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Abstract
Averaging predictions over a set of models—an
ensemble—is widely used to improve predictive
performance and uncertainty estimation of deep
learning models. At the same time, many ma-
chine learning systems, such as search, matching,
and recommendation systems, heavily rely on
embeddings. Unfortunately, due to misalignment
of features of independently trained models, em-
beddings, cannot be improved with a naive deep
ensemble like approach. In this work, we look at
the ensembling of representations and propose
mean embeddings with test-time augmentation
(MeTTA) simple yet well-performing recipe
for ensembling representations. Empirically we
demonstrate that MeTTA significantly boosts the
quality of linear evaluation on ImageNet for both
supervised and self-supervised models. Even
more exciting, we draw connections between
MeTTA, image retrieval, and transformation
invariant models.

We believe that spreading the success of
ensembles to inference higher-quality representa-
tions is the important step that will open many
new applications of ensembling.

1. Mean Embeddings
Our goal is to utilize ensembles to improve quality of embed-
ding produced by a neural network. Conventional ensem-
bling techniques e.g., deep ensembles (Lakshminarayanan
et al., 2017) involve averaging predictions of several inde-
pendently trained networks. Representations inside these
networks are not coherent: activations that appear on the
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Figure 1. To produce a mean embedding MeTTA averages acti-
vations of a network across different augmentations of an object.
The MeTTA does not affect training phase and can be applied to a
pre-trained network.

same positions in different networks respond to different
input signals, thus cannot be averaged. Below we explain
how to get around this obstacle.

We consider a model p(y |x,w) represented by neural net-
work with parameters w that is trained on dataset (xi, yi) ∈
D of size K, where x denotes an object, y denotes a vari-
able to be predicted, and w denotes parameters of the model.
The model is a composition of transformations f(x,w) =
fNwN ◦ · · · ◦ f1w1(x). We denote intermediate representations
or activations ofL-th layer as aL(x; w) = fLwL◦· · ·◦f1w1(x).
We assume the model is trained by optimizing a loss func-
tion L with a stochastic optimization and using data aug-
mentation x̂ ∼ paug(x̂ |x).

EB̂x∼DEx̂∼paug(x̂ | x)L(x̂,w)→ min
w
. (1)

We propose mean embeddings with TTA (MeTTA)—a sim-
ple method for representations ensembling. The method
averages representations aL( · ; w) of a single model over
different augmentations of an object x

aens(x; w) = Ex̂∼paug(· | x)a
L(x̂; w) ∼= (2)

∼=
1

S

S∑
s=1

aL(x̂s; w), where x̂s ∼ paug(· |x), (3)

where S is number of samples of augmentations for a single
image, and aens(x; w) is a mean embedding. In contrast to
a deep ensembles like approach1, global image representa-

1We discuss possible steps to DE-like approaches in Sec. 5
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Central crop Mean embeddings with TTA
Problem Model Width SK # Params (M) Embeddings N = 10 N = 32

Self-supervised ResNet50 1× False 24 71.7 73.3 (+1.6%) 73.8 (+2.1%)

features 1× True 35 74.6 75.8 (+1.2%) 76.2 (+1.6%)

(SimCLRv2) ResNet101 2× False 170 77.0 78.1 (+1.1%) 78.5 (+1.5%)

2× True 257 79.0 79.8 (+0.8%) 79.9 (+0.9%)

ResNet152 3× True 795 79.8 80.3 (+0.4%) 80.7 (+0.9%)

Supervised ResNet50 1× False 24 76.6 78.0 (+1.4%) 78.5 (+1.9%)

features 1× True 35 78.5 79.7 (+1.2%) 80.2 (+1.7%)

ResNet101 2× False 170 78.9 80.2 (+1.3%) 80.6 (+1.7%)

2× True 257 80.1 81.0 (+0.9%) 81.3 (+1.3%)

ResNet152 3× True 795 80.5 81.4 (+0.9%) 81.9 (+1.4%)

Table 1. Comparing of different methods of inference embeddings. Top-1 accuracy on ImageNet (Deng et al., 2009) for linear evaluation of
embeddings with 100% labels. For self-supervised features we used models that were pre-traoned with SimCLRv2 (Chen et al., 2020). We
used both supervised and self-supervised pretrained models from https://github.com/google-research/simclr repository.
SK states for selective kernels (Li et al., 2019). For log-likelihood score see Fig. 3

tions, so called non-spatial activations, of a single network
have no misalignment between different augmentations of
a single image, so activations can be safely averaged. The
illustration of MeTTA is in Figure 1.

