

978-1-5386-3498-1/18/$31.00 © 2018 IEEE

2018 Moscow Workshop on Electronic and Networking Technologies (MWENT)

Abstract—The method of data lossless compression with

preliminary sorting in real time is considered in the paper. The
compression method is based on the analysis of the frequency
distribution of the incoming data stream, the selection of the
constant by sorting and, on the basis of this, subsequent
compression. The combination of sorting and data compression
proposed in the article allows saving processing time and
dynamically manage the network controller load. The hardware
algorithm implementation on FPGA for sorting and compressing
data during stream processing of information is considered. The
solution makes it possible to implement an algorithm in the form
of an IP core, with the ability to adapt it to the characteristics of
solving its task of compressing data, thereby increasing system
performance. This algorithm can be used to create embedded
applications with limited computing resources and time-critical
requirements. The device, based on the method considered,
showed stable operation in the task of processing data from a
multichannel system of high-speed sensors. This algorithm can be
applied in solving problems of creation the telecommunications
networks of distributed control systems, data processing
subsystems Internet of Things and Internet of Robotic Things.

Keywords—distributed control system, FPGA, lossless
compression, sorting of data, telecommunication system

I. INTRODUCTION

The solution of the problem of technological processes (TP)
automation, when these processes have a distributed territorial
and algorithmic character, is connected with the construction
of a distributed control system, which necessarily includes a
telecommunications system (TCS). Many TPs, and therefore
their control systems, are characterized by a large amount of
sensory information coming from control objects and rapid
algorithm implementation. Such TPs can be occurred in the
chemical, engineering and other industries, as well as in
scientific complexes [1].

As in any CS, the response time of a distributed CS to a
control action is the determining criterion in the development
of this type systems. The data transfer speed between separate
subsystems and their volume in the TCS largely determine the
reaction rate of the entire control system. To improve the TCS
performance, various methods of compressing transmitted data

are used. If data are transferred to form control actions on the
control object, for example, information from sensors or
events, then lossless compression methods are used. In the
case of data plan information transmission, for example, an
image or sound for the process operator, during compression
the losses are admissible.

Over the past decade, a new direction has emerged, called
the Internet of Things (IoT), which is a distributed system of
compact embedded applications, connected by wireless or
wired networks [2]. Today, on the IoT basis, a new direction is
successfully developing, which by means of network
technologies unites robots or robotic devices. This direction,
called the Internet of Robotic Things (IoRT), is aimed at
implementing robotic technologies, by extending the
functionality of IoT devices. The paper [3] presents the IoRT
concept, which highlights the tremendous flexibility in the
development and implementation of new applications for
networked robotics to achieve the goal of providing
distributed computing resources as the main utility. Robotic
devices can track events, collect data from a variety of sensors
from various sources and use the intellectual capabilities of
their calculators to determine the best actions.

 The task of data compression in applications of the listed
directions is especially relevant because of their limited
resources. At the same time, often the developer faces the
problem of choosing between many criteria and optimizing
solutions. In the proposed paper, the device implemented on a
fairly efficient method of data lossless compression is
considered. It is implemented in hardware on the basis of
Field-Programmable Gate Array (FPGA). The proposed
compression method is based on the frequency distribution
analysis of the incoming data stream, the selection of a
constant by sorting and on the basis of this, subsequent
compression.

The paper is as follows. Section 2 provides an overview of
sorting and compression methods for lossless data
implemented on an FPGA. Section 3 discusses the device
implementation, discusses the features of the structure and
algorithms of the solved problem. The obtained results and
their discussion are given in Section 4. Finally, the conclusion
is given in Section 5.

Real-Time Sorting and Lossless Сompression of
Data on FPGA

Valery A. Kokovin1, Saygid U. Uvaysov2 and Svetlana S. Uvaysova3,
1State University “Dubna”, branch “Protvino”, Protvino, Moscow reg., Russia

2Moscow Technological University (MIREA), Moscow, Russia
3National Research University Higher School of Economics, Moscow, Russia

1kokovin@uni-protvino.ru, 2uvaysov@yandex.ru, 3uvay@yandex.ru

Authorized licensed use limited to: Kotel'nikov Inst of Radio Eng & Electronics - RAS. Downloaded on January 11,2022 at 15:17:34 UTC from IEEE Xplore. Restrictions apply.

