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We propose the novel numerical scheme for solution of the multidimensional
Fokker–Planck equation, which is based on the Chebyshev interpolation and the
spectral differentiation techniques as well as low rank tensor approximations, namely,
the tensor train decomposition and the multidimensional cross approximation method,
which in combination makes it possible to drastically reduce the number of degrees of
freedom required to maintain accuracy as dimensionality increases. We demonstrate the
effectiveness of the proposed approach on a number of multidimensional problems,
including Ornstein-Uhlenbeck process and the dumbbell model. The developed
computationally efficient solver can be used in a wide range of practically significant
problems, including density estimation in machine learning applications.
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1 INTRODUCTION

Fokker–Planck equation (FPE) is an important in studying properties of the dynamical systems, and
has attracted a lot of attention in different fields. In recent years, FPE has become widespread in the
machine learning community in the context of the important problems of density estimation
(Grathwohl et al., 2018) for neural ordinary differential equation (ODE) (Chen et al., 2018; Chen and
Duvenaud, 2019), generative models (Kidger et al., 2021), etc.

Consider a stochastic dynamical system which is described by stochastic differential equation
(SDE) of the form1

dx � f(x, t) dt + S(x, t) dβ, dβ dβu � Q(t) dt, x � x(t) ∈ Rd , (1)

where dβ is a q-dimensional space-time white noise, f is a known d-dimensional vector-function and
S ∈ Rd×q, Q ∈ Rq×q are known matrices. The FPE for the corresponding probability density function
(PDF) ρ(x, t) of the spatial variable x has the form

zρ(x, t)
zt
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[f i(x, t)ρ(x, t)], (2)
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1Vectors and matrices are denoted hereinafter by lower case bold letters (a, b, c, . . .) and upper case letters (A,B,C, . . .)
respectively. We denote the (i1, i2) th element of an N1 × N2 matrix A as A[i1, i2] and assume that 1≤ i1 ≤N1, 1≤ i2 ≤N2. For
vectors we use the same notation: a[i] is the i-th element of the vector a (i � 1, 2, . . . ,N). In addition, for a compact
representation of an i-th (i � 1, 2, . . . , d, where d ≥ 1) element of a vector function f � [f1, f2 , . . . , fd]u , we will use the notation
f i , which means f i( · ) � f i( · )[i].
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where D(x, t) � 1
2 S(x, t)Q(t)Su(x, t) is a diffusion tensor.

One of the major complications in solution of the FPE is the
high dimensionality of the practically significant computational
problems. Complexity of using grid-based representation of the
solution grows exponentially with d, thus some low-parametric
representations are required. One of the promising directions is
the usage of low-rank tensor methods, studied in (Dolgov et al.,
2012). The equation is discretized on a tensor-product grid, such
that the solution is represented as a d-dimensional tensor, and
this tensor is approximated in the low-rank tensor train format
(TT-format) (Oseledets, 2011). Even with such complexity
reduction, the computations often take a long time. In this
paper we propose another approach of using low-rank tensor
methods for the solution of the FPE, based on its intimate
connection to the dynamical systems.

The key idea can be illustrated for S � 0, i.e. in the
deterministic case. For this case the evolution of the PDF
along the trajectory is given by the formula

zρ(x, t)
zt

� −Tr(zf(x, t)
zx

) ρ(x, t), (3)

where Tr( · ) is a trace operation for the matrix. Hence, to compute
the value of ρ(x, t) at the specific point x � x̂, it is sufficient to find a
preimage x̂0 such that if it is used as an initial condition for eq. 1,
thenwe arrive to x̂. Tofind the preimage, we need to integrate the eq.
1 backwards in time, and then to find the PDF value, we integrate a
system of eqs 1, 3. Since we can evaluate the value of ρ(x, t) at any x̂,
we can use the cross approximation method (CAM) (Oseledets and
Tyrtyshnikov, 2010; Savostyanov and Oseledets, 2011; Dolgov and
Savostyanov, 2020) in the TT-format to recover a supposedly low-
rank tensor from its samples. In this way we do not need to have any
compact representation of f, but only numerically solve the
corresponding ODE. For S≠ 0 the situation is more complicated,
but we develop a splitting and multidimensional interpolation
schemes that allow us effectively recompute the values of the
density from some time moment t to the next step t + h.

To summarize, main contributions of our paper are the
following:

• we derive a formula to recompute the values of the PDF on
each time step, using the second order operator splitting,
Chebyshev interpolation and spectral differentiation
techniques;

• we propose to use a TT-format and CAM to approximate
the solution of the FPE whichmakes it possible to drastically
reduce the number of degrees of freedom required to
maintain accuracy as dimensionality increases;

• we implement FPE solver, based on the proposed approach,
as a publicly available python code2, and we test our
approach on several examples, including
multidimensional Ornstein-Uhlenbeck process and
dumbbell model, which demonstrate its efficiency and
robustness.