There are several reasons why MeTTA might work better
then a conventional inference:

1. Transformation invariant representations When a
model is trained with data augmentations, it is forced
to be invariant to a label preserving transformations.
In practice, though, the models only only partially are
invariant to these transformations. Representations of
different augmentations of one object may vary a lot,
which over-complicates the embedding space and may
significantly affect the model predictive performance.
Mean embeddings, on the other hand, are invariant to
such transformations by design.

2. Higher degree of parameter sharing during infer-
ence Mean embeddings enjoys a higher degree of pa-
rameter sharing. It allows N times more compute per
parameter during inference, and potentially, use param-
eters more efficiently and boost the performance of
the model. Mean embeddings, however, sacrifice com-
putational complexity of inference that is a common
drawback for ensembles.

3. Train-test distribution shift A model usually sees
augmented data during training and clean non-
augmented data during test, which can potentially intro-
duce a domain shift, and result in a loss of performance.
MeTTA does not suffer from the shift because it has
exactly the same distribution of data for training and
inference.

2. Classification with Mean Embeddings
We will use linear evaluation—a conventional protocol
for evaluation of embedding that is widely used in self-

supervised learning (Chen et al., 2020). The main idea is to
train a linear classifier on top of the embeddings produced
by a pretrained network, while weights of the network re-
main fixed. Then one can compare pretrained models based
on test performance of the trained linear classifier.

But how to train a model with mean embeddings? More
formally, we are supposed to train the following model
p(y |x) on top of the mean embeddings aens(x,w):

p(y |x) = softmax(θTaens(x,w)) =

= softmax(θTEx̂∼paug(· | x)a
L(x̂; w)), (4)

by minimizing a cross entropy loss

−E(x,y)∼D log p(y |x)→ min
θ
.

However, due to the intractable expectation inside p(y |x)
that is presented under the nonlinear function, a sample-
based gradients of this objective will be biased. We, there-
fore, substitute the loss objective with the following upper
bound, whose unbiased gradients can be estimated:

−log p(y |x)=− log sm(θT Ex̂∼paug(· | x) a
L(x̂; w))y ≤ 2

≤ − Ex̂∼paug(· | x) log sm(θTaL(x̂; w))y → min
w,θ

, (5)

where sm denotes softmax. The equation 5 appears to be the
conventional loss that is used for training a model with data
augmentations. Thus, we can use a conventionally training
with no additional changes needed.

MeTTA seems to help in practice! Using mean embed-
dings show stable improvement over conventional central
crop embedding for both supervised and self-supervised
pre-trained models (Table 1).

2Jensen’s inequality: f(Ex) ≤ Ef(x) for concave f =
− log softmax (Boyd et al., 2004).

https://github.com/google-research/simclr
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3. Understanding
Intuition Deep learning models are usually trained to raise
predictions that are invariant to data augmentations. This
principle is heavily used by supervised learning, and espe-
cially self-supervised learning methods based on contrastive
losses e.g., SimCLR.

However, a network is only partially resistant to these trans-
formations after training. Predictions can jitter depending on
small changes in data (here we mean data augmentation, not
any kind of adversarial attack), that especially pronounced
on visually similar classes (Fig. 2). This effect might be
caused by unstable decision boundaries.

The performance improvement obtained by averaging em-
beddings is, likely, caused by a step back from unstable
borders in a local region of more stable predictions.

1-d loss interpolations

Fig. 3 shows that mean embeddings perform better than
central crop embeddings and embeddings of individual aug-
mentations. It can be seen that loss decreases on average
when approaching mean embeedings stating that this ME-
direction in space of embedding is favorable.

Relation to TTA & pre-softmax averaging Conventional
test-time augmentation (eq. 6) and mean embeddings with
TTA (eq. 7) are extremely similar:

p(y |x)= Ex̂∼paug(· | x) sm(θTaL(x̂; w)) (6)

p(y |x)=sm(θT Ex̂∼paug(· | x) a
L(x̂; w)) (7)

It is quite common that researches average activations of the
last linear layer instead of probabilities (eq. 6). This, in the
case of averaging feature from the last pre-softmax layer, is
equivalent to MeTTA in terms of predictions:

p(y |x)=sm(θT Ex̂∼paug(· | x) a
L(x̂; w)) =

=sm( Ex̂∼paug(· | x) θ
TaL(x̂; w)). (8)

An important difference is that MeTTA allows us to im-
prove not only the final predictions but also representations,
that can widen the scope of applications for ensembling
techniques.

The evaluation on a classification task serves as a sanity
check for the MeTTA, as the regular TTA performs (roughly)
the same. But, as we will highlight in the next section there
are successful use cases of MeTTA-like method in image
retrieval.

