Babkina T., 2019. Automated formal verification of model

transformations using the invariants mechanism. Lecture Notes in Business Infor-

mation Processing Issue 365: Perspectives in Business Informatics Research, pp.

59-73. Springer.

25

61. Ulitin, B., Babkin, E., Babkina T., 2016. Combination of DSL and DCSP for deci-

sion support in dynamic contexts. Lecture Notes in Business Information

Processing Issue 261: Perspectives in Business Informatics Research, pp. 159–173.

Springer.

62. Uschold, M., King, M., Moralee, S. and Zorgios, Y., 1998. The Enterprise Ontolo-

gy. The Knowledge Engineering Review, 13(1), pp. 31–89.

63. Usman, Z., Young, R. I. M., Chungoora, N., Palmer, C., Case, K. and Harding, J.

A., 2013. Towards a Formal Manufacturing Reference Ontology. International

Journal of Production Research, 51(22), pp.6553–6572.

64. Ustundag, A., Cevikcan, E., 2017. Industry 4.0: managing the digital transforma-

tion. Springer.

65. van Gils, B., Proper, H.A., 2018. Enterprise Modelling in the Age of Digital Trans-

formation. In IFIP Working Conference on The Practice of Enterprise Modeling,

pp. 257-273. Springer, Cham.

66. Wang, H., Wang, X., Zhang X., 2017. Dynamic resource allocation for intermodal

freight transportation with network effects: Approximations and algorithms.

Transportation Research Part B: Methodological, pp. 83-112.

67. Westerman, G., Bonnet, D., McAfee, A., 2014. The nine elements of digital trans-

formation. MIT Sloan Management Review, 55(3), pp.1-6.

68. Yoon, K. S., 2012. Measuring the Influence of Expertise and Epistemic Engage-

ment to the Practice of Knowledge Management. International Journal of Know-

ledge Management, 8(1), pp. 40–70.

69. Zhang, S., Boukamp, F. and Teizer, J., 2015. Ontology-based semantic modeling

of construction safety knowledge: Towards automated safety planning for job ha-

zard analysis (JHA). Automation in Construction, 52, pp.29-41.

