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Simulation of the Particle Dynamics in the Two-Dimensional
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Abstract—A particle moving in the Poiseuille flow in a channel experiences the influence of
the velocity gradient and the channel walls. Several effects happen with the particle – velocity
retardation, rotation, and migration transversal to the main flow direction. We simulate dynamics
of a hard particle in a narrow two-dimensional channel and estimate the variation with the channel
width of the particle velocity, frequency of rotation, and time to reach the steady state. We provide
a comparison of our results with the existing analytical calculations. Simulations were done using
the Lattice Boltzmann Method for the fluid flow and Immersed Boundary Method for the particle
movement.
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1. INTRODUCTION

The motion of particles in a channel currently has an enormous interest, connected with the intensive
research of the particle dynamics in microfluidic devices [1–3], with the red blood passage through
vessels [4], and tumor cells spreading [5]. The common feature of the subject is the low Reynolds number
of the flow and the finite-width geometry of the channel. A particle in a narrow channel experiences the
influence of the surrounding viscous fluid and the proximity to the channel walls. So, one can expect that
a particle in the channel to move axially in the flow direction and to move transversally due to the velocity
gradient of the Poiseuille flow and the proximity to the channel walls. In addition to the translational
motion of the particle as the whole, the particle will rotate due to the velocity difference between the
sides closer to and further away from the walls.

The paper presents a simulation of Poiseuille flow in the two-dimensional channel of width W , with an
immersed hard particle (a disk) with neutral buoyancy and a radius R in the viscous fluid. The Poiseuille
flow is axisymmetric and non-homogeneous in the direction transversal to the axis. It is known from
early experiments [6–8] that particles can migrate axially in the Poiseuille flow to the steady state, which
can be out of the axis.

Analytical considerations suggest that a particle in the unbounded flow experiences the lifting force,
which is a function of the shear gradient, particle radius, viscosity, density, and relative velocity [9, 10].
Interestingly, particle in the Poiseuille flow moves slower than the surrounding fluid due to the finite
geometry. This effect was analytically treated by Simha [11], who suggests that the relative velocity of
the cylinder in the channel is proportional to the square of the confinement ratio γ = 2R/W multiplied
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by the value of the Poiseuille flow at the axis, urel = 2/3γ2umax. In turn, the relative velocity produces
the lifting force [9, 10].

In simulations of the disk movement in the two-dimensional Poiseuille flow, the fluid from the left
side fills the channel with the length L and width W . The pressure difference, applied at the left and right
sides of the channel produces the parabolic velocity profile, the Poiseuille flow,

ux=0 = uxL
= umax

(
1−

(
2y

W

)2
)
,

where y is the distance from the axis, y ∈ (−W/2,W/2).
The initial velocity v of the disk immersed in the fluid is equal to the fluid velocity at the disk’s center.

The disk’s center is placed at some distance y0 from the axis.
We measure in simulations the relative velocity urel of the disks, the rotation frequency, and the time

to reach the steady-state position as a function of the viscosity and confinement ratio. In the case of the
small Reynolds numbers of our computer experiments, Re ≈ 1 and neutral particle buoyancy, we found
that the only parameter that selects the lifting force’s direction is the confinement ratio γ. We also check
that the relative velocity and frequency of rotation are the functions of the confinement ratio, as predicted
analytically by Simha [11].

2. SIMULATION MODEL

The fluid simulated using lattice Boltzmann method (LBM) [12]. The distribution function fi(�x, t)
represents the density of particles with velocities �ci (i = 0, 1, . . . , 8) at the grid position �x at time t. We
use the D2Q9 scheme with nine velocities �ci pointing towards the four corners of the square around the
grid position �x, to the four sides of the square, and to the center (zero velocity).

Distribution function changes using the conventional LBM equations with the relaxation term
proportional to the difference between the current fi(�x, t) and equilibrium distributions f eq

i (�x, t) [13]

fi(�x+ �ciΔx, t+Δt) = fi(�x, t)−
Δt

τ
[fi(�x, t)− f eq

i (�x, t)]

with the discrete equilibrium distribution function

f eq
i (�x, t) = wiρ

(
1 +

�u · �ci
c2s

+
(�u · �ci)2

c4s
− �u · �u

2c2s

)
,

where weights wi correspond to a discrete set of velocities and cs is the sound velocity. The density is
calculated as ρ(�x, t) =

∑
i fi(�x, t) followed by the velocity calculation �u(�x, t) =

∑
i �cifi(�x, t)/ρ(�x, t).

