Reinforcement Learning 101

Kim Alyona



Summary

N

o

Introduction
Key concepts
Approaches

a. common

b. extra
Known problems
Applications



What is Reinforcement Learning?
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Reinforcement vs Deep

Machine Learning

Reinforcement Learning Deep Learning

s ger:ngral fram.ewc')rk LR Use several layer of Neural Networks

decision making in MDP

Learn data representations with multiple
level of abstraction using a training set

Learn a policy that maximizes discounted sum
of future rewards

Q Learning Deep Neural Networks

TD Learning Convolutional DNN

@ DeepMind

(Silver et al., 2016)

Gradient descent Deep Q Networks

Monte Carlo Method

i
Deep Reinforcement Learning

https://towardsdatascience.com/from-classic-ai-techniques-to-deep-learning-753d20cf8578 4



Key Concepts
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Key Concepts

“«

Policy 71'(8) tries to maximize the sum of rewards. Agent’s “brain”

e deterministic 7(s) =a
e stochastic m(als) =P;[A =alS = s

o different sampling procedures



Key Concepts

Return Gi = Riyn + YR+ = 200 Y Revin
e discounted sum
e more uncertainty in the future
e future actions do not result in immediate benefits
e math convenience



Key Concepts

State-value function
Action-value function
math. property

Advantage

VW(S) = EW[G”St = 8]
QW(S,CL) — EW[G”St = S,At = CL]
Vi(s) = Dpea Qr(s,a)m(als)

A(s,a) = Qr(s,a) — V,(s)



Markov Decision Process
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Approaches

RL Algorithms
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Q-Learning

Model-Based RL
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https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
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Approaches

Model-based: needs environment. States & Rewards are known or learnt
Model-free: does not depend on environment model during training
On-policy: use the deterministic outcomes or samples from the target policy

Off-policy: training on a distribution of transitions or episodes produced by a
different behavior policy rather than that produced by the target policy.

11



Policy Optimization

e model-free & on-policy
e representa policy explicitly g (a|s)
e usually involves learning an approximator for the value-function

Example:

e Asynchronous Advantage Actor-Critic (A3C)
Critic: updates value function V(s; w) parameters w.

e Multiple Actors: updates policy parameters 6, in the direction suggested by the
critic, m(als;0)

* Jy(w) = (G — V(s;w))?
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Q-learning

e model-free & off-policy
e Bellman equations
e policy: a(s) = argmax, Qy(s,a)
e temporal difference
Example:
e Deep Q-Network (DQN)

o Experience Replay
o Periodically Updated Target
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Trade-offs

Policy Optimization

e you directly optimize for the thing you
want (policy)

e stable and reliable

e |ess sample efficient

Q-learning

indirectly optimize for agent
performance (training to satisfy a
self-consistency equation)

less stable

more sample efficient, can re-use data
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Model-based RL

e Background: Pure Planning (MBMF)

o model-predictive control

o never explicitly represents policy (an optimal plan over fixed time window)
e Expert Iteration (ExIt, AlphaZero)

o planning algorithm like Monte-Carlo Tree Search

o sampling from the current policy & evaluate samples with planning algorithm
e Data Augmentation for Model-Free Methods (MBVE)

o augment real data with synthetic
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Known Problems

e Exploration-Exploitation Dilemma
e Deadly Triad Issue
o off-policy
o nonlinear function approximation
o bootstrapping
o unstable learning, does not converge

http://ai.berkeley.edu/lecture_slides.html, lecture 11
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Applications

e modeling and explaining neural activity
linking phasic dopamine release with temporal-difference reward-prediction
error [Niv 19]

e learning complex robotic skills from raw sensory input
modeling goal-oriented search policy with top-down factors as states
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Spoiler for my next talk

model-micro human-micro

model-clock

human-clock
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Extra slide

e CurriculumRL
Meta-Reinforce Learning
e |nverseRL

mask
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(1) Teach-Student (2) Self-Play (3) Goal Generation [ curriculum producer

D policy of interest
https:/lilianweng.github.io/lil-log/2020/01/29/curriculum-for-reinforcement-learning.html



