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Abstract

We extend the existing framework of semi-
implicit variational inference (SIVI) and in-
troduce doubly semi-implicit variational in-
ference (DSIVI), a way to perform variational
inference and learning when both the approx-
imate posterior and the prior distribution are
semi-implicit. In other words, DSIVI per-
forms inference in models where the prior
and the posterior can be expressed as an in-
tractable infinite mixture of some analytic
density with a highly flexible implicit mixing
distribution. We provide a sandwich bound
on the evidence lower bound (ELBO) ob-
jective that can be made arbitrarily tight.
Unlike discriminator-based and kernel-based
approaches to implicit variational inference,
DSIVI optimizes a proper lower bound on
ELBO that is asymptotically exact. We eval-
uate DSIVI on a set of problems that benefit
from implicit priors. In particular, we show
that DSIVI gives rise to a simple modifica-
tion of VampPrior, the current state-of-the-
art prior for variational autoencoders, which
improves its performance.

1 INTRODUCTION

Bayesian inference is an important tool in machine
learning. It provides a principled way to reason about
uncertainty in parameters or hidden representations.
In recent years, there has been great progress in scal-
able Bayesian methods, which made it possible to
perform approximate inference for large-scale datasets
and deep learning models.
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One of such methods is variational inference (VI) [3],
which is an optimization-based approach. Given a
probabilistic model p(x, z) = p(x | z)p(z), where x are
observed data and z are latent variables, VI seeks to
maximize the evidence lower bound (ELBO).

L(φ) = Eqφ(z)[log p(x | z)]−KL(qφ(z) ‖ p(z)), (1)

where qφ(z) approximates the intractable true poste-
rior distribution p(z |x). The parametric approxima-
tion family for qφ is chosen in such a way, that we can
efficiently estimate L(φ) and its gradients w.r.t. φ.

Such approximations to the true posterior are often
too simplistic. There exists a variety of ways to ex-
tend the variational family to mitigate this. They can
be divided roughly into two main groups: those that
require the probability density function of the approx-
imate posterior to be analytically tractable (which we
will call explicit models) [30, 12, 9, 5, 36, 38, 6, 27, 20]
and those that do not (implicit models) [11, 22, 37, 17,
21, 31, 40]. For latter, we only assume that it is pos-
sible to sample from such distributions, whereas the
density may be inaccessible.

Not only approximate posteriors but also priors in such
models are often chosen to be very simple to make
computations tractable. This can lead to overregular-
ization and poor hidden representations in generative
models such as variational autoencoders (VAE, [15])
[10, 35, 1]. In Bayesian neural networks, a standard
normal prior is the default choice, but together with
the mean field posterior, it can lead to overpruning
and consequently underfitting [39]. To overcome such
problem in practice, one usually scales the KL diver-
gence term in the expression for ELBO or truncates
the variances of the approximate posterior [24, 19, 18].

Another way to overcome this problem is to consider
more complicated prior distributions, e.g. implicit pri-
ors. For example, hierarchical priors usually impose an
implicit marginal prior when hyperparameters are in-
tegrated out. To perform inference in such models,
one often resorts to joint inference over both param-
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eters and hyperparameters, even though we are only
interested in the marginal posterior over parameters of
the model. Another example of implicit prior distribu-
tions is the optimal prior for variational autoencoders.
It can be shown that the aggregated posterior distri-
bution is the optimal prior for VAE [10], and it can be
regarded as an implicit distribution. The VampPrior
model [35] approximates this implicit prior using an
explicit discrete mixture of Gaussian posteriors. How-
ever, this model can be further improved if we consider
an arbitrary trainable semi-implicit prior.

In this paper, we extend the recently proposed frame-
work of semi-implicit variational inference (SIVI) [40]
and consider priors and posteriors that are defined
as semi-implicit distributions. By “semi-implicit” we
mean distributions that do not have a tractable PDF
(i.e. implicit), but that can be represented as a mix-
ture of some analytically tractable density with a flex-
ible mixing distribution, either explicit or implicit.

Our contributions can be summarized as follows.
Firstly, we prove that the SIVI objective is actually
a lower bound on the true ELBO, which allows us
to sandwich the ELBO between an upper bound and
a lower bound which are both asymptotically exact.
Secondly, we propose doubly semi-implicit variational
inference (DSIVI), a general-purpose framework for
variational inference and variational learning in the
case when both the posterior and the prior are semi-
implicit. We construct a SIVI-inspired asymptotically
exact lower bound on the ELBO for this case, and use
the variational representation of the KL divergence to
obtain the upper bound. Finally, we consider a wide
range of applications where semi-implicit distributions
naturally arise, and show how the use of DSIVI in these
settings is beneficial.

2 PRELIMINARIES

Consider a probabilistic model defined by its joint dis-
tribution p(x, z) = p(x | z)p(z), where variables x are
observed, and z are the latent variables. Variational
inference is a family of methods that approximate
the intractable posterior distribution p(z |x) with a
tractable parametric distribution qφ(z). To do so, VI
methods maximize the evidence lower bound (ELBO):

log p(x) ≥ L(φ) = Eqφ(z) log
p(x | z)p(z)
qφ(z)

→ max
φ

.

(2)
The maximum of the evidence lower bound cor-
responds to the minimum of the KL-divergence
KL(qφ(z) ‖ p(z |x)) between the variational distribu-
tion qφ(z) and the exact posterior p(z |x). In the more
general variational learning setting, the prior distribu-
tion may also be a parametric distribution pθ(z) [11].