2 COMPUTATION OF THE PROBABILITY
DENSITY FUNCTION

For ease of demonstration of the proposed approach, we suppose
that the noise β ∈ Rq has the same dimension as the spatial
variable x ∈ Rd (q � d), and the matrices in eq. 1 and eq. 2 have
the form3

Q(t) ≡ Id , S(x, t) ≡ 


2χ

√
Id , D(x, t) ≡ χId , (4)

where χ ≥ 0 is a scalar diffusion coefficient. Then eqs 1, 2 can be
rewritten in a more compact form

dx � f(x, t) dt + 


2χ

√
dβ, dβ dβu � Id dt, (5)

zρ

zt
� χΔρ − div[f(x, t)ρ], (6)

where d-dimensional spatial variable x � x(t) ∈ Ω ⊂ Rd has the
corresponding PDF ρ(x, t) with initial conditions

x(0) � x0 ∼ ρ(x, 0), ρ(x, 0) � ρ0(x). (7)

To construct the PDF at some moment τ (τ > 0) for the known
initial distribution ρ0(x), we discretize eqs 5, 6 on the uniform
time grid with M (M ≥ 2) points

tm � mh, h � τ

M − 1
, m � 0, 1, . . . ,M − 1, (8)

and introduce the notation xm � x(tm) for value of the spatial
variable at the moment tm and ρm( · ) � ρ( · , tm) for values of
the PDF at the same moment.

2.1 Splitting Scheme
Let V̂ and Ŵ be diffusion and convection operators from the eq. 6

V̂v ≡ χΔv, Ŵw ≡ − div[f(x, t)w], (9)

then on each time step m (m � 0, 1, . . . ,M − 2) we can integrate
equation

zρ

zt
� (V̂ + Ŵ)ρ, ρ(·, tm) � ρm(·), (10)

on the interval (tm, tm + h), to find ρm+1 for the known value ρm
from the previous time step. Its solution can be represented in the
form of the product of an initial solution with the matrix
exponential

ρm+1 � eh(V̂+Ŵ)ρm, (11)

and if we apply the standard second order operator splitting
technique (Glowinski et al., 2017), then

ρm+1 ≈ e
h
2 V̂ ehŴe

h
2 V̂ρm, (12)

which is equivalent to the sequential solution of the following
equations

2The code is publicly available from https://github.com/AndreiChertkov/fpcross. 3We use notation Ik for the k × k (k � 1, 2, . . .) identity matrix.

Frontiers in Artificial Intelligence | www.frontiersin.org August 2021 | Volume 4 | Article 6682152

Chertkov and Oseledets Tensor Train for Fokker–Planck Equation

https://github.com/AndreiChertkov/fpcross
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


zv(1)

zt
� χΔv(1), v(1)( · , tm) � ρm( · ), (13)

zw
zt

� −div[f(x, t)w], w( · , tm) � v(1)( · , tm + h
2
), (14)

zv(2)

zt
� χΔv(2), v(2)( · , tm) � w( · , tm + h), (15)

with the final approximation of the solution ρm+1( · ) � v(2)( · ,
tm + h

2).
2.2 Interpolation of the Solution
To efficiently solve the convection eq. 14, we need the ability to calculate
the solution of the diffusion eq. 13 at arbitrary spatial points, hence the
natural choice for the discretization in the spatial domain are Chebyshev
nodes, whichmakes it possible to interpolate the corresponding function
on each time step by the Chebyshev polynomials (Trefethen, 2000).

We introduce the d-dimensional spatial grid X(g) as a tensor
product of the one-dimensional grids4

x(g)k ∈ RNk , x(g)k [nk] � cos
π · (nk − 1)
Nk − 1

, nk � 1, 2, . . . ,Nk,

(16)

where Nk (Nk ≥ 2) is a number of points along the kth spatial axis
(k � 1, 2, . . . , d), and the total number of the grid points is
N � N1 · N2 · . . . · Nd . Note that this grid can be also
represented in the flatten form as a following matrix

X(g) ∈ Rd×N , X(g)[k, n] � x(g)k [mind(n)[k]], (17)

where n � 1, 2, . . . ,N , k � 1, 2, . . . , d and by mind(n) �
[n1, n2, . . . , nud we denoted an operation of construction of the
multi-index from the flatten long index according to the big-
endian convention

n � nd + (nd−1 − 1)Nd + . . . + (n1 − 1)N2N3 . . .Nd. (18)

Suppose that we calculated PDF ρm on some time stepm (m≥ 0) at the
nodes of the spatial grid X(g) [note that for the case m � 0, the
corresponding values come from the known initial condition ρ0(x)].
These values can be collected as elements of a tensor5

Rm ∈ RN1×N2×...×Nd such that

Rm[n1, n2, . . . , nd] � ρm(x(g)1 [n1], x(g)2 [n2], . . . , x(g)d [nd]),
(19)

where nk � 1, 2, . . . ,Nk (k � 1, 2, . . . , d).
Let us interpolate PDF ρm via the system of orthogonal

Chebyshev polynomials of the first kind

T0(x) � 1, T1(x) � x,

Tk+1(x) � 2xTk(x) − Tk−1(x) for k � 1, 2, . . . ,
(20)

in the form of the naturally cropped sum

ρm(x) ≈ ρ̃m(x) �
�∑N1

n1�1
∑N2

n2�1
· · ·∑Nd

nd�1
Am[n1, n2, . . . , nd]Tn1−1(x1)Tn2−1(x2) . . .Tnd−1(xd),

(21)

where x � (x1, x2, . . . , xd) is some spatial point and interpolation
coefficients are elements of the tensor Am ∈ RN1×N2×...×Nd . For
construction of this tensor we should set equality in the
interpolation nodes eq. 16

ρ̃m(x(g)1 [n1], x(g)2 [n2], . . . , x(g)d [nd]) �
ρm(x(g)1 [n1], x(g)2 [n2], . . . , x(g)d [nd]) (22)

for all combinations of nk � 1, 2, . . . ,Nk (k � 1, 2, . . . , d).
Therefore the interpolation process can be represented as a

transformation of the tensorRm to the tensorAm according to the
system of eq. 22. If the Chebyshev polynomials and nodes are used
for interpolation, then a good way is to apply a fast Fourier
transform (FFT) (Trefethen, 2000) for this transformation.
However the exponential growth of computational complexity
and memory consumption with the growth of the number of
spatial dimensions makes it impossible to calculate and store
related tensors for the multidimensional case in the dense data
format. Hence in the next sections we present an efficient algorithm
for construction of the tensor Am in the low-rank TT-format.

