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Simulation of Drop Oscillation
Using the Lattice Boltzmann Method
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Abstract—We simulate the oscillation of the viscous drop in the viscous liquid. We combine
methods of chromodynamics model and Shan-Chen pseudo-potential for the immiscible fluids. We
measure the frequency of the first nontrivial eigenmode using the initial ellipsoid form of the drop.
Drop oscillates about the equilibrium spherical form of radius R. Computed frequency as a function
of the radius R follows to the well known Rayleigh formula. We discuss the simulation setup in the
framework of the Lattice Boltzmann method.
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1. INTRODUCTION

The study of the multi-component fluids is an active subject last years with many applications in the
manufacturing [1], printing [2], oil recovery [3], and cyber-physical [4] systems, among many others. The
most promising method for simulations of the processes is the Lattice Boltzmann method (LBM) [5].
The LBM is well suited to the simulations of complex fluids in complex geometry that is not practically
realizable with the direct simulations using the hydrodynamic approach. Another essential advantage of
LBM is the possibility of extensive and massively parallel simulations using supercomputer capabilities.

In the paper, we analyze the accuracy of the LBM using as an example the oscillating drop immersed
in the fluid. We build a model close to the realistic parameters used in the laboratory experiments [6] and
in-vivo medical experiments [7], and compare results with the known analytical solution.

2. DROP OSCILLATION MODEL

Rayleigh [8] has calculated eigenfrequencies of the drop with density ρD surrounded by the fluid with
density ρF

ω2 =
n(n− 1)(n + 1)(n + 2)

(n+ 1)ρD + nρF

σ

R3
, (1)

where σ is the surface tension, and R is the drop radius. The formula was checked experimentally in [9]
and it is correct for the small amplitude oscillations.

To generate the first nontrivial eigenmode n = 2 we use as an initial condition the ellipsoid with the
volume equivalent to the volume of a sphere of radiusR. Competition between inertia and surface tension
leads to the oscillation of the liquid drop immersed in a second fluid.
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Fig. 1. Dependence of ω2 from R−3 for two values of relaxation time τ . Squares corresponds to τ = 1 and circles
corresponds to τ = 3/4. Lines are the guide for the eyes. The vertical axes are scaled with the factor 107.

Simulations are based on the Shan–Chen method for multiphase fluid flows [10]. We use three
dimensional D3Q27 representation of velocities ci pointing from the center of the cube to 8 vertices, to
the middle of 12 edges, and to the middle of 6 faces, and to 1 center (zero velocity), i.e. i = 0, 1, 2, . . . , 26
(see, f.e., Refs. [11] and [12]). The time and three-dimensional space (D3) is discrete and measured in
units ofΔt and Δx, correspondingly. Distribution function is defined f j

i (�x, t) for each of two components
of fluid (j = 1, 2) at lattice position �x and evaluated in time by the equation

f j
i (�x+ �ciΔt, t+Δt)− f j

i (�x, t) = Ωj
i (f) + Sj

i ,

with the collision operator Ωj
i (�x, t) and collision term Sj

i = �F j ·�ci controls the strength of the interaction
potential between fluid components {j} and force F j is defined through the Shan–Chen potential [10].
Collision operator is written in the BGK form [13]

Ωj
i (f) = −f j

i − f̃ j
i

τ
Δt,

with equilibrium distribution function

f̃ j
i (�x, t) = wiρ

j(�x, t)

(
1 +

�u · �ci
c2s

+
(�u · �ci)2
2c4s

− �u · �u
2c2s

)
,

where sound speed cs = Δx/(Δt
√
3).

3. SIMULATION DETAILS

We perform simulations with the set of parameters: Δx = 1, Δt = 1, ρD,F = 1, and collision constant
G = 2.7 (controls the interface region of two fluids). We perform simulations in the cube with bounce-
back boundary conditions for two linear sizes 200Δx and 250Δx in order to check the effect of the
boundary conditions.

The values of the weights wi and speeds ci for D3Q27 LBM can be found in the book [12].

The size of the spherical drop is R. The initial state formed as ellipsoid enlarged in z direction with
an initial length of z-axis equal to 2R, and symmetric in (x, y) direction. The volume of the ellipsoid is
4/3πR3. The density of the drop is ρD inside the ellipsoid and ρD/10

4 outside the ellipsoid. The density
of the second fluid outside the ellipsoid is ρF , and inside the ellipsoid is ρF/104. The initial speed of both
fluids is zero.
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Table 1. Estimated frequency of the drop oscillation ω as a function of R for two values of the relaxation time τ

τ = 1 τ = 3/4

R ω2 ω2

20 6.67E-7 1.00 E-6

24 4.15E-7 5.92 E-7

28 2.59E-7 3.66 E-7

32 1.79E-7 2.53 E-7

36 1.23E-7 1.78 E-7

40 1 .05E-7 1.30 E-7

4. SIMULATION RESULTS

We performs simulations for two values of viscosity defined [12] in LBM as ν = c2s(τ−1/2), with
ν = 1/6 and ν = 1/12 and relaxation time τ , correspondingly. In simulations, the drop experience
oscillations with frequency ω, and oscillations dumped in time. The decay is fast and proportional to
1/R3 in accordance with the analytical prediction [14].

Table 1 shows values of frequency estimated from the simulations for a number of drop radius R and
for two values of relaxation time τ .

5. DISCUSSION

Results shown in the Table are in good agreement with theory. The figure shows a square of the
frequency ω as a function of the inverse cube of the radius, for both values of viscosity ν. Firstly, it is
visible that frequency follows the straight line in accordance with Rayleigh formula (1). Secondly, the
slope of the fitting lines should reflect the surface tension of the drop. The surface tension is proportional
to the weight of w, as one can see from the second line of expression (9.36) in the book [12]. Indeed, the
ratio of line slopes is very close to 3/4, which is the ratio of corresponding values of τ for two sets of runs.

We can conclude that developed setup can be used for the accurate description of the movement of
the ensemble of the drops immersed in the fluid, which is of the very practical interest.
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