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Abstract. We simulate the drop-chain movement in the two-
dimensional channel using the lattice Boltzmann method coupled with
the Immersed Boundary approach. We choose the asymmetric initial
state of the drop chain to generate drop oscillations and calculate the
wave spectrum. The numerical results coincide qualitatively with the
experimental results obtained in the quasi-two-dimensional microfluidic
device.
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1 Introduction

Microfluidic devices are subject to interdisciplinary studies [5], and investigation
of the fluid dynamics under microfluidic conditions is a challenging problem.
The restricted geometry and inhomogeneity of the complex flow compounds
need careful analysis of the parameter influence on the flow details.

In the paper, we investigate the movement of the chain drop inside the chan-
nel of finite width filled with the liquid. We consider a Poiseuille flow of liquid in
the channel. We use lattice Boltzmann method (LBM) coupled with immersed
boundary (IB) method in simulations. We compare the results of our simula-
tions with the results of the physics experiment in which the behavior of water
droplets in oil in a quasi-two-dimensional flow was studied [2]. In the experiment,
the speed of water droplets due to friction against the upper and lower walls of
the channel is approximately five times less than the average flow speed. In the
experiment with a chain of drops, drops oscillate, and longitudinal and trans-
verse waves appeared. The emergence of waves was explained by the long-range
hydrodynamic interaction of drops with each other. We have to note that the
Reynolds number is very small and equal approximately 10−4.

In some works [8,14,16,21], computer simulation of the one-dimensional
chain of particles or drops motion was carried out.

The work [14] presents the results of numerical integration of the equations
of droplet motion obtained in [2]. They found some difference with the experi-
mental results. Unlike the oscillation spectra of a physical experiment, there is
no straight line in the spectrum since it arises from defects in the channel.
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In the work [8], a computer simulation of the motion of a chain of three-
dimensional drops between two parallel planes is performed. The authors used
the HYDROMULTIPOLE algorithm to expand the flow field into the lateral
Fourier modes in the planes parallel to the walls [1]. They investigated the influ-
ence of deformability of bodies. In contrast with the physical experiment, drops
are not confined but sphere-shaped.

The authors of [21] have found new patterns of collective behavior of parti-
cles in a quasi-two-dimensional problem. The work did not consider the motion
of a one-dimensional chain but used the method of the lattice Boltzmann equa-
tion. The D2Q9 model was used, moving hard disks were simulated via trans-
fer of momentum in the “bounce-back” boundary condition, using a first-order
boundary interpolation method.

In [16] a computer simulation of a chain of drops in a two-dimensional narrow
channel was performed. The droplets are represented as hard disks, and the liquid
is represented by idealized point particles with masses of m. At short distances,
the multi-particle collision dynamics method does not resolve hydrodynamics,
and the WCA potential was used to simulate the interaction of particles with
each other and with the walls. A friction force was applied to the disks in order
to change the two-dimensional formulation to a quasi-two-dimensional one. The
initial coordinates in the chain were set as follows: alternating the y-coordinate
(above the axis/below the axis) and alternating the distances between the centers
of the particles along the X axis. The right particle in a pair moves faster than
the left one; it catches up with the next pair and becomes left. The different
distances along the X axis cause the pairs to re-form, which leads to longitudinal
oscillations. The spectra of the obtained oscillations along the X and Y axes are
similar to the results of [2].

This paper investigates the applicability of the immersed boundary method
combined with the lattice Boltzmann method [6] for simulationof the longitu-
dinal and transverse oscillations arising in a one-dimensional chain of drops.
Unlike other discussed above works [8,14,16], we avoid the introduction of the
effective interaction potentials between particles. The reason is that we would
like to check the natural appearance of the wave spectrum reported in [2] with-
out any assumptions. The second difference from the above-mentioned works is
in the more realistic boundary conditions along the channel, and the Poiseuille
profile is specified along the channel width. We model drops as solid disks, and
the interaction between different drops and between drops and walls is wholly
resolved through the liquid, which is simulated by the lattice Boltzmann method.
Another significant difference is a purely two-dimensional case and the absence
of a friction force acting on the discs from the side of the upper and lower walls.
Because of this, the particles have a speed close to the flow. The spectrum of
the simulated oscillations is compared with the experimental [2] spectrum.
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2 Model and Methods

In this section, we give essentials of the lattice Boltzmann method and immersed
boundary method and the derivation of the forces acting in two-dimension on
the immersed boundary.