2.3 Solution of the Diffusion Equation
To solve the diffusion eqs 13, 15 on theChebyshev grid, we discretize
Laplace operator using the second order Chebyshev differential
matrices [see, for example, (Trefethen, 2000)] Dk ∈ RNk×Nk such
that Dk � ~Dk ~Dk, where for each spatial dimension k � 1, 2, . . . , d

~Dk[i, j] �

2(Nk − 1)2 + 1
6

, i � j � 1,

−x(g)k [j]
2(1 − (x(g)k [j])2), i � j � 2, 3, . . . ,Nk − 1,

ci
cj

(−1)i+j
x(g)k [i] − x(g)k [j], i≠ j, i, j � 2, 3, . . . ,Nk − 1,

− 2(Nk − 1)2 + 1
6

, i � j � Nk,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(23)

with ci � 2 if i � 1 or i � Nk and ci � 1 otherwise, and one
dimensional grid points x(g)k defined from eq. 16. Then
discretized Laplace operator has the form6

4We suppose that for each spatial dimension the variable x varies within [−1, 1]. In
other cases, an appropriate scaling can be easily applied.
5By tensors we mean multidimensional arrays with a number of dimensions d
(d ≥ 1). A two-dimensional tensor (d � 2) is a matrix, and when d � 1 it is a vector.
For tensors with d > 2 we use upper case calligraphic letters (A,B, C, . . .). The
(n1, n2, . . . , nd) th entry of a d-dimensional tensor A ∈ RN1×N2×...×Nd is denoted by
A[n1, n2, . . . , nd], where nk � 1, 2, . . . ,Nk (k � 1, 2, . . . , d) and Nk is a size of the
k-th mode, and mode-k slice of such tensor is denoted by A[n1, . . . , nk−1, :,
nk+1, . . . , nd].

6Note that for the case N1 � N2 � . . . � Nd ≡ N0, we have only one matrix D1 �
D2 � . . . � Dd ≡ D0 ∈ RN0×N0 which greatly simplifies the computation process.
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Δ � D1 ⊗ IN2 ⊗ . . . ⊗ INd
+ IN1 ⊗ D2 ⊗ . . . ⊗ INd

+ . . .

+ IN1 ⊗ IN2 ⊗ . . . ⊗ Dd. (24)

Let Vm ∈ RN1×N2×...×Nd be the known initial condition for the
diffusion equation on the time step m (tm � mh), then for the
solution Vm+1

2
at the moment tm + h

2 we have

vec(Vm+12) � e
h
2 χΔvec(Vm), (25)

where an operation vec(·) constructs a vector from the tensor by a
standard reshaping procedure like eq. 18. And finally due to the
well known property of the matrix exponential, we come to

vec(Vm+ 1
2
) � (eh2 χD1 ⊗ e

h
2 χD2 ⊗ . . . ⊗ e

h
2 χDd)vec(Vm). (26)

If we can represent the initial condition Vm in the form of
Kronecker product of the one-dimensional tensors (for
example, in terms of the TT-format in the form of the
Kronecker products of the TT-cores, as will be presented
below in this work), then we can efficiently evaluate the
formula eq. 26 to obtain the desired approximation for
solution vec(Vm+1

2
).

2.4 Solution of the Convection Equation
Convection eq. 14 can be reformulated in terms of the FPE
without diffusion part, when the corresponding ODE has the
form

dx � f(x, t) dt, x � x(t) ∈ Rd , x ∼ ρ(x, t). (27)

If we consider the differentiation along the trajectory of the
particles, as was briefly described in the Introduction, then

(zw
zt
)

x�x(t)
� ∑d

k�1

zw
zxk

zxk
zt

+ zw
zt

�∑d
k�1

zw
zxk

zxk
zt

− div[fw] �
� ∑d

k�1

zw
zxk

fk −∑d
k�1

zfk
zxk

w −∑d
k�1

fk
zw
zxk

� −∑d
k�1

zfk
zxk

w,

(28)

where we replaced the term zw
zt by the right hand side of eq. 14 and

zxk
zt by the right hand side of the corresponding equation in eq. 27.

Hence equation for w may be rewritten in terms of the
trajectory integration of the following system

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
zx
zt

� f(x, t),
zw
zt

� −Tr(zf
zx

(x, t))w (29)

Let us integrate eq. 29 on a time step m (m � 0, 1, . . . ,M − 2). If
we set any spatial grid point x* � X(g)[:, n] (n � 1, 2, . . . ,N) as
initial condition for the spatial variable, then we’ll obtain
solution ŵm+1 for some point x̂m+1 outside the grid (see
Figure 1 with the illustration for the two-dimensional case).
Hence we should firstly solve eq. 27 backward in time to find the
corresponding spatial point x̂m that will be transformed to the
grid point x* by the stepm + 1. If we select this point x̂m and the

related value ŵm � w(x̂m, tm) as initial conditions for the system
eq. 29, then its solution wm+1 will be related to the point of
interest x*.

