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Abstract. The classical problem of oscillations of liquid droplets is a
good test for the applicability of computer simulation. We discuss the
details of our approach to a simulation scheme based on the Boltzmann
lattice equation. We show the results of modeling induced vibrations in
a chain of three drops in a closed tube. In the initial position, the central
drop has formed as an ellipsoid, out of the spherical equilibrium form.
The excitation of vibrations in the left and right droplets depends on the
viscosity of the surrounding fluid and the surface tension. Droplets are
moving out of the initial position as well. We discuss the limits of the
applicability of our model for the study of such a problem. We will also
show the dynamics of the simulated process.
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1 Introduction

The collective motion of the drops in the liquid confined in the complex geometry
is a challenging problem of the supercomputer simulations. The interest is two-
fold. Firstly, there are many applications in the manufacturing [1], printing [2],
oil recovery [3], and cyber-physical [4] systems, among many others. Secondly, it
is crucial for the simulations of the flows in the veins connected with the exact
drug delivery [5] or problems of tumor cells spreading [6].

Lattice Boltzmann method (LBM) [7] is suitable for the simulation of mul-
ticomponent fluid in the complex environment [8]. The LBM is a linear method
and can be easily partitioned in space and can be realized in the very efficient
massively parallel simulations using supercomputer capabilities.

In the paper, we report the effect of the eigenfrequencies on the collective
motion. We simplify the problem and choose the minimal setup of three drops
with similar properties, and analyze the drop swing and movement of the drops
influenced by the oscillation of another drop. Oscillations originated because
of the initial form of one of the drops. We use the symmetric set up with the
three drops of the same size and properties immersed in another fluid. At the
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initial time, the central drop excited in the eigenfrequency oscillation having the
ellipsoid form while another two drops (placed at the left and right sides) are
in the non-excited state, i.e., with the spherical shape. The volumes of all three
drops are the same. The development of the oscillations and movement does
depend on the fluid viscosity and surface tension. The simulation shows that the
side drops first squeezed and then starts moving out of the center. This effect
can initiate the instability of the chain of the drops in the experiment [9].

Simulations based on the Palabos development platform [10] and performed
with MPI on the supercomputer cluster.

The LBM method used in simulations is described briefly in Sect. 2. The
geometry and parameters of simulations are given in Sect. 3. Section 4 give
some details of the program code and computations. Simulations presented in
the Sect. 5 and discussion of results is presented in the Sect. 6.

2 Lattice Boltzmann Equations

We use the Shan–Chen method for multiple component fluid flows [11]. The
time and three-dimensional space (D3) is discrete and measured in units of Δt
and Δx, correspondingly. We use three dimensional D3Q27 representation of 27
velocities ci pointing from the center of the cube to 8 vertices, to the middle
of 12 edges, and to the middle of 6 faces, and to 1 center (zero velocity), i.e.
i = 0, 1, 2, . . . , 26 (see, f.e., Refs. [12] and [13]). Distribution functions are defined
f j
i (x, t) for all 27 velocities ci and for each of two components of fluid (j = 1, 2)

at lattice position x and evaluated in time by the equations

f j
i (x + ciΔt, t + Δt) − f j

i (x, t) = Ωj
i (f) + Sj

i , (1)

with the collision operator Ωj
i (x, t). The collision term Sj

i = F j · ci controls the
strength of the interaction potential between fluid components {j}, the force F j

is defined through the Shan–Chen potential [11]. Collision operator is written in
the BGK form [14]

Ωj
i (f) = −f j

i − f̃ j
i

τ
Δt, (2)

with equilibrium distribution function [13]

f̃ j
i (x, t) = wiρ

j(x, t)
(

1 +
u · ci

c2s
+

(u · ci)2
2c4s

− u · u
2c2s

)
, (3)

where sound speed cs = Δx/(Δt
√

3).

3 Physical Setup

Three drops are placed in the box of linear sizes 500, 250, and 250 in the direc-
tions x, y, and z, correspondingly. The centers of the drops are in the initial
positions: the left drop xl, yl, zl = 175, 125, 125, the central drop xc, yc, zc =
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250, 125, 125, the right drop xr, yr, zr = 325, 125, 125. All drops have the same
volume of 4/3πR3 with R = 30. At the first moment, the right and left drops
are the spheres, and the central drop is the ellipsoid with the z-axes enlarged to
2R while keeping the same volume.

Fig. 1. Cross-section of the initial state of the drops, y = 125.