In this case, one would optimize the ELBO w.r.t. both
the variational parameters φ and the prior parameters
θ, thus performing approximate maximization of the
marginal likelihood p(x | θ).

The common way to estimate the gradient of this ob-
jective is to use the reparameterization trick [15]. The
reparameterization trick recasts the sampling from the
parametric distribution qφ(z) as the sampling of non-
parametric noise ε ∼ p(ε), followed by a deterministic
parametric transformation z = f(ε, φ). Still, such gra-
dient estimator requires log-densities of both the prior
distribution p(z) and the approximate posterior qφ(z)
in closed form. Several methods have been proposed
to overcome this limitation [27, 21, 31]. However, such
methods usually provide a biased estimate of the evi-
dence lower bound with no practical way of estimating
the introduced bias.

The reparameterizable distributions with no closed-
form densities are usually referred to as implicit distri-
butions. In this paper we consider the so-called semi-
implicit distributions that are defined as an implicit
mixture of explicit conditional distributions:

qφ(z) =

∫
qφ(z |ψ)qφ(ψ) dψ. (3)

Here, the conditional distribution qφ(z |ψ) is explicit.
However, when its condition ψ follows an implicit dis-
tribution qφ(ψ), the resulting marginal distribution
qφ(z) is implicit. We will refer to qφ(ψ) as the mixing
distribution, and to ψ as the mixing variables.

Note that we may easily sample from semi-implicit dis-
tributions: in order to sample z from qφ(z), we need
to first sample the mixing variable ψ ∼ qφ(ψ), and
then sample z from the conditional qφ(z |ψ). Fur-
ther in the text, we will assume this sampling scheme
when using expectations Ez∼qφ(z) over semi-implicit
distributions. Also note that an arbitrary implicit dis-
tribution can be represented in a semi-implicit form:
qφ(z) =

∫
δ(z − z′)qφ(z′) dz′.

3 RELATED WORK

There are several approaches to inference and learning
in models with implicit distributions.

One approach is commonly referred to as hierarchi-
cal variational inference or auxiliary variable models.
It allows for inference with implicit approximate pos-
teriors qφ(z) that can be represented as a marginal
distribution of an explicit joint distribution qφ(z) =∫
qφ(z, ψ) dψ. The ELBO is then bounded from below

using a reverse variational model rω(ψ | z) ≈ qφ(ψ | z)
[27, 29, 19]. This method does not allow for implicit
prior distributions, requires access to the explicit joint
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density qφ(z, ψ) and has no way to estimate the in-
creased inference gap, introduced by the imperfect re-
verse model. However, recently proposed deep weight
prior [2] provides a new lower bound, suitable for learn-
ing hierarchical priors in a similar fashion.

Another family of models uses an optimal discrimina-
tor to estimate the ratio of implicit densities r(z) =
qφ(z)
pθ(z)

[21, 22, 11]. This is the most general approach

to inference and learning with implicit distributions,
but it also optimizes a biased surrogate ELBO, and
the induced bias cannot be estimated. Also, different
authors report that the performance of this approach
is poor if the dimensionality of the implicit densities is
high [32, 37]. This is the only approach that allows to
perform variational learning (learning the parameters
θ of the prior distribution pθ(z)). However, it is non-
trivial and requires differentiation through a series of
SGD updates. This approach has not been validated
in practice yet and has only been proposed as a theo-
retical concept [11]. On the contrary, DSIVI provides a
lower bound that can be directly optimized w.r.t. both
the variational parameters φ and the prior parameters
θ, naturally enabling variational learning.

Kernel implicit variational inference (KIVI) [31] is an-
other approach that uses kernelized ridge regression
to approximate the density ratio. It is reported to be
more stable than the discriminator-based approaches,
as the proposed density ratio estimator can be com-
puted in closed form. Still, this procedure introduces
a bias that is not addressed. Also, KIVI relies on adap-
tive contrast that does not allow for implicit prior dis-
tributions [21, 31].

There are also alternative formulations of variational
inference that are based on different divergences. One
example is operator variational inference [26] that uses
the Langevin-Stein operator to design a new varia-
tional objective. Although it allows for arbitrary im-
plicit posterior approximations, the prior distribution
has to be explicit.

4 DOUBLY SEMI-IMPLICIT
VARIATIONAL INFERENCE

In this section, we will describe semi-implicit varia-
tional inference, study its properties, and then extend
it for the case of semi-implicit prior distributions.

4.1 Semi-Implicit Variational Inference

Semi-implicit variational inference [40] considers mod-
els with an explicit joint distribution p(x, z) and a
semi-implicit approximate posterior qφ(z), as defined
in Eq. (3). The basic idea of semi-implicit variational

inference is to approximate the semi-implicit approxi-
mate posterior with a finite mixture:

qφ(z) =

∫
qφ(z |ψ)qφ(ψ) dψ ≈

≈ 1

K

K∑
k=1

qφ(z |ψk), ψk ∼ qφ(ψ).

(4)

SIVI provides an upper bound LqK ≥ L
q

K+1 ≥ L, and
a surrogate objective LqK that both converge to ELBO

as K goes to infinity (Lq∞ = Lq∞ = L):

LqK = Eqφ(z) log p(x | z)p(z)− (5)

− Eψ0..K∼qφ(ψ)Ez∼qφ(z |ψ0) log
1

K

K∑
k=1

qφ(z |ψk),

LqK = Eqφ(z) log p(x | z)p(z)− (6)

− Eψ0..K∼qφ(ψ)Ez∼qφ(z |ψ0) log
1

K + 1

K∑
k=0

qφ(z |ψk).