Note that, according to our splitting scheme, we solve the
convection part eq. 14 after the corresponding diffusion eq.
13, and hence the initial condition wm is already known and
defined as a tensorWm ∈ RN1×N2×...×Nd on the Chebyshev spatial
grid. Using this tensor, we can perform interpolation
according to the formula eq. 22 and calculate the tensor of
interpolation coefficients Am. Then we can evaluate the
approximated value at the point x̂m as w̃m(x̂m) according to
eq. 21.

Hence our solution strategy for convection equation is the
following. For the given spatial grid point x* � X(g)[:, n] we
integrate equation

zx
zt

� f(x, t), x(tm+1) � x*, (30)

backward in time to find the corresponding point x̂m � x(tm).
Then we find the value of w at this point, using interpolation
w̃m, and then we solve the system eq. 29 on the time
interval (tm, tm + h) with initial condition (x̂m, w̃m(x̂m)) to
obtain the value wm+1 at the point x*. The described
process should be repeated for each grid point
(n � 1, 2, . . . ,N) and, ultimately, we’ll obtain a tensor
Wm+1 ∈ RN1×N2×...×Nd which is the approximated solution of
convection part eq. 14 of the splitting scheme on the
Chebyshev spatial grid.

An important contribution of this paper is an indication of the
possibility and a practical implementation of the usage of the
multidimensional CAM in the TT-format to recover a supposedly
low-rank tensor Wm+1 from computations on only a part of
specially selected spatial grid points. This scheme will be
described in more details later in the work after setting out
the fundamentals of the TT-format.

3 LOW-RANK REPRESENTATION

There has been much interest lately in the development of data-
sparse tensor formats for high-dimensional problems. A very
promising tensor format is provided by the tensor train (TT)
approach (Oseledets and Tyrtyshnikov, 2009; Oseledets, 2011),
which was proposed for compact representation and
approximation of high-dimensional tensors. It can be
computed via standard decompositions (such as SVD and QR-
decomposition) but does not suffer from the curse of
dimensionality7.

7By the full format tensor representation or uncompressed tensor wemean the case,
when one calculates and saves in the memory all tensor elements. The number of
elements of an uncompressed tensor (hence, the memory required to store it) and
the amount of operations required to perform basic operations with such tensor
grows exponentially in the dimensionality, and this problem is called the curse of
dimensionality.
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In many analytical considerations and practical cases a tensor
is given implicitly by a procedure enabling us to compute any of
its elements, so the tensor appears rather as a black box. For
example, to construct the convection part of PDF (i.e., the tensor
Wm introduced above), we should compute the corresponding
function for all possible sets of indices. This process requires an
extremely large number of operations and can be time-
consuming, so it may be useful to find some suitable low-
parametric approximation of this tensor using only a small
portion of all tensor elements. CAM (Oseledets and
Tyrtyshnikov, 2010) which is a widely used method for
approximation of high-dimensional tensors looks appropriate
for this case.

In this section we describe the properties of the TT-
format and multidimensional CAM that are necessary for
efficient solution of our problem, as well as the specific
features of the practical implementation of interpolation
by the Chebyshev polynomials in terms of the TT-format
and CAM.

3.1 Tensor Train Format
A tensor R ∈ RN1×N2×...×Nd is said to be in the TT-format
(Oseledets, 2011), if its elements are represented by the formula

R[n1, n2, . . . , nd] � ∑R1
r1�1

∑R2
r2�1

· · · ∑Rd−1
rd−1�1

G1[1, n1, r1]G2[r1, n2, r2] . . .
Gd−1[rd−2, nd−1, rd−1]Gd[rd−1, nd , 1]

(31)

where nk � 1, 2, . . . ,Nk (k � 1, 2, . . . , d), three-dimensional
tensors Gk ∈ RRk−1×Nk×Rk are named TT-cores, and integers
R0,R1, . . . ,Rd (with convention R0 � Rd � 1) are named TT-
ranks. The latter formula can be also rewritten in a more
compact form

R[n1, n2, . . . , nd] � G1(n1)G2(n2) . . .Gd(nd), (32)

where Gk(nk) � Gk[:, nk, : ] is an Rk−1 × Rk matrix for each fixed
nk (since R0 � Rd � 1, the result of matrix multiplications in eq.

32 is a scalar). And a vector form of the TT-decomposition looks
like

vec(R) � ∑R1
r1�1

∑R2
r2�1

· · · ∑Rd−1
rd−1�1

G1[1, :, r1] ⊗ G2[r1, :, r2]⊗ . . .

⊗ Gd[rd−1, :, 1],
(33)

where the slices of the TT-cores Gk are vectors of length
Nk (k � 1, 2, . . . , d).

The benefit of the TT-decomposition is the following. Storage
of the TT-cores G1,G2, . . . ,Gd requires less or equal than d ×
max1≤ k≤ d(NkR2

k) memory cells (instead of N �
N1N2 . . .Nd ∼ Nd

0 cells for the uncompressed tensor, where N0

is an average size of the tensor modes), and hence the TT-
decomposition is free from the curse of dimensionality if the
TT-ranks are bounded.