2.1 Lattice Boltzmann Method

Discretizing the Boltzmann equation in the space of velocities, coordinates and
time, we obtain the lattice Boltzmann equation [11]:

fi(�x + �ciΔt, t + Δt) = fi(�x, t) + Ωi(�x, t).

According to this expression, (pseudo-) particles fi(�x, t) move with the speed
�ci to the neighboring point �x +�ciΔt in time Δt. At the same time, the particles
are affected by the collision operator Ωi. In this work the collision operator BGK
(Bhatnagar-Gross-Krook) is used:

Ωi(f) = −fi − feq
i

τ
Δt.

The set of velocities and the dimension of the problem determine the
model [11], for example, D2Q9 (Fig. 1a) corresponds to a two-dimensional prob-
lem, where the velocity can be directed from a node to 4 corners of a square,
to 4 midpoints of the sides square, and one does not go out of the node. Model
D3Q19 (Fig. 1b) corresponds to a three-dimensional problem, and the velocities
are set in 19 directions: to 12 midpoints of the edges of the cube, to 6 midpoints
of faces, and one does not leave the node.

The density functions relax to the equilibrium state feq
i at a rate determined

by the relaxation time τ . The equilibrium state is defined as:

feq
i (�x, t) = wiρ

(
1 +

�u · �ci

c2s
+

(�u · �ci)2

c2s
− �u · �u

2c2s

)
, (1)

where the weights wi correspond to a set of velocities. The equilibrium state is
such that its moments are equal to the moments fi, i.e. Σif

eq
i = Σifi = ρ and

Σi�cif
eq
i = ρ�u. This state feq

i depends only on the local density ρ and the flow
rate �u. Calculation formulas: ρ(�x, t) =

∑
i fi(�x, t), ρ�u(�x, t) =

∑
i �cifi(�x, t).

The BGK lattice equation (fully discretized Boltzmann equation with BGK
collision operator) can be written as

fi(x + ciΔt, t + Δt) = fi(x, t) − Δt

τ
(fi(x, t) − feq

i (x, t)).

This equation consists of two separate steps:

1. Collision step

f�
i (x, t) = fi(x, t) − Δt

τ
(fi(x, t) − feq

i (x, t)),
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(a) D2Q9 (b) D3Q19

Fig. 1. Models

Where f�
i represents the density function after collision and feq

i can be found
from fi by the formula (1). A collision can be effectively implemented in the
form:

f�
i (x, t) = fi(x, t)

(
1 − Δt

τ

)
+ feq

i (x, t)
Δt

τ
.

2. Streaming step
fi(�x + �ciΔt, t + Δt) = f�

i (�x, t).

Collision is just local algebraic operations. First, the density ρ and the macro-
scopic velocity �u are calculated in order to find the equilibrium density functions
feq

i by the formula (1) and the post-collision density function f�
i . After the col-

lision, the resulting density function feq
i propagates to neighboring nodes. After

both stages are done, the one-time step has passed, the operations are repeated.

2.2 Immersed Boundary Method

The immersed boundary method is used to simulate moving boundaries, such as
blood cells, bubble dynamics, and many others. Peskin first proposed the method
to simulate blood flow in 1972. Since that time, the method has been utilizes
many times to simulate suspensions: in conjunction with differential schemes of
the Navier-Stokes equation [12,17,20] and with the lattice Boltzmann method
[3,7,10,15,19,22]. We use IB-LBM as it allows to simulate moving solid bodies
and IB-LBM for 3D case is already implemented in Palabos library, in this work
3D case was adapted to 2D problem.

The main idea of the immersed boundary method is to represent the bound-
ary of a body as a set of Lagrangian points, which in the general case do not
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coincide with the Euler lattice sites. The combined IB-LBM approach is an iter-
ative method. At each iteration, the body force value for the Lagrangian points
is calculated – the velocities from the nodes of the Euler grid are interpolated to
points on the boundary. Then the body force acting from the drop on the liquid
is calculated at the lattice nodes. The calculated force is used to compute the
velocity at the points of the lattice. Finally, the velocities are interpolated to the
droplet boundary point, and the force acting on the droplet is corrected.