The surrogate objective LqK is then used for optimiza-
tion.

4.2 SIVI Lower Bound

Although it was shown that Lq0 is a lower bound for
ELBO, it has not been clear whether this holds for
arbitrary K, and whether maximizing LqK leads to a
correct procedure. Here, we show that LqK is indeed a
lower bound on ELBO L.

Theorem 1. Consider L and LqK defined as in Eq. (2)
and (6). Then LqK converges to L from below as K →
∞, satisfying LqK ≤ L

q
K+1 ≤ L, and

LqK = Eψ0..K∼qφ(ψ)EqKφ (z |ψ0..K) log
p(x | z)p(z)
qKφ (z |ψ0..K)

, (7)

where qKφ (z |ψ0..K) =
1

K + 1

K∑
k=0

qφ(z |ψk). (8)

The proof can be found in Appendix A.

It can be seen from Eq. (7) that the surrogate objective
LqK proposed by [40] is actually the ELBO for a finite
mixture approximation qKφ (z |ψ0, . . . , ψK), that is av-
eraged over all such mixtures (averaged over samples
of ψ0, . . . , ψK ∼ qφ(ψ)).

4.3 Semi-Implicit Priors

Inspired by the derivation of the SIVI upper bound, we
can derive the lower bound LpK for the case of semi-
implicit prior distributions. Right now, for simplicity,
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assume an explicit approximate posterior qφ(z), and a
semi-implicit prior pθ(z) =

∫
pθ(z|ζ)pθ(ζ) dζ

LpK = Eqφ(z) log p(x | z)−

− Eζ1..K∼pθ(ζ)Eqφ(z) log
qφ(z)

1
K

∑K
k=1 pθ(z | ζk)

,
(9)

LpK ≤ L
p
K+1 ≤ L

p
∞ = L. (10)

This bound has the same properties: it is non-
decreasing in K and is asymptotically exact. To see
why LpK ≤ L, one just needs to apply the Jensen’s
inequality for the logarithm:

Eζ1..K∼pθ(ζ)Eqφ(z) log
1

K

K∑
k=1

pθ(z | ζk) ≤

≤ Eqφ(z) logEζ1..K∼pθ(ζ)
1

K

K∑
k=1

pθ(z | ζk) =

= Eqφ(z) log pθ(z).

(11)

To show that this bound is non-decreasing in K, one
can refer to the proof of proposition 3 in the SIVI paper
[40, Appendix A].

Note that it is no longer possible to use the same trick
to obtain the upper bound. Still, we can obtain an
upper bound using the variational representation of
the KL-divergence [25]:

KL(qφ(z) ‖ pθ(z)) =

= 1 + sup
g:dom z→R

{
Eqφ(z)g(z)− Epθ(z)e

g(z)
}
≥

≥ 1 + sup
η

{
Eqφ(z)g(z, η)− Epθ(z)e

g(z,η)
}
,

(12)

Lpη = Eqφ(z) log p(x | z)−
− 1− Eqφ(z)g(z, η) + Epθ(z)e

g(z,η).
(13)

Here we substitute the maximization over all functions
with a single parametric function. In order to obtain a
tighter bound, we can minimize this bound w.r.t. the
parameters η of function g(z, η).

Note that in order to find the optimal value for η,
one does not need to estimate the entropy term or the
likelihood term of the objective:

η∗ = arg min
η

[
−Eqφ(z)g(z, η) + Epθ(z)e

g(z,η)
]
. (14)

This allows us to obtain a lower bound on the KL-
divergence between two arbitrary (semi-)implicit dis-
tributions, and, consequently, results in an upper
bound on the ELBO.

4.4 Final Objective

We can combine the bounds for the semi-implicit pos-
terior and the semi-implicit prior to obtain the final

lower bound

Lq,p
K1,K2

= Eqφ(z) log p(x | z)−

− Eψ0..K1∼qφ(ψ)Eqφ(z |ψ0) log
1

K1 + 1

K1∑
k=0

qφ(z |ψk)+

+ Eζ1..K2∼pθ(ζ)Eqφ(z) log
1

K2

K2∑
k=1

pθ(z | ζk), (15)

and the upper bound

Lq,pη =Eqφ(z) log p(x | z)−

− 1− Eqφ(z)g(z, η) + Epθ(z)e
g(z,η).

(16)

The lower bound Lq,p
K1,K2

is non-decreasing in both K1

and K2, and is asymptotically exact:

Lq,p
K1,K2

≤ Lq,p
K1+1,K2

, Lq,p
K1,K2

≤ Lq,p
K1,K2+1

, (17)

lim
K1,K2→∞

Lq,p
K1,K2

= L. (18)

We use the lower bound for optimization, whereas the
upper bound may be used to estimate the gap between
the lower bound and the true ELBO. The final algo-
rithm for DSIVI is presented in Algorithm 1. Unless
stated otherwise, we use 1 MC sample to estimate the
gradients of the lower bound (see Algorithm 1 for more
details). In the case where the prior distribution is
explicit, one may resort to the upper bound LqK , pro-
posed in SIVI [40].

5 APPLICATIONS

In this section we describe several settings that can
benefit from semi-implicit prior distributions.

