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Abstract. The stability of the quasi-two-dimensional droplet flow is of great importance
in microfluidic devices. We check the drop’s stability in the square box using the immersed
boundary and lattice Boltzmann methods. We implement two-dimensional equations within the
immersed boundary approach in the Palabos programming platform. We check the influence
of the boundaries on the drop movement. We estimate fluctuations in the quantities while
applying different initial conditions of the linear and angular velocities. We found that the level
of fluctuations depends on the symmetrical displacement of drop at the initial state. The effect
is connected with the hydrodynamic interaction of drop with the walls.

1. Introduction
The drop flows are subject to intensive studies both in the laboratory setups [1] and in
vivo [2]. There are many intriguing peculiarities of the flow in a microfluidic water-in-oil droplet
generator [3]. The experiment shows the generation of acoustic waves in a quasi-two-dimensional
flow of the droplet chain and instability due to the long-range hydrodynamic interaction. The
value of parameters corresponds to the low Reynolds number hydrodynamics. It is worth
checking the lattice Boltzmann method’s applicability to the chain’s simulation and comparing
results with the detailed experiment.

In the paper, we report the preliminary results. We build a computational model based on
the immersed boundary method together with the lattice Boltzmann method. As the first step,
we simulate the drop stability comparing the symmetrical and asymmetrical position of the drop
in the channel. We found that the hydrodynamic interaction of the drop with the walls cannot
be negligible for long enough simulations. We check how the fluctuations in the observables
depend upon the drop’s initial linear and angular velocities. Thus, we can estimate how long
we can simulate the chain, avoiding the unnecessary effects of the walls’ finite distance.

We consider different settings: eight combinations of zero/non-zero initial translational
velocity along the x-axis, zero/non-zero initial angular velocity, and symmetrical/asymmetrical
placement of the drop in the domain. As a part of a study, we provide the results for different
lattice sizes.

The paper is organized as follows. In section 2, we describe the simulation model and
simulation methods. In section 3, we present results of the drop stability varying distance
to the walls and viscosity. Section 4 briefly summarize the results.



CSP2020
Journal of Physics: Conference Series 1740 (2021) 012026

IOP Publishing
doi:10.1088/1742-6596/1740/1/012026

2

2. Model and Methods
We can consider the two-dimensional flow since in the quasi-two-dimensional experiment [3] the
only effect of the friction of the drop with the flow and celling is the renormalization of the drag
force. We consider the drop with the size R much smaller than the size of the box L, and it is in
line with the experiment. We simulate drop-fluid interaction with the immersed boundary (IB)
method [4].

We are using the lattice Boltzmann method (LBM) [5, 6] with incompressible Bhatnagar-
Gross-Krook (BGK) single relaxation time collision model with a D2Q9 velocity set. The
simulations were done using IB-LBM method [7] utilizing the open-source program platform
Palabos [8], in which we modify the immersed boundary method from 3D case to 2D case.

2.1. Immersed boundary method.
The immersed boundary (IB) method is used to simulate blood flow, bubble dynamics, and many
other phenomena. It applies to the moving boundaries of the drop in the flow. Peskin [9] initially
proposed it for blood flow simulation in 1972. Since that time method has been used for particle
suspension simulations: coupled with difference scheme for the Navier-Stokes equation [9, 10, 11]
and lattice Boltzmann equations [12, 4, 7, 13, 14, 15].

The main idea of the IB method is the representation of the drop as a set of Lagrangian
boundary points, which generally do not coincide with Eulerian lattice nodes. The combined IB-
LBM approach is an iterative method. For each iteration, the value of body force for Lagrangian
points is calculated. For that purpose, velocities from the Eulerian grid are interpolated into
Lagrangian boundary points. Then body force, which acts from drop to fluid for the Eulerian
point, is computed. The computed force is used for velocity computation in lattice points.
Finally, velocities interpolated into the drop boundary point, and correction of the drop’s body
force is calculated. We set number of IB iterations to 4. The details of IB method usage are
described in Refs. [4, 7, 16].