Hard disks of the radius RΔx are immersed in the moving fluid (here Δx is the lattice spacing).
The mutual interaction force �g between fluid and hard disk calculated using the distribution function.
The disk boundary is represented as a set of Lagrangian points [14] �Xk(t+Δt) and �Uk(t+Δt),
(k = 1, . . . , N) are velocities at those points. The fluid velocity �u′ at the Lagrangian points �Xk are
calculated using interpolation (we use dimensionless variables following Inamuro’s review paper [14]).

�u′( �Xk, t+Δt) =
∑
�x

�u′(�x, t+Δt)W (�x− �Xk)

with summation over all lattice nodes �x, and the weighting function W is defined [15] by

W (x, y, z) = w
( x

Δx

)
w
( y

Δx

)
,

w(r) =

⎧⎪⎪⎨
⎪⎪⎩
1/8

(
3− 2|r|+

√
1 + 4|r| − 4r2

)
, |r| ≤ 1,

1/8
(
5− 2|r| −

√
−7 + 12|r| − 4r2

)
, 1 ≤ |r| ≤ 2,

0, otherwise.

The force �g(�x, t+Δt) acting on the particle is calculated iteratively [14].
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The hard disk motion is simulated with the classical mechanics equations of motion, with the linear
velocity �U evolution

M
d�U(t)

dt
= �F (t),

and angular velocity evolution

1

2
MR2dω

dt
= Tz.

where M is the disk mass, �F (t) = −
∑

�g(t) is the total force acting on the disk, and Tz is the component
of the force moment, �T = −

∑
�r × �g.

3. SIMULATION RESULTS

In the following, we will use dimensionless variables, and all LBM variables are normalized by the
particle radius RΔx and by the maximum velocity umax of Poiseuille flow. The normalized variables are
denoted with a tilde. Therefore, in our units, the particle radius R̃=1 and maximum velocity ũmax=1.

Table 1 presents results of the simulation of buoyant disk movement in the channel with confinement
ratio γ. The disk moves to the steady-state position, which is on the axis for the values of γ = 1/2
and 1/4, and some intermediate position between the axis and the wall for smaller values of γ. Disks
rotate due to the velocity gradient with the period T̃ presented in the second column of Table 1—the
corresponding angular velocity Ω̃ = in the third column, and the relative velocity urel in the last column
of the table.

The fit to the data of relative velocity gives ũrel ≈ 0.51γ2ũmax, which is the good compared with the
analytical estimation urel = 2/3γ2umax by Simha [11]. We have to note that the numerical value of
coefficients can change because of the assumptions used in the analytical calculations.

The normalized frequency of rotation ω̃ = 2π/T̃1 numerically coincides with the normalized angular
velocity Ω̃ = 2π/T̃1R̃ (since, in our units, R̃ = 1), and the fit to the data in third column of Table 1 gives
ω̃ ≈ 0.26γ. The fit coincides well with the analytical estimates [11].

In our simulations, we checked the sensitivity of the fits to the initial position of the disk in the tube
ỹ0 = 1 and for other values of Reynolds number. Tables 2–5 show that the relative speed of the disk
is independent of the initial position of the disk. The period T1 presented in the tables is the first circle
of rotation which depends on the velocity gradient of the flow at the initial disk position. It is smaller
with the disk’s smaller shift ỹ0. This dependence coincides nicely with the functional dependence of
the angular rotation estimated by Saffman [10] ω̃ ∝

√
ỹ/W̃ , which is the square root of the transversal

velocity gradient.
The velocity gradient will produce the lifting force, moving the disk from the initial position to the axis

or from the axis. In the case of the small Reynolds numbers of our computer experiments, Re ≈ 1 and
neutral particle buoyancy, the only parameter that selects the lifting force’s direction is the confinement
ratio γ.

Table 1. The confinement ratio γ, period T̃1 of the first particle rotation, angular velocity Ω̃, and relative velocity of
the particle ũrel. Reynolds number Re = 1/4. Initial position of the disk is ỹ0 = 1.

γ T̃1 Ω̃ ũrel

1/2 33.96 0.1850 −0.1352

1/4 97.44 0.0645 −0.0333

1/6 215.40 0.0292 −0.0128

1/8 382.80 0.0164 −0.0101

1/10 599.52 0.0105 −0.0054
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Table 2. The initial position of the disk ỹ0, period T̃1 of the first particle rotation, corresponding frequency ω̃, and
relative speed of the particle ũrel. Re = 0.250, γ = 1/2

ỹ0 T̃1 ω̃ ũrel

1 33.96 0.1850 −0.1352

1/2 57.24 0.1098 −0.1380

1/4 125.40 0.0501 −0.1372

Table 3. The initial position of the disk ỹ0, period T̃1 of the first particle rotation, corresponding frequency ω̃, and
relative speed of the particle ũrel. Re = 0.375, γ = 1/2

