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Abstract. In this work, we present results of quantum detector tomography of superconducting 

single photon detector (SSPD) based on MoSi film, and compare them with previously 

reported data on NbN. We find that for both materials hot spot interaction length coincides 

with the strip width, and the dependence of single and double-spot detection efficiencies on 

bias current are compatible with sufficiently large hot-spot size, approaching the strip width. 

1. Introduction 

The first observation of single- and double- photon modes of operation of a superconducting single-

photon detector was demonstrated in [1]. When a photon hits a strip of superconductor a special area 

appears, called a hot spot. For estimation of hot spot dimensions in literature, a diffusion coefficient in 

normal state is used, which could lead to some inaccuracies. Direct method of hot spot sizes 

measurement, was introduced by Renema et al. [2]. They used nanowires with width from 100 nm to 

400 nm. But nonuniform distribution of the current and absence of saturation of detection efficiency 

(DE) makes the interpretation difficult. After that Elezov et al. [3] used a nanowire with length of 500 

nm, but the impact of double-photon counts was comparably small. Afterwards, in our work [4] a 

samples on waveguides with different width from 80 to 280 nm, were fabricated.  Number of absorbed 

photons is known exactly (due to 100% internal DE and 100% absorption). But the total length of 80-

280 nm, was yet too long. Previously we reported a usage of our protocol to specially fabricated 

samples of NbN [5]. The interaction length for hot spots was obtained and was equal to 70 nm. In this 

work we apply our method to the samples of made of MoSi films, and compare results with the 

obtained previously on NbN samples.  

2. Experimental results 

We have measured the dependences of the probability of count on the mean number of photons 

absorbed from the laser pulse for the sample made of MoSi film. The fabrication root was the same as 

described [5]. The sample has width (w) of 100 nm and length of 2 um. Then we processed the data 

using our protocol of quantum tomography [4], to extract the dependence of the internal double-spot 

detection efficiency (IDE2) on the bias current I and the hot-spot interaction length s.   
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Figure 1. Single- and double-spot internal detection efficiency versus the critical current 

(Ic) normalized to the deparing current (Idep). Red dots correspond to NbN, green dots to 

MoSi; squares correspond to single-spot counts, circles to double-spot counts. 

Figure 1. shows plot of IDE2(I), together with the single-spot internal detection efficiency IDE(I) 

for the same sample, measured directly at small mean number of photons, and the pair of IDE, IDE2 

for the NbN sample with the same dimensions measured in our previous work [5]. To facilitate 

comparison between IDE’s and samples, we normalized I to the depairing current Idep calculated for 

MoSi and NbN samples using standard expression of the Usadel theory. Also, we normalized IDE’s to 

their values at saturation. One sees that the detector made of MoSi film show saturation of IDE and 

IDE2 at a lower I/Idep value than the detector made of NbN film, which is consistent with the idea that 

hot spots in MoSi are more efficient than hot spots in NbN, because of their greater size and ‘depth’ 

[6]. The value of s for MoSi sample turned out to be about 70 nm, which within the measurement 

accuracy coincides with s in NbN sample and with the width of the sample. These finding is consistent 

with the assumption that the size of the hot spot is not greater neither much smaller than the width of 

the sample, in which case one expects s ≈ w [5], and also with the estimate on the hot-spot size d ≈ 50 

nm [6].. 

3. Discussion 

If we compare the behavior the IDE(I) (green square for MoSi film and red open square for NbN film) 

and IDE2(I) behavior (green circles for MoSi and open red circles for NbN strips), then we can notice 

that for each of the samples its IDE2(I) grows steeper than IDE(I).  

Following [7], the finite width of the region where IDE(I) turns from IDE << 1 to IDE ≈ 1, is 

because of the dependence of the ‘detection current’ Idet on the position of the center of the hot spot 

with respect to the edge of the strip. The greater the hot spot compared to w, the slower the 

dependence. To give an insight why this is so, note that in the limit of the hot spot diameter greater 

than the w strip, the position and the shape of the hot spot depends very weakly on the position of its 
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nominal center (i.e. the point there the photon was absorbed), hence Idet is just independent on this 

position. At this, the dependency IDE(I) would look like step function: at I < Idet – probability of 

detection is zero, at I > Idet - probability of detection is one. In the case when the hot spot is very 

small the dependence IDE(I) is smeared and looks like sigmoidal function. The same argumentation 

can be applied also to double-spot counts and to IDE2(I), with rough replacement of the single spot 

size to the size of two spots. Hence for the spot with the size d ≤ w one expects steeper growth of 

IDE2(I) with current than of IDE(I). Basing on this, we suppose that behaviour, which we can observe 

in the figure 1, correspond for the case, when the hot spot size is large enough but does not exceed the 

width of the strip. 

4. Conclusion 

In conclusion, our data on MoSi sample, in comparison with NbN sample, indicate that hot spot in 

NbN is big and the MoSi hot spot is even bigger but never the less is less than width of the strip.  With 

the additional study obtained dependencies, it will the possible to compare the hot spot interaction 

length, obtained by our method, with the hot spot size. 
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