2.2. Drop motion.
The drop is represented by a set of evenly distributed points on the boundary of a rigid disk.
The drop motion is defined by classical mechanics laws

M
d~U(t)

dt
= ~F (t), (1)

~I
~Ω(t)

dt
+ ~Ω(t)× [~I ~Ω(t)] = ~T (t), (2)

where M = πR2ρ is the drop mass, ~U(t) is the translational velocity, ~F (t) = −
∑
~g(t) is the

total force on the drop, computed by IB method, ~I is the intertial tensor and for the rigid disk
it is equal to Iz = 1

2MR2, Ix = Iy = 1
4MR2, ~Ω is the angular velocity, ~T = −

∑
~r × ~g is total

torque acting on drop.
The boundary velocity ~ub calculated with

~ub = ~U + ~Ω× (~rb − ~X), (3)

where ~rb is coordinates of boundary point and ~X drop center of mass.
In two-dimensions, the torque has only one non-zero component and ~Ω = {0, 0, ω}T , so the

Eq.(2) reduces to
1

2
MR2dω

dt
= Tz. (4)

We integrate system of Eqs.(1-4) using the Euler method.
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2.3. Simulation setup.
The grid size is N∆x in both box directions, with N chosen from the set of pairs 125, 126,
250, 251, and 500, 501 – to investigate the symmetrical and asymmetrical drop displacement
against the walls. The drop radius R = 10∆x, with ∆x = 1 is the lattice spacing of LBM. The
drop density ρ is equal to the fluid density ρ = ρfluid = 1. The drop boundary is defined as the
set of 75 nodes, evenly distributed over the circle of radius R.

We use in the paper the LBM lattice units [5, 6]. We set the values of LBM parameters –
the relaxation parameter τ = 23/10 and time step ∆t = 1. Therefore, the viscosity ν = 0.6, the
speed sound cs = 1/

√
3, and Reynolds number is equal to unity.

To investigate the influence of symmetry on drop motion in the box, we consider eight possible
cases shown in Table 1. Those cases are combinations of zero/non-zero initial translational
velocity along the x-axis, zero/non-zero initial angular velocity, and symmetrical/asymmetrical
placement of the drop in the domain. The computational domain is a square box with a bounce-
back boundary condition on walls. v0 is the initial translational velocity along the x-axis in lattice
units, ω0 is the initial angular velocity in lattice units.

Surrounding liquid is in the rest at the initial moment of simulations, and translational and
rotational movement of the drop generates the waves in the liquid [17, 18]. The velocities decay
because of the finite viscosity of the liquid.

Table 1: The simulation cases are defined by the initial translational velocity v0, the angular
velocity ω0, and parity of the box size.

case v0 ω0 N

0 0 0 odd
1 0 0 even

2 0 0.06 odd
3 0 0.06 even

4 0.06 0 odd
5 0.06 0 even

6 0.06 0.06 odd
7 0.06 0.06 even

3. Simulation results
We check how much the simulation depends on the drop placement’s asymmetry in the box and
on the distance between the drop and the wall. Asymmetry is realized using the odd and even
number of lattice spacings with the center of drop always placed at the LBM lattice vertex.
This way, we can estimate how long we can simulate the drop chain’s movement and investigate
the chain instability avoiding the finiteness of the box influence on each drop. It is necessary
to exclude the chain’s instability triggered by the setup asymmetry while simulating the drop
chain movement using a combined IB-LBM approach.

In Figures 1-3, the solid lines correspond to the asymmetrical case and dashed lines to the
symmetrical case. Colors mark the following sets of lattice sizes. The blue color marks set
N = (125, 126), the salmon color marks set N = (250, 251), and the magenta color marks set
N = (500, 501).
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(a) Drop’s absolute value of translational velocity.
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(b) Drop’s absolute value of angular velocity.

Figure 1: Initial velocities are ω0 6= 0, v0 = 0. Solid lines correspond to asymmetrical drop
placement (Case 2), and dotted lines correspond to symmetrical placement (Case 3).