The detailed description of the TT-format and linear
algebra operations in terms of this format8 is given in works
(Oseledets and Tyrtyshnikov, 2009; Oseledets, 2011). It is
important to note that for a given tensor R̂ in the full format,
the TT-decomposition (compression) can be performed by a
stable TT-SVD algorithm. This algorithm constructs an
approximation R in the TT-format to the given tensor R̂ with
a prescribed accuracy ϵTT in the Frobenius norm9����R − R̂����F ≤ ϵTT · ����R̂����F , (34)

FIGURE 1 | Evolution of the spatial variable and the corresponding PDF for two consecutive time steps related to the fixed Chebyshev grid in the case of two
dimensions.

8All basic operations in the TT-format are implemented in the ttpy python package
https://github.com/oseledets/ttpy and its MATLAB version https://github.com/
oseledets/TT-Toolbox.
9An exact TT-representation exists for the given full tensor R̂, and TT-ranks of
such representation are bounded by ranks of the corresponding unfolding matrices
(Oseledets, 2011). Nevertheless, in practical applications it is more useful to
construct TT-approximation with a prescribed accuracy ϵTT , and then carry
out all operations (summations, products, etc) in the TT-format, maintaining
the same accuracy ϵTT of the result.
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but a procedure of the tensor approximation in the full
format is too costly, and is even impossible for large
dimensions due to the curse of dimensionality. Therefore
more efficient algorithms like CAM are needed to quickly
construct the tensor in the low rank TT-format.

3.2 Cross Approximation Method
The CAM allows to construct a TT-approximation of the
tensor with prescribed accuracy ϵCA, using only part of the
full tensor elements. This method is a multi-dimensional
analogue of the simple cross approximation method for
the matrices (Tyrtyshnikov, 2000) that allows one to
approximate large matrices in O(N0R2) time by computing
only O(N0R) elements, where N0 is an average size of the
matrix modes and R is the rank of the matrix. The CAM and
the TT-format can significantly speed up the computation
and reduce the amount of consumed memory as will be
illustrated in the next sections on the solution of the
model equations.

The CAM constructs a TT-approximation R to the tensor R̂,
given as a function f (n1, n2, . . . , nd), that returns the
(n1, n2, . . . , nd) th entry of R̂ for a given set of indices. This
method requires only

O(d ×max1≤ k≤ d(NkR3
k)) operations for the construction of

the approximation with a prescribed accuracy ϵCA, where
R0,R1, . . . ,Rd (R0 � Rd � 1) are TT-ranks of the tensor R [see
detailed discussion of the CAM in (Oseledets and
Tyrtyshnikov, 2010)]. It should be noted that TT-ranks
can depend on the value of selected accuracy ϵCA, but for a
wide class of practically interesting tasks the TT-ranks are

bounded or depend polylogarithmically on ϵCA [(Oseledets,
2010; Oseledets, 2011) for more details and examples]. In
Algorithm 1 the description of the process of construction
of the tensor in the TT-format on the Chebyshev grid by the
CAM is presented (we’ll call it as a function crossX( · )
below). We prepare function func, which transforms given
indices into the spatial grid points and return an array of the
corresponding values of the target r( · ). Then this function is
passed as an argument to the standard rank adaptive method
tt_rectcross from the ttpy package. The CAM is described in
more detail in the original papers (Oseledets and
Tyrtyshnikov, 2010; Savostyanov and Oseledets, 2011), as
well as in a recent work (Dolgov and Savostyanov, 2020),
which formulates a computationally efficient parallel
implementation of the algorithm.

3.3 Multidimensional Interpolation
As was discussed in the previous sections, we discretize the
FPE on the multidimensional Chebyshev grid and interpolate
solution of the first diffusion equation in the splitting scheme
eq. 13 by the Chebyshev polynomials to obtain its values on
custom spatial points (different from the grid nodes) and
then perform efficient trajectory integration of the
convection eq. 14.

The desired interpolation may be constructed from
solution of the system of eq. 22 in terms of the FFT
(Trefethen, 2000), but for the high dimension numbers
we have the exponential growth of computational
complexity and memory consumption, hence it is
very promising to construct tensor of the nodal values
and the corresponding interpolation coefficients in the
TT-format.

Consider a TT-tensor R ∈ RN1×N2×...×Nd with the list of TT-
cores [G1,G2, . . .Gd], which collects PDF values on the nodes
of the Chebyshev grid at some time step (the related function
is r(x), and this tensor is obtained, for example, by the CAM
or according to TT-SVD procedure from the tensor in the full
format). Then the corresponding TT-tensor A ∈ RN1×N2×...×Nd

of interpolation coefficients with the TT-cores [~G1, ~G2, . . . ~Gd]
can be constructed according to the scheme, which is
presented in Algorithm 2 [we’ll call it as a function
interpolate( · ) below].

In this Algorithm we use standard linear algebra operations
swapaxes and reshape, which rearrange the axes and change
the dimension of the given tensor respectively, function fft
for construction of the one-dimensional FFT for the given
vector, and function tt_round from the ttpy package, which
round the given tensor to the prescribed accuracy ϵ. Note
that the inner loop in Algorithm 2 for r* may be replaced by
the vectorized computations of the corresponding two-
dimensional FFT.