Leaving alone, the central drop with the initial ellipsoid state will oscillate
with the component n = 2 of the eigenfrequency, according to the Rayleigh
formula [15,16]

ω2
2 =

24
3ρD + 2ρF

σ

R3
, (4)

where σ is the surface tension, and ρD and ρF is the density of the drop and the
surrounding fluid. In simulations, the period of oscillations is about 1000Δt with
the relaxation parameter w = 4/3, and oscillations practically damped after 2–3
periods. The details of the single drop oscillation presented in the paper [17].

In the following, we are interested in the orchestrated oscillations of all three
drops caused by the swing of the central drop with the initial state exciting the
frequency (4). The cross-section at y = 125 of the initial state of the simulations
is presented in the Fig. 1.

The density ρD (equivalent to ρ1 in the Expr. (1)) of the fluid component
inside the drop is set as unity with the small excess ρD = 1.01, and the density
of the surrounding fluid ρF (equivalent to ρ2 in the Expr. (1)) is set as unity
with the small excess ρD = 1.01, and the initial velocities are set up to zero. The
collision constant G = 2.7 controls the interface region of two fluids [13]. Both
fluids have the equal parameters of the viscosity ν associated with the values of
the relaxation parameter w1 = w2 = w = 1/τ

ν = c2s

(
1
w

− Δt

2

)
. (5)
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Simulations have been performed for the number of viscosity values, see the
Table 1.

Table 1. Values of the viscosity ν and associated values of the relaxation parameter
w used in simulations, see Expr. (5)

w 16/11 4/3 100/77 200/157 400/317 16/13

ν 0.625 0.083 0.090 0.095 0.0975 0.104

4 Computational Details

Program code is based on the Palabos C++ development platform [10]. Data
defined through classes of type MultiBlock, which are the 3-dimensional matri-
ces in our case. MultiBlockLattice3D data structure defines a Lattice Boltzmann
cell, with double-precision floating-point numbers. Each cell contains 27 distri-
bution functions. Calculation of the left part in Exp. (1) is named streaming, and
calculation of the first term in the right part is called a collision. Computations
of the streaming and the BGK collision are local, and all twenty-seven func-
tions fi can be computed in parallel. Technically, we solve two sets of the LBM
Eqs. (1–3), one for the fluid inside the drop and another one for the fluid outside
the drop. Each fluid represented by the own MultiBlockLattice data structure.
Therefore the streaming process in the left part Expr. (1) and collision with
the operator (2) can be calculated in parallel for each of the fluids. The data
processor calculates the Shan-Chen collision dynamics between two fluids as the
second term in the right part of Expr. (1). This is a non-local operation, and
this part of computations avoid the parallelization. The local properties of the
BGK collision and of the distribution function streaming allows the additional
possibility for parallelization – the lattice partitioning in the space.

Both fluids exist in the whole domain of simulations, and each fluid repre-
sented by 250 by 250 by 500 cells. Those fluid associated with the drop has a
normal density ρD = 1.01 inside the drop and negligible density 0.0001 outside
the drop. Contrary, the density of surrounding fluid has density ρF = 1.01 out-
side the drop and negligible density 0.0001 inside the drop. The time of the life
for the drop with such a density gradient is order of magnitude larger than the
total simulation time.

The parallel implementation uses MPI with the library MPICH version
3.2.1 [18]. The simulations in the next section have been done using Intel Xeon
Gold 6152 2.1 GHz CPU with onboard memory DDR4 2.666 GHz 768 GB RAM.
The program saves the whole computation field to the hard-disk every fifty steps
of time, and it takes about 125 sec for this cycle at 22 CPU cores.
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Fig. 2. Cross-section of the drops, y = 125 at the value of viscosity ν ≈ 0.083 (the left
column) and ν ≈ 0.104 (the right column) at different times, measured in the units
Δt = 1, from top to bottom t = 50, 1000, 2000, 3000, and 4000. The axis are the same
as in Fig. 1.

5 Drop Chain Movement

There are experiments (see, f.e., the review [9]) in which the chain of equidis-
tantly injected drops can occasionally break the order. In some cases, one of the
drops goes out of the chain. Our idea is that the broke of the symmetry in the
chain can be attributed to some imperfection in the drop form at the moment of
injection. This imperfection will trigger the oscillations of the drop, which should
follow to the spectrum of the Rayleigh frequencies [15]. The idea is to check can
the oscillations in one of the drops influence the others or not. The most simple
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question of that kind is how the oscillations of the central drop have influenced
on the left and right drops? We perform simulations of three drops to answer
the question.