2018 Moscow Workshop on Electronic and Networking Technologies (MWENT)

II. METHODS OF HARDWARE SORTING AND DATA LOSSLESS

COMPRESSION IMPLEMENTED ON FPGA

There are a large number of methods for sorting and
compressing data [4], [5] and [6]. The article [7] is devoted to
the use of stream processing in intellectual systems. A detailed
analysis of lossless and lossy compression methods is given in
[8] [9], and the main ideas and concepts embodied in these
methods are also described. Lossless compression methods are
the most interesting, since in distributed control systems
control data are usually transmitted to the control algorithm
implementation. The compression efficiency is an important
characteristic of compression. By efficiency, we will take not
only the compression ratio (the ratio between the initial data
size and the data after compression size), but also the speed of
the compression device - the compressor. The compressor can
be implemented both programmatically and hardware.

As a rule, widespread compression algorithms relate to
universal algorithms. The algorithm universality can be
attributed to the dignity, but the emergence of a large number
of methods and algorithms for data compression [8] suggests
that the most effective compression algorithm is specialized
for solving a particular problem. Given the fact that not only
the compression ratio but also the compressor speed is
important, it can be noted that there are more and more
devices on the market performing data compression on the
hardware platform, usually on FPGA. For example, in
hardware compressors [10], the Huffman and RLE algorithms
are used to compress the image in the JPEG standard [11].
These compressors are implemented as IP (Intellectual
Property) - FPGA based cores by Altera [12] and Xilinx [13].
By purchasing an IP-core, the developer can adapt it to the
specifics of solving the task data compression task, thereby
increasing the performance of its system. In addition, it
becomes possible to change the algorithm of data compression
"on the fly", changing the FPGA configuration, that makes it
possible to adjust to the changing system operating conditions.

III. THE DEVICE IMPLEMENTATION

As it was said above, the effective solutions implementation
raises for developers the problem to choose the architecture
and algorithms of embedded applications in limited resources
conditions. That is, the developer actually faces the problem
of choosing between many criteria and optimizing solutions.
We can distinguish the following criteria for optimizing data
processing (sorting), compressing and transmitting the result
over the network in embedded systems implemented on
controllers and FPGAs:

• Performance speed as a function of the complexity of
implementing the data processing algorithm

• Minimizing energy consumption in data processing as
a function of performance speed

• Minimizing energy consumption as a function of the
used volume FPGA

• Минимизация потребления энергии как функция
использованного объема FPGA.

• Efficient network controller load (performance
criterion without downtime)

• Data compression rate as a function of time.
 In multicriteria selection problems, it is not always

necessary to find the maximum or the minimum function
value. In some cases, it is necessary to average the value of a
certain parameter, i.e. to find a compromise solution.

A. Formulation of the problem
Let the input of the device realized on the FPGA (Fig. 1)

receive a serial data stream with a dimension of bytes. The
binding to the byte size is due to the subsequent transfer of
data through the network controller via Ethernet protocols,
Profibus et al. The size of the data stream is unlimited. It is
necessary to perform the following operations in real time:

• to calculate the frequency of appearance of a single
value data, i.e. determine the frequency distribution of
incoming data;

• to sort the number of occurrences of certain data values
in ascending order;

• to allocate a maximum in the frequency distribution of
data (the constant for compression by the method
proposed in [9]);

• to perform data compression.
The device for sorting and compressing data (Fig.1) consists

of the following blocks:
• Input Register – input register, which receives data

stream from external devices (for example, sensors or
byte-by-byte video output from a camera);

• RAM 256х8 – the built-in FPGA memory bank is used
to store the number of occurrences in the input data
stream of identical values. The addresses of the
memory cells are the data values (signals data_r [7..0]),
coming from the Input Register. The memory data
input is connected to the counter output COUNTER
(signals cnt_out [7..0]);

• COUNTER – counter for counting the number of
occurrences in the input data stream with the same
data_nmb values. The counter input is connected to the
RAM output by the signals ram_out [7..0], and from
the output the data cnt_out [7..0] comes again to the
memory input with the same address;

• SORTER – sorter of data values from the memory
RAM 256х8 per 256 cells;

• FIFO – buffer memory to store input data for sorting
time. Input signals data_r [7..0], output - data_FIFO
[7..0];

• COMPRESSOR – data compression based on the
selected constant after sorting At the module input, the
data stream from FIFO (signals data_FIFO [7..0]) and
signals of selected constants data_const [7..0];

• Control Unit – block to form the synchronous series,
which provide the specified sequential-parallel
operation of the entire device.