If there is an external body force �g(�x, t), then the lattice equation for the
particle distribution functions fi(�x, t) can be solved in two steps [7]

1. fi(�x, t) update, without taking into account the body force

f∗
i (�x + �ciΔx, t + Δt) = fi(�x, t) − 1

τ
[fi(�x, t) − feq

i (�x, t)] . (2)

2. f∗
i corrected by body force

fi(�x, t) = f∗
i (�x, t + Δt) + 3ΔxEi�ci · �g(�x, t + Δt). (3)

The IB method assumes that an incompressible viscous fluid is inside and
outside the boundary. Then the body force is applied to the lattice nodes near
the boundary to satisfy the non-slip condition. The methods for determining the
body force differ between different IBM versions. In paper [7] authors use the
multi-direct forcing method proposed in [22]. The advantage of this method over
the others is that the non-slip condition can be satisfied accurately [18].

Assuming fi(�x, t), �u(�x, t) and p(�x, t) are known, intermediate values of
f∗

i (�x, t + Δt) and �u∗
i (�x, t) can be computed from

�u =
b∑

i=1

fi�ci, where b = 9 for D2Q9 and b = 19 for D3Q19 (4)

and

p =
1
3

b∑
i=1

fi, where b = 9 for D2Q9 and b = 19 for D3Q19. (5)

Let �Xk(t + Δt) are Lagrangian points on the moving boundary and �Uk(t +
Δt), (k = 1, . . . , N) are velocities at those points. Then the temporal velocities
�u∗( �Xk, t + Δt) at the Lagrangian boundary points �Xk can be interpolate

�u∗( �Xk, t + Δt) =
∑

x

�u∗(�x, t + Δt)W (�x − �Xk)(Δx)d, (6)

where
∑

x is the sum over all lattice nodes �x, W is the weight function proposed
by Peskin [12] and d is the dimension. The weighting function W is given by

W (x, y, z) =
1

Δx
w

( x

Δx

)
·
(

1
Δx

)
w

( y

Δx

)
·
(

1
Δx

)
w

( z

Δx

)
, (7)



288 M. Guskova and L. Shchur

w(r) =

⎧⎪⎪⎨
⎪⎪⎩

1/8
(
3 − 2|r| +

√
1 + 4|r| − 4r2

)
, |r| ≤ 1,

1/8
(
5 − 2|r| − √−7 + 12|r| − 4r2

)
, 1 ≤ |r| ≤ 2,

0, otherwise.

(8)

In the three-dimensional case, the weight function is the product of three
one-dimensional weight functions; in the two-dimensional case, of two.

The body force �g(�x, t+Δt) is determined by the following iterative procedure:

0. Calculate the initial value of the body force at the Lagrangian boundary
points

�g0( �Xk, t + Δt) = Sh
�Uk − �u∗( �Xk, t + Δt)

Δt
, (9)

where Sh/Δt = 1/Δx.
1. Calculate the body force at the nodes of the Euler mesh at the l−th iteration

�gl(�x, t + Δt) =
N∑

k=1

�gl( �Xk, t + Δt)W (�x − �Xk)ΔV, (10)

where the body force is applied not to one Lagrangian boundary point, but
to a small volume element ΔV . In this method, ΔV is selected as S/N ×Δx,
where S− is the surface area of the body and S/N must be of the order
(Δx)d−1.

2. Adjust the velocities at the nodes of the Euler grid

�ul(�x, t + Δt) = �u∗(�x, t + Δt) +
Δt

Sh
�gl(�x, t + Δt). (11)

3. Interpolate velocity at Lagrangian boundary points

�ul( �Xk, t + Δt) =
∑

x

�ul(�x, t + Δt)W (�x − �Xk)(Δx)d. (12)

4. Update the body force

�gl+1( �Xk, t + Δt) = �gl( �Xk, t + Δt) + Sh
�Uk − �ul( �Xk, t + Δt)

Δt
. (13)

It is known that the choice l = 5, �gl=5(�x, t + Δt) is sufficient to satisfy the
non-slip condition [18].