We simulate the three drops behavior for the number of viscosities shown
in the Table 1, and for the same initial conditions formulated in the Sect. 3.
Figure 2 shows the dynamics of the drops for two typical cases, ν = 0.083 and
ν = 0.104, and which can be considered as “low” and “high” viscosities in the
drop dynamics. Note that the difference in the viscosities is only 20%, and it
turns quite enough for the observation of two quite different behavior.

The left column in Fig. 2 demonstrates the dynamics of the drops at the
lower viscosity, ν = 0.083, as the snapshot at the number of time moments. The
top figure shows drops at the very beginning step, t = 50; the next figure is
taken at the time t = 1000, close to the half-period of oscillation [17]. Oscillation
is damped by viscosity, and drop also elongates in the perpendicular to the
figure direction, keeping the volume constant. At that time, there is no visible
distortion of the side drops. At the next figure corresponding to approximately
the full period of ω2-oscillations of the free drop, one can see the apparent effect
of the hydrodynamic interactions. The left and right drops squeezed at the sides
close to the center; in addition, drops start to sharpen the outer sides due to
the internal movement of fluid inside the drops. It is visible that the central
drop is no more in the ω2 regime as the higher mode of oscillations is already
present at the time t = 2000. The central drop forms the dumbbell-like form due
to the reflection of the surrounding fluid from the side drops. It is interesting
that about the same time, the new phenomena visible in the figures in the left
column in Fig. 2, it is the flow of the drops out of the center. The flow consists of
the complicated excitations, with the conic form closer to the box, and with the
movement of the center of mass of the left and right drops toward the boundary.

The last two bottom figures in Fig. 2 show the movement of the side drops
out of the center one, with the sharp conic form of the outer sides. We have
to mention here that we use bounce-back boundary conditions at the box, and
there are reflections of the waves in the surrounding fluid because of that. There
is a reflection of the drop from the boundary at the time ≈ 3700 (not shown in
the figure). We should one more time to notice that due to the symmetry, the
right drop has the same behavior as the left one.

The observed effects seem to depend on the viscosity as one can see from the
right column of figures in Fig. 2, where initial oscillations with the frequency ω2

does not visibly influence the right and left drops. The oscillation of the central
drop is dumped almost entirely by viscosity on the simulated time scale. One can
see that in contrast to the left column of figures with the lower viscosity, there
is no visible excitation of the higher modes, and central drop have the ellipsoid
form at the time of the full period t = 2000.

Finally, at the bottom figure, drops seem to form an equilibrium picture with
the drops of equal radii R and with the distance between drops close to R/2.
Nevertheless, the visible equilibrium is not the final stage of the dynamics. One
should look for longer times.
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We present in the Fig. 3 the position of the left side of the left drop for
the number of values of the relaxation parameter w (consult the Table 1 for
the corresponding values of viscosities). Indeed, while simulate drops at the
relaxation parameter w = 16/13, which corresponds to the right column of
figures in the Fig. 2 father in time, the left side of the left drop is starting
moving to the left. It is not surprising, however, taking into account the friction
properties of the fluid [19].

Fig. 3. The time dependence of the left side of the left drop for the different values of
the fluid viscosity.

6 Conclusion

Simulations demonstrate the dynamics of the drop chain while exiting oscil-
lations in one of the drops. The level of excitations does depend on the fluid
viscosity, which can trigger the visible distortion of other drops, or not. Anyway,
some drop movement can be visible at the longer observation times for the large
values of viscosities.

We present computer simulation of the oscillations of three drops, with the
central drop is in the first exited ellipsoid state, and the left and right drops
initially rest in the spherical states. We simulate the system in the box with the
bounce-back boundary conditions, and we found the influence of the boundaries
is not essential for the most time of simulations. We found the visible excitations
of the left and right drops, and even excitation of the higher harmonic of the
central drop for the small enough fluid viscosity. For the significant values of
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the viscosity, there is relatively fast dumping of the central drop oscillations and
no visible excitation of the neighboring drops. The developed setup can be used
for the simulation of the movement of the long chain of drops in the channel in
order to explain the instability of the chains observed in the experiments [9].

We also find that symmetry of the drop chain against the boundaries may
influence the dynamics at the longer observation times. We use an even number
of cells in all directions. Therefore the center of the central drop is not in the
middle of the box, and reflections from the bounce-back boundaries lead to the
attractive force in the diagonal direction. To avoid that, we check the dynamics
in the box with an odd number of cells. We found there are no attractive forces
from the boundaries in that case.

We also check the possible influence of the level of the velocity discretization,
the D3Q19 model, with 19 velocities. We do not find any visible difference at
the time of the dynamic observation.
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