The entire input data stream is conventionally divided into
packets that do not exceed the maximum transmission unit
(MTU) for the selected network controller protocol.
Compliance of this condition saves data transmission time and
does not fragment the transmitted packet. Accordingly, all the

Authorized licensed use limited to: Kotel'nikov Inst of Radio Eng & Electronics - RAS. Downloaded on January 11,2022 at 15:17:34 UTC from IEEE Xplore. Restrictions apply.

2018 Moscow Workshop on Electronic and Networking Technologies (MWENT)

above operations for sorting and compressing data are valid
for this amount. This partitioning allows optimizing the use of
the network controller and performing its efficient download.
If the controller is used to transfer data from several streams, it
is necessary to adaptively control the process of compressing
the input data for each stream.

For definiteness, we take the number of bytes N above which
sorting and compression operations are performed, not
exceeding 256 (N ≤ 256).

B. Definition of Frequency Distribution of Data
The solution of the problem of determining the frequency

distribution of input data is a sorting preparation operation.
For this purpose, RAM memory size of 256x8 and counter
COUNTER are used. Each new data byte from the Input
Register to the address input of the memory block (Fig.1)
loads the contents of the corresponding memory cell into the
counter. Further, the increased counter value is transmitted to
the input of the SORTER module, and again it is written to the
memory cell with the former address, i.e. the memory contents
are incremented. According to the size assumption of the data
packet (256 bytes), the maximum value in each memory cell
will not exceed 256 (if the entire packet contains bytes with
one value). Thus, at each step n (n = 1, 2, 3..N), the SORTER
module sorts not the value of the input data byte, but the
number of bytes with the same values data_nmb.

C. Sorting Data
In general, sorting is an ordering a certain amount of

arbitrary width data. This data can contain information and an
index (a characteristic) that is used to sort. The information
and the index can be combined with a data value. Let us sort
the data represented by the entries D(x1), D(x2),…, D(xn) with
the indices x1, x2,…, xn, where n = {1,2,…,N}. The indices

should be related by the order relation «<», so that for any
three indices (for example, a, b and c) two conditions are met:

• exactly one of the possibilities a<b, a=b, a>b is true;
• if a<b and a<b<c, then a<c [12].
The sorting task is to arrange the data in such a way that

indices of this data are located in a non-decreasing order:
D(x1) ≤ D(x2) ≤ …≤ D(xn)

The data was sorted according to the algorithm proposed in
[15]. This algorithm is based on the sorter (SORTER)
implementation in the form of intellectual cells that interact
with each other through the formation of one-bit signals
(events). To solve the problem of sorting the considered
device, the algorithm (given in [15]) is modified.

The sorter is a set of cells (in our case ≤ 256), which
operates according to certain rules. The SORTER input
provides two-byte data srt_word, which in the high-order byte
contain the value data_r [7..0], and in the least significant bit
of byte cnt_out [7..0], which are the data_nmb index. In each
cycle, SORTER operates according to the following algorithm
[Fig.2]:

• The SORTER sequentially receives immediately to
all the cells the data with the indexes. Before sorting
all cells are empty.

• If the high_byte of any cell coincides with the value
of the next input byte data_r [7..0], then this cell is
excluded by shifting the contents of all the cells
located below upwards.

• Then, each occupied cell compares the value of its
least significant byte with the value of index

RAM
256x8

Input
Register

COUNTER

SORTER
256 cell

FIFO
256x8

data_r [7..0]

Ad
dr

es
s

[7
..0

]
Da

ta
[7

..0
]cnt_out[7..0]

data_r [7..0]

ram_out[7..0]

ram_out[7..0] cnt_out[7..0]

cnt_out[7..0]

data_r [7..0]

data_r[7..0]

COMPRESSOR

output compressed
data

Control
Unit

data_in[7..0]

rd
w

r

clk

Da
ta

_c
nt

[7
..0

]
+1

data[7..0]

data_FIFO[7..0] data_const[7..0]

clk[3..0]

clk0

clk1

clk1
clk3

clk2

clk3

clk_f

clk1

q[7..0]

clk[3..0]

Fig. 1. Structure of the device for sorting and compressing data on
FPGA

Fig. 2. The algorithm of the device for sorting and compressing data
without losses.

Authorized licensed use limited to: Kotel'nikov Inst of Radio Eng & Electronics - RAS. Downloaded on January 11,2022 at 15:17:34 UTC from IEEE Xplore. Restrictions apply.