4. Related Work
The main goal of this work is to draw the attention of en-
sembling and uncertainty estimation communities to the

Figure 2. Jittering of supervised ResNet50 prediction depending
on a random sample of augmentation.

research on ensembling for enhancing the quality of repre-
sentations.

Ensembles of representations have been used for image
retrieval for a while. Specifically, aggregated multi-scale
representations, is used to average representations of an
image at multiple scales (Gordo et al., 2017; Radenović
et al., 2018)4. Aggregated multi-scale representations is the
successful use-cases of using a MeTTA-like method. It also
shows that we might need different augmentation policies
depending on a specific application.

Invariant DNNs heavily exploit the idea of using data aug-

4Code that uses multi-scale representations for image
retrival https://github.com/filipradenovic/
cnnimageretrieval-pytorch/blob/master/
cirtorch/examples/test.py#L53

https://github.com/filipradenovic/cnnimageretrieval-pytorch/blob/master/cirtorch/examples/test.py#L53
https://github.com/filipradenovic/cnnimageretrieval-pytorch/blob/master/cirtorch/examples/test.py#L53
https://github.com/filipradenovic/cnnimageretrieval-pytorch/blob/master/cirtorch/examples/test.py#L53
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mentations to develop invariant representations. Specifically,
TI-Pooling (Laptev et al., 2016) computes the network pre-
dictions for multiple data augmentations in order to pool
transformation-invariant features. The difference is that it
does so during both training and inference, which makes its
training step more expensive compared to MeTTA.

Independently, the idea of averaging representations has
been proposed in Section 4 of (Foster et al., 2020). The
proposed methods are identical, and share some motivation
points e.g., a transformation invariant propriety. Theoretical
explanations differ, and are complementary to each other
e.g., we used lower-bound to motivate not using MeTTA
during training, while Foster et al. (2020) provides a nice
intuitive motivation. This work also contains experiments
with large-scale self-supervised models.

5. Conclusion and Open Directions
We introduce MeTTA, a technique that uses a test-time aug-
mentation ensemble in order to improve the representations
quality. MeTTA improves the performance of both super-
vised and self-supervised features evaluated with linear eval-
uation benchmark. We also find that similar techniques have
been used in image retrieval (Gordo et al., 2017; Radenović
et al., 2018), as well as similar ideas were used to learn
feature invariant networks (Laptev et al., 2016).

MeTTA-like methods can be potentially applied to many
problems, but one should be aware of the following pitfalls:

i) MeTTA for spatial features, that occur in problems like
detection or segmentation, needs special averaging that
accounts for offsets of crops and other deformations;

ii) The conventional data augmentation will not, most
likely, fit for any problem. For example, we found that
the conventional resize-randomcrop-flip augmentation
hurts performance of image retrieval systems, whereas
a widely used handcrafted multi-scale ”augmentation”
improves it. In general, the issue can be resolved with
a policy search for (test-time) data augmentation (Lim
et al., 2019; Molchanov et al., 2020; Kim et al., 2020;
Shanmugam et al., 2020).

There are the following perspectives for the usage of deep
ensembles to inference better embeddings:

i) One way is to synchronize embedding spaces between
different models. As all predictions in deep ensembles
are synchronized by the same ground truth, so we can
average predictions. There are many known tricks
that can be used for synchronization, e.g., contrastive
losses (Chen et al., 2020; He et al., 2020). This is still
an open direction.

ii) The another way is to construct or learn an aggregation
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Figure 3. Negative log-likelihood (top) and accuracy (bottom) for
linearly interpolated embeddings of the form (1− α) · x+ α · y,
where x is the mean embedding, and y is the central-crop embed-
ding for blue and an embeddings of an individual augmentation for
orange. Metrics for each step size α are averaged over validation
images for both curves and additionally over different augmen-
tations for the orange one. The embeddings are taken from the
ResNet50 (1×, without SK) trained with SimCLRv2.

function for embeddings form non-synchronized net-
works. This, however, will most likely require the use
of additional data, piece-wise training, as well as a the
smart design of the function.

Ti-Pooling can be recognized to do both i) & ii), but it
shares the same weights across all models and train networks
jointly which may hurt the predictive performance (Havasi
et al., 2020).

During a review we received the following question: ”In-
stead of only taking the mean of the embeddings, do you
think it could be useful to also utilize other statistics (e.g.,
the variance)? Does the variance of the embedding relate
to the uncertainty of the prediction?”. We think it is a nice
idea! It might be the way to introduce uncertainty to many
problems.

We believe that spreading the success of ensembles to infer-
ence higher-quality representations is important, and will
allow many new applications of ensembling. MeTTA pro-
vides a small step in this exciting direction.
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