2.3 Combined IB-LBM Algorithm

Therefore, the short protocol of the combined IB-LBM algorithm consists of the
following significant steps

0. Let initial values are fi(�x, 0), calculate �u(�x, 0) and p(�x, 0) from Eqs. (4) and
(5),
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1. Calculate �Xk(t + Δt) and �Uk(t + Δt) from equations of body motion,
2. Compute f∗

i (�x, t + Δt) from Eq. (2) and �u∗(�x, t + Δt) from Eq. (4), then
evaluate �u∗( �Xk, t + Δt) from Eq. (6),

3. Compute �g(�x, t + Δt) Eqs. (9–13),
4. Calculate fi(�x, t + Δt), �u(�x, t + Δt) and p(�x, t + Δx) by Eq. (5), Eq. (4),
5. Go to the next time step and return to 1.

2.4 Drop Motion

The drop is represented by a set of evenly distributed points on the boundary
of a rigid disk. The drop motion is defined by classical mechanics laws

M
d�U(t)

dt
= �F (t), (14)

�I
�Ω(t)
dt

+ �Ω(t) × [�I �Ω(t)] = �T (t), (15)

where M = πR2ρ is the droplet mass, �U(t) is the linear velocity, �F (t) = −∑
�g(t)

the net force acting on the drop, calculated by the immersed boundary method,
�I is the tensor of inertia, and for a hard disk it is described by the formulas:
Iz = 1

2MR2, Ix = Iy = 1
4MR2, �Ω angular velocity, �T = −∑

�r × �g moment of
forces, acting on a drop.

The velocity at the boundary points �ub can be calculated as

�ub = �U + �Ω × (�rb − �X), (16)

Where �rb are coordinates of the boundary points and �X is the center of mass.
In the two-dimensional case, the moment of forces has one nonzero component

and �Ω = {0, 0, ω}T , thus the Eq. (15) is simplified:

1
2
MR2 dω

dt
= Tz. (17)

We integrate Eqs. (14–17) using the explicit Euler method.

3 Simulation

3.1 Simulation Setup

Boundary conditions above and below are walls (bounce-back), on the left and on
the right, the Poiseuille profile is set with an average velocity uav = 0.015. The
channel width is 80Δx, the channel length is 250 times longer. Particle radius
R = 5Δx. A particle in the IB-LBM method is represented by 100 points uni-
formly distributed around a circle. The number of IBM iterations is 4. Reynolds
number Re = 0.25, which is three orders of magnitude higher than the Reynolds
number in the [2] experiment, but it allows to run computations in a reasonable
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time. After the flow is fully developed, the particles are inserted on the cen-
tral axis of the channel with the distance between the centers of the particles
a = 4R. The middle drop is shifted R/2 above the axis in order to excite oscil-
lations. The scheme for 12 particles is shown in Fig. 2. The density of the drop
is greater than the density of the surrounding liquid ρdrop = 1000/840 ≈ 1.19,
which corresponds to the ratio of the density of water to the density of oil. The
density of the fluid is ρfluid = 1. The model is a two-dimensional D2Q9 [11].

Fig. 2. Computational setup.

3.2 Details of Simulation

For the IB-LBM simulation, the open-source software Palabos [13] was used, and
some modifications described in the preceding section incorporated in the code.
Palabos is a library written in C++ that uses MPI for parallelization. Palabos
partitions lattice into smaller regions that are distributed over the nodes or cores
of a parallel machine. Other data types which require a small amount of storage
space are duplicated on every node. Chain of particles processing is done as
a data processor (already implemented in Palabos), which is parallelized. The
current problem has been computed on one node, but it will be transformed into
3d problem, and more threads and more nodes are proposed to use in the future.

The experiments were carried out on a high-performance computing cluster
“cHARISMa”. The parallel implementation uses MPI with the library OpenMPI
version 3.1.4. The simulation was run with 22 threads on a node with an Intel
Xeon Gold 6152 2.1 GHz processor with DDR4 2.666 GHz 768 GB memory.

Computational domain is 80Δx × 20000Δx, Δt = 0.0015, 1.5 · 106 iterations
were done until the flow is fully developed. 50,000 LBM iterations were performed
on average in 4 min in 22 threads. 50,000 IB-LBM iterations for a chain of length
12 were performed on average in 16 min in 22 threads (with drop coordinates
savings in every iteration).