2018 Moscow Workshop on Electronic and Networking Technologies (MWENT)

data_nmb of the word srt_word. If data_nmb is
smaller than the cell index, then the content of all
cells is shifted, beginning with the current one and
lower. The value of the word srt_word is written to
the freed cell.

• The sorting cycle continues until the parameter n is
equal to N.

• If n = N, then the most significant byte value of the
lowest occupied cell SORTER (data_const [7..0])
will be fed to the module COMPRESSOR.

Further, the constant value and the data stored in the FIFO are
fed to the module COMPRESSOR.

D. Lossless compression data
In paper [9] the operation algorithm of the data compression

device is described. The input array data (volume of 88 bytes)
arrives in parallel. The data array is a set of the technological
timer channel signals of the linear accelerator URAL30 of the

IHEP accelerator complex [16]. The first stage of the
encoder's job is to sort the data for a zero value. Based on the
results of this comparison, a new variable-length word is
formed. At the second stage of the algorithm, a channel frame
is created containing two service bytes (markers) and
significant bytes of channel signals. Next, the formed channel
frames are loaded into the network controller. The algorithm is
implemented in the form of an IP core based on the FPGA of
Altera and showed good and stable results in the monitoring of
the technological timer [9].

For the device under consideration (Fig.1), the encoders
algorithm COMPRESSOR adds the ability to dynamically
select the constant data_const [7..0] and double-encode the
stream. Fig.3 shows the algorithm of the compressor. The
main idea of the algorithm is to form two memory areas from
the initial data packet: the area of sorted bytes that do not
coincide in value with the data_const [7..0] constant (memory
RAM1 with ad1 address field) and the marker area (RAM2
memory with address field ad2).The marker fixes the
sequence of bytes: if the next sorted byte does not coincide
with the constant data_const [7..0], then the byte is written in
RAM1 and "1" is written to the corresponding marker bit
(Tab.1), otherwise "0" is written. Markers are stored in
RAM2.

The variable p arrives at the serial input of the Shift
Register and takes two values p={0,1}. Thus, after each
comparison, a marker code is generated in the shift register.
The number of markers depends on the number of bytes in the
source data packet.

IV. RESULTS AND DISCUSSION

The design of the considered device is implemented on
FPGA family Cyclone IV. Approximately 6000 logical
elements (that is <23% of the device capacity) and three banks
of built-in memory M9K (256x32) are used. The maximum
incoming serial data frequency is 120 MHz. It is possible to

Fig. 3. The algorithm of the COMPRESSOR module.

TABLE I
DESCRIPTION AND VALUES OF THE MARKER BITS

Bit Bit description Marker bit values

Bit 0 the first byte of input
data

p=1, data_const[7..0] ≠ data_in[7..0]

Bit 1 the second byte of the
input data

p=0, data_const[7..0] = data_in[7..0]

Bit 2 third byte of input data p=1, data_const[7..0] ≠ data_in[7..0]
Bit 3 fourth byte of input

data
p=0, data_const[7..0] = data_in[7..0]

Bit 4 fifth byte of input data p=1, data_const[7..0] ≠ data_in[7..0]
Bit 5 sixth byte of input data p=0, data_const[7..0] = data_in[7..0]
Bit 6 seventh byte of input

data
p=1, data_const[7..0] ≠ data_in[7..0]

Bit 7 eighth byte of input
data

p=0, data_const[7..0] = data_in[7..0]

The marker fixes the sequence of bytes: if the next sorted byte does not
coincide with the constant data_const[7..0], then the byte is written in
RAM1 and "1" is written to the corresponding marker bit (p=1,
data_const[7..0] ≠ data_in[7..0]), otherwise "0" is written (p=0,
data_const[7..0] = data_in[7..0]). The marker bytes are written in
RAM2.

Authorized licensed use limited to: Kotel'nikov Inst of Radio Eng & Electronics - RAS. Downloaded on January 11,2022 at 15:17:34 UTC from IEEE Xplore. Restrictions apply.

2018 Moscow Workshop on Electronic and Networking Technologies (MWENT)

optimize the project in order to increase the processing
frequency, but it is necessary to match the processing
frequency and the output of the network controller output.

In addition, if the network controller transmits data from
several sorting and data compression devices, it is necessary to
dynamically control the processing in order to efficiently load
the controller. The processing of input data goes in parallel in
the SORTER and COMPRESSOR modules. When processing
the first packet in SORTER, the COMPRESSOR module does
not work. The maximum computed compression rate in the
COMPRESSOR module when using the presented algorithm
is about 20. The algorithm works most effectively on arrays of
homogeneous data (for example, data from the CMOS matrix
of the video camera).