3.1. Asymmetry influence.
The initial values of the translational and angular velocities are set to 0 or 0.06, see Table 1.
The drop center is always placed at integer values (N/2, N/2). We distinguish two setups. For
even box size N , the drop is placed precisely at the computational domain center, and it is the
symmetrical setup. For the odd box size N , the drop is shifted by (−0.5∆x,−0.5∆x), and it is
the asymmetrical setup. The distance from the two sides of the drop to the walls is different in
the asymmetrical setup.

Parameters for computational experiments are presented in Table 1.
The details of the asymmetry influence on the velocity decay are:

• Cases 0 and 1. Both initial velocities are zero, and there is no motion at all, hence no
difference for symmetrical and asymmetrical drop placement. The drop remains unmoving
during the simulation.

• Cases 2 and 3. The angular velocity displays no difference for symmetrical and asymmetrical
cases as can be seen from Figure 1b. The translational velocity shown in Figure 1a behaves
differently for symmetrical and asymmetrical cases, decaying slowly for the asymmetrical
case.

• Cases 4 and 5. Symmetry of the drop displacement in the box does not reflect in the
translational velocity behavior as shown in Figure 2a, while the angular velocity behavior
is quite different. In the symmetrical case, it is zero with the accuracy of simulation, and
it is small but finite in the asymmetrical case, see Figure 2b. The level of angular velocity
excitation is small and may be attributed to the IB-LBM method’s accuracy.

• Cases 6 and 7. The cases are quantitatively similar to cases 2 and 3, although the angular
velocity is four orders of magnitude larger. See Figures 3a and 3b.

3.2. Lattice size influence.
The next set of simulations is the variation of lattice size N .

The details of the lattice size influence on the velocity decay are:

• Cases 2 and 3. The angular velocity decay fast up to the time 1000 with no difference in the
box size. After that, the angular velocity in the box size 125 decays exponentially fast, and
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(a) Drop’s absolute value of translational velocity
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(b) Drop’s absolute value of angular velocity

Figure 2: Initial velocities are v0 6= 0, ω0 = 0. Solid lines correspond to asymmetrical drop
placement (Case 4), and dotted lines correspond to symmetrical placement (Case 5).

for the sizes 250 and 500 behaves quite slowly – see Figure 1b. The translational velocity
shown in Figure 1a is sensitive to both the asymmetry and the box size.

• Cases 4 and 5. Velocity behavior is shown in Figure 2a and 2b. The box size does not
substantially influence the angular velocity behavior. The translational velocity behaves
differently with the box size. There are visible oscillations of velocity with the frequency
connected with the wave propagation from the drop to the wall and back. The period of
oscillation is proportional to the ratio of the wave’s traveled distance to the sound speed.

• Cases 6 and 7. Velocity behavior is shown in Figures 3a and 3b. In this case, the
translational velocity behavior is similar to those for cases 4 and 5. Moreover, the angular
velocity behavior is similar to cases 2 and 3.
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(a) Drop’s absolute value of translational velocity
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Figure 3: Initial velocities are v0 6= 0, ω0 6= 0. Solid lines correspond to asymmetrical drop
placement (Case 6), and dotted lines correspond to symmetrical placement (Case 7).
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4. Conclusions
We perform simulations of the drop in the square box, analyzing the boundary conditions’
influence. We found the asymmetry can be essential for the nonzero linear and angular
velocity. We choose the same initial values for angular velocity and translational velocity, which
corresponds to the different Reynolds numbers. The circular velocity associated with the angular
velocity is R = 10 times larger than the translational one, which leads to the large Reynolds
number. Indeed the effects associated with the initial angular velocities are more pronounced.
We present the preliminary analysis defining the safe time length of simulations for the drop
chain instability analysis.
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242–250
[3] Beatus T, Tlusty T and Bar-Ziv R 2006 Nature Physics 2 743–748
[4] Wang Z, Fan J and Luo K 2008 International Journal of Multiphase Flow 34 283–302
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