For the known tensor A we can perform a fast computation
of the function value at any given spatial point x �
[x1, x2, . . . , xud ] by a matrix product of the convolutions of
the TT-cores of A with appropriate column vectors of
Chebyshev polynomials
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r(x) ≈ ∑R1
r1�1

∑R2
r2�1

. . . ∑Rd−1
rd−1�1

⎛⎝ ∑N1

n1�1
~G1[1, n1, r1]Tn1−1(x1)⎞⎠

⎛⎝∑N2

n2�1
~G2[r1, n2, r2]Tn2−1(x2)⎞⎠ . . .⎛⎝∑Nd

nd�1
~Gd[rd−1, nd , 1]Tnd−1(xd)⎞⎠,

(35)

We’ll call the corresponding function as inter eval(A,X)
below. This function constructs a list of r( · ) values for
the given set of I points X ∈ Rd×I (I ≥ 1), using
interpolation coefficients A and sequentially applying the
formula eq. 35 for each spatial point.

4 DETAILED ALGORITHMS

In Algorithms 3, 4 and 5 we combine the theoretical details
discussed in the previous sections of this work and present
the final calculation scheme for solution of the
multidimensional FPE in the TT-format, using CAM
(function crossX, Algorithm 1)10 and interpolation by the
Chebyshev polynomials (function interpolate from
Algorithm 2 that constructs interpolation coefficients and
function inter_eval that evaluates interpolation result at
given points according to the formula eq. 35).

We denote by einsum the standard linear algebra operation
that evaluates the Einstein summation convention on the
operands (see, for example, the numpy python package).
Function vstack stack arrays in sequence vertically, function
ode solve(rhs, t1, t2,Y0) (where t1 and t2 are initial and final
times, rhs is the right hand side of equations, and matrix Y0

collects initial conditions) solves a system of ODE with vectorized
initial condition by the one step of the fourth order Runge-Kutta
method.

5 NUMERICAL EXAMPLES

In this section we illustrate the proposed computational scheme,
which was presented above, with the numerical experiments. All
calculations were carried out in the Google Colab cloud
interface11 with the standard configuration (without GPU
support).

Firstly we consider an equation with a linear convection
term—Ornstein-Uhlenbeck process (OUP) (Vatiwutipong and
Phewchean, 2019) in one, three and five dimensions. For the
one-dimensional case, which is presented for convention, we only
solve equation using the dense format (not TT-format), hence the
corresponding results are used to verify the general correctness and
convergence properties of the proposed algorithm, but not its
efficiency. In the case of the multivariate problems we use the
proposed tensor based solver, which operates in accordance with
the algorithm described above. To check the results of our
computations, we use the known analytic stationary solution for
the OUP, and for the one-dimensional case we also perform
comparison with constructed analytic solution at any time moment.

Then we consider more complicated dumbbell problem
(Venkiteswaran and Junk, 2005) which may be represented as
a three-dimensional FPE with a nonlinear convection term. For
this case we consider the Kramer expression and compare our
computation results with the results from another works for the
same problem.

In the numerical experiments we consider the spatial regionΩ
such that PDF is almost vanish on the boundaries ρ(x, t)|zΩ ≈ 0,
and the initial condition is selected in the form of the Gaussian
function

10Note that in Algorithm 4 we use the solution of the convection part from the
previous time step (k − 1) as an initial guessW0 for CAM on the next time step (k).
As it was found empirically It may seem more logical to use the solution of the
diffusion part from the same time step (k) as an initial guess, but we found
empirically that it leads to higher TT-ranks of the result.

11Actual links to the corresponding Colab notebooks are available in our public
repository https://github.com/AndreiChertkov/fpcross.
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ρ(x, 0) � ρ0(x) � (2πs)−d2exp[ − 1
2s
||x||2], s ∈ R, s> 0,

(36)

where parameter s is selected as s � 1. To estimate the accuracy of
the obtained PDF (ρ) we use the relative 2-norm of deviation
from the exact value (ρexact)

e � ||ρ − ρexact ||2
|ρexact ||2

. (37)

We compute the value ρexact through the given function, using a
CAM with an accuracy parameter two orders of magnitude
higher, than the one that was used in the solver.

5.1 Numerical Solution of the
Ornstein-Uhlenbeck Process
Consider FPE of the form eq. 6 in the d-dimensional case
with

f(x, t) � A(μ − x(t)), χ � 1
2
, x ∈ Ω � [xmin, xmax]d ,

t ∈ [0, τ],
(38)

where A ∈ Rd×d is invertible real matrix, μ ∈ Rd is the long-term
mean, xmin ∈ R and xmax ∈ R (xmin < xmax), τ ∈ R (τ > 0). This
equation is a well known multivariate OUP with the following
properties [see for example (Singh et al., 2018; Vatiwutipong and
Phewchean, 2019)]:

• mean vector is

M(t, x0) � e−Atx0 + (Id − e−At)μ; (39)

• covariance matrix is

Σ(t) � ∫t

0
eA(s−t)SSueA

u(s−t)d s, (40)

and, in our case as noted above S � 


2χ

√
Id ;

• transitional PDF is

ρ(x, t, x0) �
exp[ − 1

2(x −M(t, x0))uΣ−1(t)(x −M(t, x0))]






|2πΣ(t)|√ ;

(41)

• stationary solution is

ρst(x) �
exp[ − 1

2x
uW−1x]












(2π)ddet(W)
√ , (42)

where matrixW ∈ Rd×d can be found from the following equation

AW +WAu � 2χId; (43)

• the (multivariate) OUP at any time is a (multivariate)
normal random variable;

• the OUP is mean-reverting (the solution tends to its long-
termmean μ as time t tends to infinity) if all eigenvalues ofA
are positive (if A> 0 in the one-dimensional case).