V. CONCLUSION

The Experienced operation of the sorting and data
compression device has shown stable operation in the task of
data processing from a multichannel system of high-speed
sensors with a total incoming traffic volume of about 7 Gb/s
[17]. It should be noted that the task of determining the
frequency distribution of input data is used in many applied
problems: the construction of histograms in the recognition of
images, the development of recording electronics for physical
experiments, etc., which increases the efficiency of the device.

 The disadvantage of the COMPRESSOR module work of
this device is that at the output in the worst case there can be a
data array which size exceeds the input one. The modules
using the RLE compression method have the same flaw.

REFERENCES
[1] V.Komarov, G.Antonichev, L.Kim, V.Kokovin, N.Krotov,

V.Kuznetsov, Yu.Milichenko, N.Radomsky, and V.Voevodin,
“Modernization of U-70 general timing system”, Proceedings of
ICALEPCS-2005, Geneva, Switzerland, October 10-14, 2005.

[2] Sutikno Т., Jidin A., and Basar M. F. Simple realization of 5-segment
discontinuous svpwm based on FPGA // International Journal of
Computer and Electrical Engineering. Vol. 2. No. 1. Feb. 2010

[3] P. P. Ray, “Internet of robotic things: Concept, technologies, and
challenges,” IEEEAccess, vol. 4, pp. 9489–9500, 2016.

[4] R. Marcelino, H. Neto, and J. Cardoso. Sorting Units for FPGA-Based
Embedded Systems. In Distributed Embedded Systems: Design,
Middleware and Resources, volume 271 of IFIP International Federation
for Information Processing, pages 11–22. Springer Boston, 2008.

[5] J. Ouyang, H. Luo, Z. Wang, J. Tian, C. Liu, and K. Sheng, “Fpga
implementation of gzip compression and decompression for idc
services,” in Field-Programmable Technology (FPT), 2010 International
Conference on. IEEE, 2010, pp. 265–268

[6] J. A. Pérez-Celis, J. Martínez-Carranza, A. Morales-Reyes, C.
Feregrino-Uribe, and R. Cumplido, “An fpga architecture to accelerate
the burrows wheeler transform by using a linear sorter,” in Parallel and
Distributed Processing Symposium Workshops, 2016 IEEE
International. IEEE, 2016, pp. 156–161.

[7] V.A. Kokovin and A.N. Sytin The processing of information from
sensors in intelligent systems / Journal of Physics: Conference Series,
2017. Vol. 803, N. 1, 012075. doi:10.1088/1742-6596/803/1/012075

[8] D.Vatolin, A.Ratushnjak, M.Smirnov, and V.Jukin, “Metody szhatija
dannyh. Ustrojstvo arhivatorov, szhatie izobrazhenij i video”-M.:
DIALOG-MIFI, 2003.-p.384.

[9] Kokovin V., Uvaysov S., and Uvaysova S. Lossless Сompression
Algorithm For Use In Telecommunication Systems, Control and
Communications (SIBCON), IEEE, 2016 DOI:
10.1109/SIBCON.2016.7491839

[10] http://www.cast-inc.com/ip-cores/images/jpeg-c/index.html

[11] http://jpeg.org/

[12] https://www.altera.com/

[13] http://www.xilinx.com/

[14] Donald E. Knuth. The art of computer programming, volume 3: (2nd
ed.) Sorting and Searching, Addison Wesley, 1998, ISBN: 0-201-89685-
0

[15] Joshua Vasquez, “Sort faster with FPGAs”,
https://hackaday.com/2016/01/20/a-linear-time-sorting-algorithm-for-
fpgas/#comments

[16] S. Ivanov, "Accelerator complex u70 of ihep: present status and recent
upgrades", Proceedings of RuPAC-2010, Protvino, 2010.-pp. 27-31.

[17] A.Yu. Kalinin, V.A. Kokovin, V.I. Kryshkin, and V.V. Skvortsov " An
absolute intensity beam monitor", Instruments and Experimental
Techniques, 2016, Vol. 59, No. 4, pp. 536–538

Authorized licensed use limited to: Kotel'nikov Inst of Radio Eng & Electronics - RAS. Downloaded on January 11,2022 at 15:17:34 UTC from IEEE Xplore. Restrictions apply.