5.1 VAE with Semi-Implicit Priors

The default choice of the prior distribution p(z) for
the VAE model is the standard Gaussian distribution.
However, such choice is known to over-regularize the
model [35, 8].

It can be shown that the so-called aggregated posterior
distribution is the optimal prior distribution for a VAE
in terms of the value of ELBO [10, 35]:

p∗(z) =
1

N

N∑
n=1

qφ(z |xn), (19)

where the summation is over all training samples xn,
n = 1, . . . , N . However, this extreme case leads to
overfitting [10, 35], and is highly computationally in-
efficient. A possible middle ground is to consider
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Algorithm 1 Doubly semi-implicit VI (and learning)

Require: SI posterior qφ(z) =
∫
qφ(z |ψ)qφ(ψ) dψ

Require: SI prior pθ(z) =
∫
pθ(z | ζ)pθ(ζ) dζ

Require: explicit log-likelihood log p(x | z)
Variational inference (find φ) and learning (find θ)
for t← 1 to T do

ψ0, . . . , ψK1 ∼ qφ(ψ) . Reparameterization
ζ1, . . . , ζK2 ∼ pθ(ζ) . Reparameterization
z ∼ qφ(z |ψ0) . Reparameterization
Estimate LLH ' log p(x | z)
LE ← − log 1

K1+1

∑K1

k=0 qφ(z |ψk)

LCE ← − log 1
K2

∑K2

k=1 pθ(z | ζk)

L̂
q,p

K1,K2
← LLH + LE − LCE

Use ∇φL̂
q,p

K1,K2
to update φ

if Variational learning then
Use ∇θL̂

q,p

K1,K2
to update θ

end if
end for
Upper bound
for t← 1 to T do

z ∼ qφ(z) . Reparameterization
z′ ∼ pθ(z) . Reparameterization
L← −g(z, η) + eg(z

′,η)

Use −∇ηL to update η
end for
Estimate Lq,p

K1,K2
and Lq,pη using Eq. (15) and (16)

return φ, θ, η,Lq,p
K1,K2

,Lq,pη

the variational mixture of posteriors prior distribution
(the VampPrior) [35]:

pV amp(z) =
1

K

K∑
k=1

qφ(z |uk). (20)

The VampPrior is defined as a mixture of K varia-
tional posteriors qφ(z |uk) for a set of inducing points
{uk}Kk=1. These inducing points may be learnable (an
ordinary VampPrior) or fixed at a random subset of
the training data (VampPrior-data). The VampPrior
battles over-regularization by considering a flexible
empirical prior distribution, being a mixture of fully-
factorized Gaussians, and by coupling the parameters
of the prior distribution and the variational posteriors.

There are two ways to improve this technique by using
DSIVI. We can regard the aggregated posterior p∗(z)
as a semi-implicit distribution:

p∗(z) =
1

N

N∑
n=1

qφ(z|xn) =

∫
qφ(z|x)pdata(x)dx. (21)

Next, we can use it as a semi-implicit prior and exploit

the lower bound, presented in Section 4.3:

LpK =
1

N

N∑
n=1

Eqφ(z | xn)
[
log

p(xn | z)
qφ(z |xn)

+

+Eu1..K∼pdata(x) log
1

K

K∑
k=1

qφ(z |uk)

]
.

(22)

Note that the only difference from the training objec-
tive of VampPrior-data is that the inducing points uk
are not fixed, but are resampled at each estimation of
the lower bound. As we show in the experiments, such
reformulation of VampPrior-data drastically improves
its test log-likelihood.

We can also consider an arbitrary semi-implicit prior
distribution:

pSIθ (z) =

∫
pθ(z | ζ)pθ(ζ) dζ. (23)

For example, we consider a fully-factorized Gaussian
conditional prior pθ(z | ζ) = N (z | ζ,diag(σ2)) with
mean ζ and trainable variances σ2

j . The implicit gen-
erator pθ(ζ) can be parameterized by an arbitrary neu-
ral network with weights θ that transforms a standard
Gaussian noise ε to mixing parameters ζ. As we show
in the experiments, such semi-implicit posterior out-
performs VampPrior even though it does not couple
the parameters of the prior and the variational poste-
riors.

We can also apply the importance-weighted lower
bound [4] similarly to the importance weighted
SIVAE [40], and obtain IW-DSIVAE, a lower bound
on the IWAE objective for a variational autoencoder
with a semi-implicit prior and a semi-implicit poste-
rior. The exact expression for this lower bound is pre-
sented in Appendix B.

5.2 Variational Inference with Hierarchical
Priors

A lot of probabilistic models use hierarchical prior dis-
tributions: instead of a non-parametric prior p(w) they
use a parametric conditional prior p(w |α) with hyper-
parameters α, and a hyperprior over these parameters
p(α). A discriminative model with such hierarchical
prior may be defined as follows [23, 33, 34, 7, 31, 18]:

p(t, w, α |x) = p(t |x,w)p(w |α)p(α). (24)

A common way to perform inference in such mod-
els is to approximate the joint posterior qφ(w,α) ≈
p(w,α |Xtr, Ttr) given the training data (Xtr, Ttr) [7,
31, 18]. Then the marginal approximate posterior
qφ(w) =

∫
qφ(w,α) dα is used to approximate the pre-
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dictive distribution on unseen data p(t |x,Xtr, Ttr):

p(t |x,Xtr, Ttr) =

∫
p(t |x,w)p(w |Xtr, Ttr) dw =

=

∫
p(t |x,w)

∫
p(w,α |Xtr, Ttr) dα dw ≈

≈
∫
p(t |x,w)

∫
qφ(w,α)dα dw =

=

∫
p(t |x,w)qφ(w) dw.