ỹ0 T̃1 ω̃ ũrel

1 30.84 0.2037 −0.1505

1/2 55.80 0.1126 −0.1452

1/4 124.80 0.0503 −0.1445

Table 4. The initial position of the disk ỹ0, period T̃1 of the first particle rotation, corresponding frequency ω̃, and
relative speed of the particle ũrel. Re = 0.250, γ = 1/6

ỹ0 T̃1 ω̃ ũrel

1 200.19 0.0314 −0.0128

1/2 432.36 0.0145 −0.0324

1/4 850.68 0.0074 −0.0297

Table 5. The initial position of the disk ỹ0, period T̃1 of the first particle rotation, corresponding frequency ω̃, and
relative speed of the particle ũrel. Re = 0.375, γ = 1/6

ỹ0 T̃1 ω̃ ũrel

1 30.84 0.2037 −0.1505

1/2 55.80 0.1126 −0.1452

1/4 1145.16 0.0055 −0.0053

Table 6. The confinement ratio γ = 2R̃/W̃ and steady state level β = 2ỹst/W̃ . Re = 1.

γ β

1/2 0

1/6 0.267

1/8 0.311

1/10 0.335

The confinement ratio also selects the level β = 2ỹst/W̃ of the steady flow position. After the
transient time, depending on the initial position of a particle in the channel, the particle reaches the
equilibrium position at a distance yst from the axis. In the experiment of particle suspension flowing in
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Poiseuille flow of viscous fluid was found that particles concentrated around some finite distance both
from the axis and wall [6]. This effect was supported in the experiments of other groups [7, 8] and there
are some analytical estimations of the position [9, 10]. This effect is also obtained in the simulations.
See for extended discussion the recent paper [16].

Table 6 shows the estimation of the steady position of the particle in the channel with Re = 1, which
demonstrates the variation of the steady state level β with confinement ratio.

4. DISCUSSION

We simulate a disk motion in the two-dimensional Poiseuille flow and find a good agreement of
our simulation results for the relative speed flow and disk rotation frequency with the known analytical
estimates for a low Reynolds number. The particle’s steady state position in the channel depends on the
confinement ratio, qualitatively in line with the analytical estimations. The combination of the Lattice
Boltzmann Method and Immersed Boundary Method can accurately simulate the shear flow in two-
dimensional geometry.

FUNDING

This work is supported by the Russian Science Foundation project 19-11-00286. The simulations
were done using the computational resources of HPC facilities at HSE University [17].

REFERENCES
1. A. A. Doinikov, M. S. Gerlt, and J. Dual, “Acoustic radiation forces produced by sharp-edge structures in

microfluidic systems,” Phys. Rev. Lett. 124, 154501 (2020).
2. S. Narayan, D. B. Moravec, A. J. Dallas, and C. S. Dutcher, “Droplet shape relaxation in a four-channel

micro-fluidic hydrodynamic trap,” Phys. Rev. Fluids 5, 113603 (2020).
3. S. Coppola and V. Kantsler, “Curved ratchets improve bacteria rectification in micro-fluidic devices,” Phys.

Rev. E 104, 014602 (2021).
4. T. Wang, U. Rongin, and Z. Xing, “A micro-scale simulation of red blood cell passage through symmetric

and asymmetric bifurcated vessels,” Sci. Rep. 6, 20262 (2016).
5. V. M. Freitas, G. Hilfenhaus, and M. L. Iruela-Arispe, “Methastasis of circulating tumor cells: Speed

matters,” Dev. Cell 45, 3 (2018).
6. G. Segre and A. Silberberg, “Radial particle displacement in Poiseuille flow of suspensions,” Nature (London,

U.K.) 189, 209 (1961).
7. H. L. Goldsmith and S. G. Mason, “Axial migration of particles in Poiseuille flow,” Nature (London, U.K.)

190, 1095 (1961).
8. A. Karnis, H. L. Goldsmith, and S. G. Mason, “Axial migration of particles in Poiseuille flow,” Nature

(London, U.K.) 200, 159 (1963).
9. S. I. Rubinow and J. B. Keller, “The transverse force on a spinning sphere moving in a viscous fluid,” J. Fluid

Mech. 11, 447 (1961).
10. P. G. Saffman, “The lift on a small sphere in a slow shear flow,” J. Fluid Mech. 22, 385 (1965).
11. R. Simha, “Untersuchungen über die viskosität von suspensionen und lösungen,” Kolloid. Z. 76, 16 (1936).
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