3.3 Spectrum Calculation

The drop chain oscillations’ spectrum was calculated similarly to Ref. [2]. The
crystal oscillation spectrum was calculated from the coordinates [x(n, t), y(n, t)]
of all particles n = 1 . . . Nd at the time moments t = 1 . . . Nf . To apply the dis-
crete Fourier transform, it is necessary to calculate the deviations of the particles
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from their positions in the crystal. In the direction of the Y axis, the deviation
will be the difference between the y− coordinates of the center of the particle and
the center of the channel. To calculate longitudinal oscillations, a new coordinate
ξ is introduced, which is the difference between neighboring particles along the
X axis:

ξ(n, t) =

{
0, n = 1
x(n, t) − x(n − 1, t), n > 1.

(18)

Next, the discrete Fourier transform in space and time was calculated using
the NumPy library (Python [4]):

X(k, ω) =
Nd∑
n=1

Nf∑
t=1

ξ(n, t)e−(2πi/Nd)(k−1)(n−1)e−(2πi/Nf )(ω−1)(t−1) (19)

and

Y (k, ω) =
Nd∑
n=1

Nf∑
t=1

y(n, t)e−(2πi/Nd)(k−1)(n−1)e−(2πi/Nf )(ω−1)(t−1) (20)

where k, ω, n and t are indices. The wave numbers and frequencies can be calcu-
lated as 2πk/L and 2πω/T , respectively, where L− is the length of the particle
chain and T− is the simulation period. Further, for each k, the maximum of the
spectrum was determined modulo for |X(k, ω)|2 and |Y (k, ω)|2, disregarding the
values on the line ω = 0. These maxima are marked in the figures with blue dots.
For symmetry, values for negative k indices have been shown, although they do
not provide new information.

4 Results

In order to determine the required number of particles in a chain to obtain
oscillations similar to a physical experiment, chains of different lengths were
simulated using the IB-LBM. For chains with 3, 4, 5, and 6 drops, the spectrum
of longitudinal and transverse oscillations is not similar to the results of the
experiment shown in the Figs. 1e,f of Ref. [2]. Beginning with a chain length of
10 drops, the spectrum of transverse oscillations approaches the experimental
one. We do not obtain similarity of the longitudinal spectrum with one reported
in Ref. [2].

Figure 3 shows the coordinates ξ(t) and y(t) for a chain of 12 particles - we
will use this coordinates for the calculation of the spectrum. One can see from the
figure that there are no longitudinal oscillations for the chain of 12 particles. The
transverse spectrum coincide well with those reported in [2]. Figures (4a, 5b)
show colormap for the logarithms of |X(k, ω)|2 and |Y (k, ω)|2.

After the initial Poisuielle flow in the channel is fully developed, the drops
were placed on the channel axis, while one drop in the middle of the chain shifted
from the axis for the quarter drops radius R. Because of the Poiseuille profile,
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the velocity vanishes on the walls, and it takes maximum value at the channel
center. This imposes the force acting on the shifted drop towards the channel
axis. The transverse drop movement induces waves in the liquids, which act on
the other drops directly as well as indirectly through the reflection from the
channel walls. This is our explanation of the drop chain collective oscillations
leading to the spectrum shown in the Fig. 3.

We found that the narrower the channel, the more pronounced the transverse
oscillations are.

The peculiarity of the IB-LBM can explain the absence of longitudinal oscil-
lations – the drops in this work have a velocity very close to the flow velocity.

Fig. 3. Coordinates ξ(t) and y(t) for the chain of 12 drops.

(a) Colormap for logarithm of |X(k, ω)|2
.

(b) Colormap for logarithm of |Y (k, ω)|2

Fig. 4. Spectrum for the chain of 12 drops
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(a) Colormap for logarithm of |X(k, ω)|2 (b) Colormap for logarithm of |Y (k, ω)|2

Fig. 5. Spectrum for the chain of 18 drops

5 Conclusion

The paper presents some results of studying the possibility of the drops’ long-
range hydrodynamic interaction simulation in a flow by the immersed boundary
method coupled with the lattice Boltzmann method. A series of computational
experiments were carried out for chains of particles of different lengths. The
spectra of longitudinal and transverse oscillations in the crystal were constructed.
We found excellent agreement of the transverse drop oscillation spectrum with
the experimental one for the drop chain length starting from 10. We propose the
main effect of the particular spectrum is due to the cross-influence of the drop
oscillations via the generated waves in liquid, which acts on other drops directly
and after reflection from the channel walls.
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