(25)
The inference is performed by maximization of the fol-
lowing variational lower bound:

Ljoint(φ) = Eqφ(w,α) log
p(t |x,w)p(w |α)p(α)

qφ(w,α)
. (26)

We actually are not interested in the joint posterior
qφ(w,α), and we only need it to obtain the marginal
posterior qφ(w). In this case we can reformulate the
problem as variational inference with a semi-implicit
prior p(w) =

∫
p(w |α)p(α) dα and a semi-implicit

posterior qφ(w) =
∫
qφ(w |α)qφ(α) dα:

Lmarginal(φ) = Eqφ(w) log
p(t |x,w)p(w)

qφ(w)
. (27)

Then it can be shown that optimization of the second
objective results in a better fit of the marginal poste-
rior:

Theorem 2. Let φj and φm maximize Ljoint and
Lmarginal correspondingly. Then

KL(qφm(w) ‖ p(w |Xtr, Ttr)) ≤
KL( qφj (w) ‖ p(w |Xtr, Ttr)). (28)

The proof can be found in Appendix C.

It means that if the likelihood function does not de-
pend on the hyperparameters α, it is beneficial to
consider the semi-implicit formulation instead of the
joint formulation of variational inference even if the
approximation family stays exactly the same. In the
experiments, we show that the proposed DSIVI proce-
dure matches the performance of direct optimization
of Lmarginal, whereas joint VI performs much worse.

6 EXPERIMENTS

6.1 Variational Inference with Hierarchical
Priors

We consider a Bayesian neural network with a fully-
factorized hierarchical prior distribution with a Gaus-
sian conditional p(wij |αij) = N (wij | 0, α−1ij ) and a
Gamma hyperprior over the inverse variances p(αij) =

Gamma(αij | 0.5, 2). Such hierarchical prior induces
a fully-factorized Student’s t-distribution with one
degree of freedom as the marginal prior p(wij) =
t(wij | ν = 1). Note that in this case, we can esti-
mate the marginal evidence lower bound directly. We
consider a fully-connected neural network with two
hidden layers of 300 and 100 neurons on the MNIST
dataset [16]. We train all methods with the same hy-
perparameters: we use batch size 200, use Adam opti-
mizer [13] with default parameters, starting with learn-
ing rate 10−3, and train for 200 epochs, using linear
learning rate decay.

We consider three different ways to perform inference
in this model, the marginal inference, the joint infer-
ence, and DSIVI, as described in Section 5.2. For joint
inference, we consider a fully-factorized joint approx-
imate posterior qφ(w,α) = qφ(w)qφ(α), with qφ(w)
being a fully-factorized Gaussian, and qφ(α) being a
fully-factorized Log-Normal distribution. Such joint
approximate posterior induces a fully-factorized Gaus-
sian marginal posterior qφ(w). Therefore, we use a
fully-factorized Gaussian posterior for the marginal
inference and DSIVI. Note that in this case, only
the prior distribution is semi-implicit. All models
have been trained with the local reparameterization
trick [14].

We perform inference using these three different varia-
tional objectives, and then compare the true evidence
lower bound Lmarginal on the training set. As the
marginal variational approximation is the same in all
four cases, the training ELBO can act as a proxy met-
ric for the KL-divergence between the marginal ap-
proximate posterior and the true marginal posterior.
The results are presented in Figure 1. DSIVI with
as low as K = 10 samples during training exactly
matches the performance of the true marginal varia-
tional inference, whereas other approximations fall far
behind. All three methods achieve 97.7−98.0% test set
accuracy, and the test log-likelihood is approximately
the same for all methods, ranging from −830 to −855.
However, the difference in the marginal ELBO is high.
The final values of the ELBO, its decomposition into
train log-likelihood and the KL term, and the test log-
likelihood are presented in Table 2 in Appendix C.

6.2 Comparison to Alternatives

We compare DSIVI to other methods for implicit VI on
a toy problem of approximating a centered standard
Student’s t-distribution p(z) with 1 degrees of free-
dom with a Laplace distribution qφ(z) by represent-
ing them as scale mixtures of Gaussians. Namely, we
represent p(z) =

∫
N (z | 0, α−1)Gamma(α | 0.5, 2) dα,

and qφ(z) =
∫
N (z |µ, τ)Exp(τ |λ) dτ . We train all

methods by minimizing the corresponding approxima-
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Figure 1: Variational inference with a hierarchical prior.
Models are trained using different variational objectives.
The estimates of the marginal evidence lower bound are
presented in this plot.

tions to the KL-divergence KL(qφ(z) ‖ p(z)) w.r.t. the
parameters µ and λ of the approximation qφ(z).

As baselines, we use prior methods for implicit VI:
Adversarial Variational Bayes (AVB) [21], which is a
discriminator-based method, and Kernel Implicit Vari-
ational Inference (KIVI) [31]. For AVB we fix ar-
chitecture of the “discriminator” neural network to
have 2 hidden layers with 3 and 4 hidden units with
LeakyReLU (α = 0.2) activation, and for KIVI we use
fixed λ = 0.001 with varying number of samples. For
AVB we tried different numbers of training samples
and optimization steps to optimize the discriminator
at each step of optimizing over φ. We used Adam op-
timizer with learning rate 10−2 and one MC sample to
estimate gradients w.r.t. φ.