5.1.1 One-Dimensional Process
Let consider the one-dimensional (d � 1) OUP with

A � 1, μ � 0, xmin � −5, xmax � 5, τ � 10. (44)

We can calculate the analytic solution in terms of only spatial
variable and time via integration of the transitional PDF eq. 41

ρ(x, t) � ∫∞

−∞
ρ(x, t, x0)ρ0(x0) dx0. (45)

Accurate computations lead to the following formula

ρ(x, t) � 1














2π(Σ(t) + se−2At)√ exp[ − x2

2(Σ(t) + se−2At)], (46)

where Σ(t) is defined by eq. 40 and for the one-dimensional case
may be represented in the form

Σ(t) � 1 − e−2At

2A
. (47)

Using the formulas eq. 42 and eq. 43 we can represent a
stationary solution for the one-dimensional case in the explicit
form

ρstat(x) �



A
π

√
e−Ax

2
. (48)

We perform computation for N1 � 50 spatial points and M �
1000 time points and compare the numerical solution with
the known analytic eq. 46 and stationary eq. 48 solution. In
the Figure 2 we present the corresponding result. Over time,
the error of the numerical solution relative to the analytical

FIGURE 2 | Relative error of the calculated solution vs known analytic
and stationary solutions for the one-dimensional OUP.
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solution first increases slightly, and then stabilizes at
approximately 10−5. At the same time, the numerical
solution approaches the stationary one, and the
corresponding error at large times also becomes
approximately 10−5. Note that the time to build the
solution was about 5 s.

5.1.2 Three-Dimensional Process
Our next example is the three-dimensional (d � 3) OUP with the
following parameters

A � ⎡⎢⎢⎢⎢⎢⎣ 1.5 1 0
0 1 0
0.5 0.3 1

⎤⎥⎥⎥⎥⎥⎦, μ � 0, xmin � −5, xmax � 5, τ � 5.

(49)

When carrying out numerical calculation, we select 10−4 as the
accuracy of the CAM, 100 as a total number of time points and 30
as a number of points along each of the spatial dimensions. The
computation result is compared with the stationary solution eq.
42 which was obtained as solution of the related matrix eq. 43 by
a standard solver for Lyapunov equation.

The result is shown in Figure 3. As can be seen, the TT-rank12

remains limited, and the accuracy of the solution over time grows,
reaching 10−3 by the time t � 5. The time to build the solution was
about 26 s.

To evaluate the efficiency of the proposed algorithm in the TT-
format, we also solve these three-dimensional OUP, using dense
format (as for the one-dimensional case, all arrays are presented
in its full form). The corresponding calculation took about 376 s,
so in this case we have an acceleration of calculations by more
than an order of magnitude.

5.1.3 Five-Dimensional Process
This multidimensional case is considered in the same manner as
the previous one. We select the following parameters

A �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1.5 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0.5 0.3 0.2 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, μ � 0, xmin � −5, xmax � 5,

τ � 5.

(50)

We select the same values as in the previous example for the CAM
accuracy (10−4), the number of time points (100) and the number
of spatial points (30), and compare result of the computation with
the stationary solution from eq. 42 and eq. 43.

The results are presented on the plots on Figure 4. The TT-
rank of the solution remains limited and reaches the value 4.5 at
the end time step, and the solution accuracy reaches almost 10−3.
The time to build the solution was about 100 s.

5.2 Numerical Solution of the Dumbbell
Problem
Now consider a more complex non-linear example
corresponding to the three-dimensional (d � 3) dumbbell
model of the form eq. 6 with13

f(x, t) � Ax − 1
2
∇ϕ, A � β⎡⎢⎢⎢⎢⎢⎣ 0 1 0

0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎦, ϕ � ||x||2
2

+ α

p3
e
− ||x||2

2p2 ,

(51)

where

FIGURE 3 | Relative error of the calculated solution vs known stationary
solution (A) and the effective TT-rank (B) for the three-dimensional OUP.

FIGURE 4 | Relative error of the calculated solution vs known stationary
solution (A) and the effective TT-rank (B) for the five-dimensional OUP.

12Hereinafter, we present effective TT-rank of the computation result. For TT-
tensor X ∈ RN1×N2×...×Nd with TT-ranks R0,R1, . . . ,Rd (R0 � Rd � 1) the effective
TT-rank R̂ is a solution of quadratic equation N1R̂ + ∑d−1

α�2
NαR̂

2 + NdR̂ �∑d
α�1

NαRα−1Rα. The representation with a constant TT-rank R̂ (R̂0 � 1,

R̂1 � R̂2 . . . � R̂d−1 � R̂, R̂d � 1) yields the same total number of parameters as

in the original decomposition of the tensor X .

