Reinforcement Learning 101

Kim Alyona

Summary

- 1. Introduction
- 2. Key concepts
- 3. Approaches
 - a. common
 - b. extra
- 4. Known problems
- 5. Applications

What is Reinforcement Learning?

Reinforcement vs Deep

Policy $\pi(s)$ tries to maximize the sum of rewards. Agent's "brain"

- deterministic $\pi(s) = a$
- ullet stochastic $\pi(a|s) = \mathbb{P}_{\pi}[A=a|S=s]$
 - different sampling procedures

Return

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

- discounted sum
- more uncertainty in the future
- future actions do not result in immediate benefits
- math convenience

State-value function

$$V_{\pi}(s) = \mathbb{E}_{\pi}[G_t|S_t = s]$$

Action-value function

$$Q_\pi(s,a) = \mathbb{E}_\pi[G_t|S_t=s,A_t=a]$$

math. property

$$V_{\pi}(s) = \sum_{a \in A} Q_{\pi}(s,a) \pi(a|s)$$

Advantage

$$A(s,a) = Q_\pi(s,a) - V_\pi(s)$$

Markov Decision Process

Approaches

Model-based: needs environment. States & Rewards are known or learnt

Model-free: does not depend on environment model during training

On-policy: use the deterministic **outcomes** or samples from the target policy

Off-policy: training on a distribution of **transitions** or episodes produced by a different behavior policy rather than that produced by the target policy.

Policy Optimization

- model-free & on-policy
- ullet represent a policy explicitly $\pi_{ heta}(a|s)$
- usually involves learning an approximator for the value-function

Example:

- Asynchronous Advantage Actor-Critic (A3C)
- **Critic**: updates value function *V*(*s*; *w*) parameters *w*.
- Multiple Actors: updates policy parameters θ , in the direction suggested by the critic, $\pi(a|s;\theta)$
- $ullet J_V(w) = (G_t V(s;w))^2$

Q-learning

- model-free & off-policy
- Bellman equations
- ullet policy: $a(s) = rg \max_a Q_ heta(s,a)$
- temporal difference

Example:

- Deep Q-Network (DQN)
 - Experience Replay
 - Periodically Updated Target

Trade-offs

Policy Optimization	Q-learning
 you directly optimize for the thing you want (policy) stable and reliable less sample efficient 	 indirectly optimize for agent performance (training to satisfy a self-consistency equation) less stable more sample efficient, can re-use data

Model-based RL

- Background: Pure Planning (MBMF)
 - model-predictive control
 - never explicitly represents policy (an optimal plan over fixed time window)
- Expert Iteration (Exlt, AlphaZero)
 - planning algorithm like Monte-Carlo Tree Search
 - sampling from the current policy & evaluate samples with planning algorithm
- Data Augmentation for Model-Free Methods (MBVE)
 - augment real data with synthetic

Known Problems

- Exploration-Exploitation Dilemma
- Deadly Triad Issue
 - off-policy
 - nonlinear function approximation
 - bootstrapping
 - o unstable learning, does not converge

http://ai.berkeley.edu/lecture_slides.html, lecture 11

Applications

- modeling and explaining neural activity
- linking phasic dopamine release with temporal-difference reward-prediction error [Niv 19]
- learning complex robotic skills from raw sensory input
- modeling goal-oriented search policy with top-down factors as states

Spoiler for my next talk

Chen, Y., & Zelinsky, G. (2020). Predicting Goal-directed Attention Control Using Inverse Reinforcement Learning and COCO-Search18. Journal of Vision, 20(11), 1632-1632.

Extra slide

- Curriculum RL
- Meta-Reinforce Learning
- Inverse RL