We report the KL-divergence KL(qφ(z) ‖ p(z)), esti-
mated using 10000 MC samples averaged over 10 runs.
The results are presented in Figure 2. DSIVI converges
faster, is more stable, and only has one hyperparame-
ter, the number of samples K in the DSIVI objective.

6.3 Sequential Approximation

We illustrate the expressiveness of DSIVI with im-
plicit prior and posterior distributions on the following
toy problem. Consider an explicit distribution p(z).
We would like to learn a semi-implicit distribution
qφ1

(z) = Eqφ1 (ψ)[qφ1
(z |ψ)] to match p(z). During the

first step, we apply DSIVI to tune the parameters φ1
so as to minimize KL(qφ1

(z) ‖ p(z)). Then, we take
the trained semi-implicit qφ1(z) as a new target for z
and tune φ2 minimizing KL(qφ2(z) ‖ qφ1(z)). After we
repeat the iterative process k times, qφk(z) obtained
through minimization of KL(qφk(z) ‖ qφk−1

(z)) should
still match p(z).
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AVB 1b50
AVB 3b10
DSIVI 10
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Figure 2: Comparison of different techniques for
(semi-)implicit VI. “KIVI K” corresponds to KIVI, K be-
ing the number of MC samples, used to approximate KL
divergence; “DSIVI K” corresponds to DSIVI with K=K ;
“AVB MbK” corresponds to AVB with M updates of dis-
criminator per one update of φ and K MC samples to esti-
mate the discriminator’s gradients. “MC KL” corresponds
to direct stochastic minimization of the KL divergence.

In our experiments, we follow [40] and model
qφi(ψ) by a multi-layer perceptron (MLP) with layer
widths [30,60,30] with ReLU activations and a ten-
dimensional standard normal noise as its input. We
also fix all conditionals qφi(z |ψ) = N (z |ψ, σ2I), σ2 =
0.1. We choose p(z) to be either a one-dimensional
mixture of Gaussians or a two-dimensional “ba-
nana” distribution. In Figure 3 we plot values of
KL(qφi(z) ‖ p(z)), i = 1, . . . , 9 for different values of
K1 = K2 = K (see Algorithm 1) when p(z) is a one-
dimensional mixture of Gaussians (see Appendix D for
a detailed description and additional plots). In Fig-
ure 4 we plot the approximate PDF of qφk(z) after 9
steps for different values of K. As we can see, even
though both “prior” and “posterior” distributions are
semi-implicit, the algorithm can still accurately learn
the original target distribution after several iterations.

6.4 VAE with Semi-Implicit Optimal Prior

We follow the same experimental setup and use the
same hyperparameters, as suggested for VampPrior
[35]. We consider two architectures, the VAE and
the HVAE (hierarchical VAE, [35]), applied to the
MNIST dataset with dynamic binarization [28]. In
both cases, all distributions (except the prior) have
been modeled by fully-factorized neural networks with
two hidden layers of 300 hidden units each. We used
40-dimensional latent vectors z (40-dimensional z1 and
z2 for HVAE) and Bernoulli likelihood with dynamic
binarization for the MNIST dataset. As suggested
in the VampPrior paper, we used 500 pseudo-inputs
for VampPrior-based models in all cases (higher num-
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Figure 3: Sequential approximation. Area is shaded be-
tween lower and upper bounds of KL(qφi(z) ‖ p(z)) for dif-
ferent training values of K1 = K2 = K, and the solid lines
represent the corresponding upper bounds. During eval-
uation, K = 104 is used. Here p(z) is a one dimensional
Gaussian mixture (see Appendix D for details.) Lower is
better.

Table 1: We compare VampPrior with its semi-implicit
modifications, DSIVI-agg and DSIVI-prior. We report the
the IWAE objective LS for VampPrior-data, and the corre-
sponding lower bound Lp,SK for DSIVI-based methods (see
Appendix B). Only the prior distribution is semi-implicit.

Method LL
VAE+VampPrior-data −85.05
VAE+VampPrior −82.38
VAE+DSIVI-prior (K=2000) ≥ −82.27
VAE+DSIVI-agg (K=500) ≥ −83.02
VAE+DSIVI-agg (K=5000) ≥ −82.16
HVAE+VampPrior-data −81.71
HVAE+VampPrior −81.24
HVAE+DSIVI-agg (K=5000) ≥ −81.09

ber of pseudo-inputs led to overfitting). To measure
the performance of all models, we bound the test
log-likelihood with the IWAE objective [4] with 5000
samples for the VampPrior-based methods, and esti-
mate the corresponding IW-DSIVAE lower bound with
K = 20000 for the DSIVI-based methods (see Ap-
pendix B for more details).

We consider two formulations, described in Section 5.1:
DSIVI-agg stands for the semi-implicit formulation of
the aggregated posterior (21), and DSIVI-prior stands
for a general semi-implicit prior (23). For the DSIVI-
prior we have used a fully-factorized Gaussian condi-
tional p(z | ζ) = N (z | ζ,diag(σ2)), where the mixing
parameters ζ are the output of a fully-connected neu-
ral network with two hidden layers with 300 and 600
hidden units respectively, applied to a 300-dimensional
standard Gaussian noise ε. The first and second hid-

5 0 5
0.000

0.175

0.350
K = 100

5 0 5
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Figure 4: Learned probability distributions qφk (z) after 9
iterations of sequential approximation for K1 = K2 = 100
and 1000 (red), and the two original priors p(z) (black).
During evaluation, K = 104.

den layers were followed by ReLU non-linearities, and
no non-linearities were applied to obtain ζ. We did
not use warm-up [35] with DSIVI-prior.