13This choice of parameters corresponds to the problem of polymer modeling from
the work (Venkiteswaran and Junk, 2005). In the corresponding model, the
molecules of the polymer are represented by beads and interactions are
indicated by connecting springs. Accordingly, for the case of only two particles
we come to the dumbbell problem, which can be mathematically written in the
form of the FPE.
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χ � 1
2
, x ∈ Ω � [−10, 10]3, t ∈ [0, 10], α � 0.1, β � 1,

p � 0.5.

(52)

Making simple calculations (taking into account the specific form
of the matrix A), we get explicit expressions for the function and
the required partial derivatives (k � 1, 2, 3)

f � β⎡⎢⎢⎢⎢⎢⎣ x20
0

⎤⎥⎥⎥⎥⎥⎦ − 1
2
x + α

2p5
e
−||x||2

2p2 x, (53)

zfk
zxk

� −1
2
+ α

2p5
e
−||x||2

2p2 − α

2p7
e
−||x||2

2p2 x2k. (54)

Next, we consider the Kramer expression

τ(t) � ∫ ρ(x, t)[x ⊗∇ϕ]dx, (55)

and as the values of interest (as in the works (Venkiteswaran and
Junk, 2005; Dolgov et al., 2012)) we select

ψ(t) � τ11(t) − τ22(t)
β2

� 1

β2
ρ(x, t)(x1 zϕ

zx1
− x2

zϕ

zx2
), (56)

η(t) � τ12(t)
β

� 1
β
ρ(x, t)x1 zϕ

zx2
. (57)

During the calculations we used the following solver parameters:

• the accuracy of the CAM is 10−5;
• the number of time grid points is 100;
• the number of grid points along each of the spatial
dimensions is 60.

The results are presented on the plots on Figure 5. The time to
build the solution was about 200 s (also additional time was
required to calculate the values ψ(t) and η(t) from eq. 56 and eq.
57 respectively). As can be seen, the TT-rank remains limited,
and its stationary value is about 8. We compared the obtained
stationary values of the ψ(t) and η(t) variables:

ψ(t � 10) � 2.0707, η(t � 10) � 1.0318, (58)

with the corresponding results from (Dolgov et al., 2012)14, and
we get the following values for relative errors

ϵψ � 1.9 × 10−4, ϵη � 9.7 × 10−4. (59)

6 RELATED WORKS

The problem of uncertainty propagation through nonlinear
dynamical systems subject to stochastic excitation is given by
the FPE, which describes the evolution of the PDF, and has been
extensively studied in the literature. A number of numerical
methods such as the path integral technique (Wehner and
Wolfer, 1983; Subramaniam and Vedula, 2017), the finite
difference and the finite element method (Kumar and
Narayanan, 2006; Pichler et al., 2013) have been proposed to
solve the FPE.

These methods inevitably require mesh or associated
transformations, which increase the amount of computation.
The problem becomes worse when the system dimension
increases. To maintain accuracy in traditional discretization
based numerical methods, the number of degrees of freedom
of the approximation, i.e. the number of unknowns, grows
exponentially as the dimensionality of the underlying state-
space increases.

On the other hand, the Monte Carlo method, that is common
for such kind of problems (Kikuchi et al., 1991; Küchlin and
Jenny, 2017), has slow rate of convergence, causing it to become
computationally burdensome as the underlying dimensionality
increases. Hence, the so-called curse of dimensionality
fundamentally limits the use of the FPE for uncertainty
quantification in high dimensional systems.

In recent years, low-rank tensor approximations have
become especially popular for solving multidimensional
problems in various fields of knowledge (Cichocki et al.,
2016). However, for the FPE, this approach is not yet
widely used. We note the works (Dolgov et al., 2012; Sun
and Kumar, 2014; Sun and Kumar, 2015; Dolgov, 2019; Fox
et al., 2020) in which the low-rank TT-decomposition was
proposed for solution of the multidimensional FPE. In these
works, the differential operator and the right-hand side of the
system are represented in the form of TT-tensor. Moreover, in
paper (Dolgov et al., 2012) the joint discretization of the
solution in space-time is considered. The difference of our
approach from these works is its more explicit iterative form
for time integration, as well as the absence of the need to
represent the right hand side of the system in a low-rank
format, which allows to use this approach in machine learning
applications.

FIGURE 5 | Computed values (A) and the effective TT-rank (B) for the
three-dimensional dumbbell problem.

14As values for comparison, we used the result of the most accurate calculation
from work (Dolgov et al., 2012), within which ψ̂(t � 10) � 2.071143, and
η̂(t � 10) � 1.0328125.
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7 CONCLUSION

In this paper we proposed the novel numerical scheme for
solution of the multidimensional Fokker–Planck equation,
which is based on the Chebyshev interpolation and spectral
differentiation techniques as well as low rank tensor
approximations, namely, the tensor train decomposition and
cross approximation method, which in combination make it
possible to drastically reduce the number of degrees of
freedom required to maintain accuracy as dimensionality
increases.

The proposed approach can be used for the numerical analysis
of uncertainty propagation through nonlinear dynamical systems
subject to stochastic excitations, and we demonstrated its
effectiveness on a number of multidimensional problems,
including Ornstein-Uhlenbeck process and dumbbell model.

As part of the further development of this work, we plan to
conduct more rigorous estimates of the convergence of the
proposed scheme, as well as formulate a set of heuristics for
the optimal choice of number of time and spatial grid points and
tensor train rank. Another promising direction for further
research is the application of established approaches and

developed solver to the problem of density estimation for
machine learning models.
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