The results are presented in Table 1. DSIVI-agg is
a simple modification of VampPrior-data that sig-
nificantly improves the test log-likelihood, and even
outperforms the VampPrior with trained inducing in-
puts. DSIVI-prior outperforms VampPrior even with-
out warm-up and without coupling the parameters of
the prior and the variational posteriors.

7 CONCLUSION

We have presented DSIVI, a general-purpose frame-
work that allows to perform variational inference and
variational learning when both the approximate pos-
terior distribution and the prior distribution are semi-
implicit. DSIVI provides an asymptotically exact
lower bound on the ELBO, and also an upper bound
that can be made arbitrarily tight. It allows us to
estimate the ELBO in any model with semi-implicit
distributions, which was not the case for other meth-
ods. We have shown the effectiveness of DSIVI applied
to a range of problems, e.g. models with hierarchical
priors and variational autoencoders with semi-implicit
empirical priors. In particular, we show how DSIVI-
based treatment improves the performance of Vamp-
Prior, the current state-of-the-art prior distribution for
VAE.
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A Proof of the SIVI Lower Bound for
Semi-Implicit Posteriors

Theorem 1. Consider L and LqK defined as in
Eq. (2) and (6). Then LqK converges to L from be-
low as K → ∞, satisfying LqK ≤ L

q
K+1 ≤ L, and

LqK = Eψ0..K∼qφ(ψ)EqKφ (z |ψ0..K) log
p(x | z)p(z)
qKφ (z |ψ0..K)

,

(29)

where qKφ (z |ψ0..K) =
1

K + 1

K∑
k=0

qφ(z |ψk). (30)

Proof. For brevity, we denote Eψ0..K∼qφ(ψ) as Eψ0..K

and Ez∼qKφ (z |ψ0..K) as Ez |ψ0..K . First, notice that due

to the symmetry in the indices, the regularized lower
bound LqK does not depend on the index in the condi-
tional qφ(z |ψi):

LqK = Eψ0..KEz |ψ0 log
p(x, z)

qKφ (z |ψ0..K)
= (31)

= Eψ0..KEz |ψi log
p(x, z)

qKφ (z |ψ0..K)
. (32)

Therefore, we can rewrite LqK as follows:

LqK =
1

K + 1

K∑
i=0

LqK = (33)

=
1

K + 1

K∑
i=0

Eψ0..KEz |ψi log
p(x, z)

qKφ (z |ψ0..K)
= (34)

= Eψ0..KEz |ψ0..K log
p(x, z)

qKφ (z |ψ0..K)
. (35)

Note that it is just the value of the evidence lower
bound with the approximate posterior qKφ (z |ψ0..K),

averaged over all values of ψ0..K . We can also use that
Eψ0..K qKφ (z |ψ0..K) = qφ(z) to rewrite the true ELBO
in the same expectations:

L = Eqφ(z) log
p(x, z)

qφ(z)
= (36)

= Eψ0..KEz |ψ0..K log
p(x, z)

qφ(z)
. (37)

We want to prove that L ≥ LqK . Consider their differ-
ence L − LqK :

L − LqK = (38)

= Eψ0..KEz |ψ0..K log
qKφ (z |ψ0..K)

qφ(z)
= (39)

= Eψ0..KKL
(
qKφ (z |ψ0..K) ‖ qφ(z)

)
≥ 0. (40)

We can use the same trick to prove that this bound is
non-decreasing in K. First, let’s use the symmetry in
the indices once again, and rewrite LqK and LqK+1 in
the same expectations:

LqK = Eψ0..KEz |ψ0..K log
p(x, z)

qKφ (z |ψ0..K)
= (41)

= Eψ0..K+1Ez |ψ0..K log
p(x, z)

qKφ (z |ψ0..K)
, (42)

LqK+1 = Eψ0..K+1Ez |ψ0 log
p(x, z)

qK+1
φ (z |ψ0..K+1)

= (43)

= Eψ0..K+1Ez |ψ0..K log
p(x, z)

qK+1
φ (z |ψ0..K+1)

. (44)

Then their difference would be equal to the expected
KL-divergence, hence being non-negative:

LqK+1 − L
q
K = (45)

= Eψ0..K+1Ez |ψ0..K log
qKφ (z |ψ0..K)

qK+1
φ (z |ψ0..K+1)

= (46)

= Eψ0..K+1KL
(
qKφ (z |ψ0..K) ‖ qK+1

φ (z |ψ0..K+1))
)

≥ 0.

B Importance Weighted Doubly
Semi-Implicit VAE

The standard importance-weighted lower bound for
VAE is defined as follows:

log p(x) ≥ LS = Ez1..S∼qφ(z) log
1

S

S∑
i=1

p(x | zi)p(zi)
qφ(zi |x)

(47)
We propose IW-DSIVAE, a new lower bound on the
IWAE objective, that is suitable for VAEs with semi-
implicit priors and posteriors:

Lq,p,S
K1,K2

= Eψ1..K1∼qφ(ψ)Eζ1..K2∼pθ(ζ)

[
E(z1,ψ̂1),...,(zS ,ψ̂S)∼qφ(z,ψ)

[
log

1

S

S∑
i=1

p(x | zi) 1
K2

∑K2

k=1 pθ(z
i | ζk)

1
K1+1 (qφ(zi | ψ̂i) +

∑K1

k=1 qφ(zi |ψk))

]]
.

(48)

This objective is a lower bound on the IWAE objective
(Lq,p,S

K1,K2
≤ LS), is non-decreasing in both K1 and K2,

and is asymptotically exact (Lq,p,S∞,∞ = LS).
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C Variational inference with
hierarchical priors

Theorem 2. Consider two different variational objec-
tives Ljoint and Lmarginal. Then

Ljoint(φ) = Eqφ(w,α) log
p(t |x,w)p(w |α)p(α)

qφ(w,α)
(49)

Lmarginal(φ) = Eqφ(w) log
p(t |x,w)p(w)

qφ(w)
(50)

Let φj and φm maximize Ljoint and Lmarginal cor-
respondingly. Then qφm(w) is a better fit for the
marginal posterior that qφj (w) in terms of the KL-
divergence:

KL(qφm(w) ‖ p(w |Xtr, Ttr)) ≤
KL( qφj (w) ‖ p(w |Xtr, Ttr)) (51)

Proof. Note that maximizing Lmarginal(φ) di-
rectly minimizes KL(qφ(w) ‖ p(w |Xtr, Ttr)), as
Lmarginal(φ) + KL(qφ(w) ‖ p(w |Xtr, Ttr)) = const.
The sought-for inequality (51) then immediately
follows from Lmarginal(φm) ≥ Lmarginal(φj).

To see the cause of this inequality more clearly, con-
sider Ljoint(φ):

Ljoint(φ) = Eqφ(w,α) log
p(t |x,w)p(w |α)p(α)

qφ(w,α)
=

(52)

= Eqφ(w) log p(t |x,w)−KL(qφ(w,α) ‖ p(w,α)) =

(53)

= Eqφ(w) log p(t |x,w)−KL(qφ(w) ‖ p(w))− (54)

− Eqφ(w)KL(qφ(α |w) ‖ p(α |w)) = (55)

= Lmarginal(φ)− Eqφ(w)KL(qφ(α |w) ‖ p(α |w))

(56)

If Ljoint and Lmarginal coincide, the inequality (51)
becomes an equality. However, Ljoint and Lmarginal
only coincide if the reverse posterior qφ(α |w) is an
exact match for the reverse prior p(α |w). Due to the
limitations of the approximation family of the joint
posterior, this is not the case in many practical ap-
plications. In many cases [7, 18] the joint approxi-
mate posterior is modeled as a factorized distribution
qφ(w,α) = qφ(w)qφ(α). Therefore in the case of the
joint variational inference, we optimize a lower bound
on the marginal ELBO and therefore obtain a sub-
optimal approximation.

Table 2: The values of the marginal ELBO, the train
negative log-likelihood, the KL-divergence between the
marginal posterior qφ(w) and the marginal prior pφ(w),
and the test-set accuracy and negative log-likelihood for
different inference procedures for a model with a standard
Student’s prior. The predictive distribution during test-
time was estimated using 200 samples from the marginal
posterior qφ(w)

Train Test
Method ELBO NLL KL Acc. NLL
Marginal −1.42× 105 7.2× 103 1.35× 105 97.80 855
Joint −1.48× 105 6.7× 103 1.42× 105 97.74 831
DSIVI(K=2) −1.47× 105 7.0× 103 1.41× 105 97.75 846
DSIVI(K=10) −1.42× 105 7.2× 103 1.35× 105 97.76 843

D Toy data for sequential
approximation

For sequential approximation toy task, we fol-
low [40] and use the following target distribu-
tions. For one-dimensional Gaussian mixture, p(z) =
0.3N (z | −2, 1) + 0.7N (z | 2, 1). For the “banana” dis-
tribution, p(z1, z2) = N (z1 | z22/4, 1)N (z2 | 0, 4).

For both target distributions, we optimize the objec-
tive using Adam optimizer with initial learning rate
10−2 and decaying it by 0.5 every 500 steps. On
each iteration of sequential approximation, we train
for 5000 steps. We reinitialize all trainable parameters
and optimizer statistics before each iteration. Before
each update of the parameters, we average 200 Monte
Carlo samples of the gradients. During evaluation, we
used 105 Monte Carlo samples to estimate the expec-
tations involved in the lower and upper bounds on KL
divergence.
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Figure 5: Sequential approximation. Area is shaded be-
tween lower and upper bounds of KL(qφi(z) ‖ p(z)) for dif-
ferent training values of K1 = K2 = K, and the solid lines
represent the corresponding upper bounds. During eval-
uation, K = 104 is used. Here p(z) is a two-dimensional
“banana“. Lower is better.
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Figure 6: Learned distributions after each iteration for Gaussian mixture target distribution, K = 100 during training.



Doubly Semi-Implicit Variational Inference

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Iteration 0

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Iteration 1

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Iteration 2

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Iteration 3

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Iteration 4

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Iteration 5

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Iteration 6

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Iteration 7

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Iteration 8

p(z) q i(z) q i(z) samples

Figure 7: Learned distributions after each iteration for Gaussian mixture target distribution, K = 1000 during training.
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Figure 8: Learned distributions after each iteration for “banana” target distribution, K = 100 during training.
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Figure 9: Learned distributions after each iteration for “banana” target distribution, K = 1000 during training.
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