Эмпирическая оценка эффективности инновационной политики в российских регионах

Дмитрий Терещенко

НИУ «Высшая школа экономики»,

Санкт-Петербургская школа экономики и менеджмента

dtereshchenko@hse.ru

Пятый Российский экономический конгресс Екатеринбург, 13 сентября 2023 Эффективность инновационной политики

> Дмитрий Терещенко

Введение

VIетоды

.

СЗУЛЬТАТЬ

Эосуждение

Мотивация

 Россия в XXI веке столкнулась с несколькими экономическими кризисами, вызванных как внешними, так и внутренними причинами, а также их сочетанием.

- Актуальность глубокого изучения кризисного и посткризисного развития экономики во всех ее аспектах.
- Одними из таких аспектов являются инновации и инновационная политика.
- Основной вклад данного исследования анализ прямых и косвенных эффектов инновационной политики на инновационную активность в предположении о различии этого эффекта для различных периодов времени.
- Кроме того, работа призвана расширить знания об эффективности инновационной политики в контексте российских регионов с использованием инструментария пространственной эконометрики.

Эффективность инновационной политики

Дмитрий Терещенко

Введение

Иетоды

D-----

Летоды

Результаты

- ▶ Позитивный эффект региональной политики для инноваций и экономики подчеркивается во многих исследованиях (Frenkel, 2000, Mukkala, 2010, Antonioli et al., 2014, Gennaro & Pellegrini, 2019), однако в них не проводится различий между благополучными и кризисными периодами.
- В кризис роль инноваций можнет меняться, причем отмечаются положительные (Hart, 2009), отрицательные (Filippetti & Archibugi, 2011, Lee et al., 2015) и неоднозначные (Laperche et al., 2011, Archibugi et al., 2013) тенденции в инновационной активности.
- ▶ В том числе нет однозначного ответа о влиянии кризисов на инновациии в России (Гохберг & Кузнецова, 2009, Грасмик, 2018, Моисеева & Архарова, 2019).
- Существуют различные меры политики, которые могут быть эффективны для стимулирования инноваций в условиях кризиса. Например, Borowiecki & Dziura (2010) подчеркивают, что правительствам следует принимать долгосрочные макроэкономические меры в дополнение к пакетам стимулирующих мер, и при этом следить за тем, чтобы вмешательство не противоречило рыночным принципам.

Модель

Модель с прямыми и косвенными эффектами:

$$\Delta y_{it} = \beta_1 p_{it} + \beta_2 p_{it} r d_{it} + \beta_3 r d_{it} + \gamma_1 \bar{p}_{it} + \gamma_2 \bar{p}_{it} r \bar{d}_{it} + \gamma_3 r \bar{d}_{it} + \gamma_4 r \bar{d}_{it} + \gamma_5 r \bar{d}_{i$$

Модель с разными эффектами по годам:

$$\Delta y_{it} = \sum_{j=2008}^{2016} \mathbf{1} \{j = t\} (\beta_1^j p_{it} + \beta_2^j p_{it} r d_{it}) + \sum_{j=2008}^{2016} \mathbf{1} \{j = t\} (\gamma_1^j \bar{p}_{it} + \gamma_2^j \bar{p}_{it} r \bar{d}_{it}) + y_{i,t-1} + \dots + \alpha_i + \nu_t + u_{it}$$

Эффективность инновационной политики

Дмитрий

Терещенко

Методы

Проверяемые гипотезы

- Гипотезы о предельных эффектах
 - Прямой эфффект в год *j*

$$ME_{direct}^{j} = \beta_1^{j} + \beta_2^{j} rd = 0$$

Косвенный эффект в год ј

$$ME_{indirect}^{j} = \gamma_{1}^{j} + \gamma_{2}^{j} rd = 0$$

Совместная значимость

$$\beta_1^{2008} = \beta_2^{2008} = \dots = \beta_1^{2016} = \beta_2^{2016} = 0$$

$$\gamma_1^{2008} = \gamma_2^{2008} = \dots = \gamma_1^{2016} = \gamma_2^{2016} = 0$$

Эффективность инновационной политики

Дмитрий Терещенко

Введение

Методы

Pesyntati

Источники и набор данных

Набор данных:

- сбалансированная панель
- **2008–2016**
- 64 региона (после удаления выбросов и регионов с пропущенными значениями)

Источники данных:

- ▶ Регионы России (Росстат, 2022)
- ▶ Рейтинг инновационного развития субъектов РФ (НИУ ВШЭ, все выпуски)

Эффективность инновационной политики

Дмитрий Терещенко

Введение

Методы

Данные

Результать

Эбсуждение

Результать

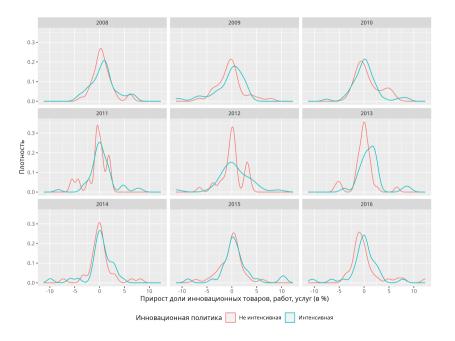
- ▶ Зависимая переменная годовой прирост доли инновационных товаров, работ, услуг в регионе (в процентах)
- ▶ Переменная интереса «интенсивность» инновационной политики в регионе:
 - Показатель формировался путем подсчета действующих в регионе в конкретный год элементов инновационной политики, таких как «наличие инновационной стратегии ...», «наличие в схеме территориального планирования выделенных зон (территорий) приоритетного развития инновационной деятельности», «наличие специализированного законодательного акта ...», «наличие специализированной программы или комплекса мер государственной поддержки развития инноваций ...».
 - Итоговый показатель интенсивности инновационной политики приравнивается к единице, если в регионе реализованы хотя бы 3 из 4 перечисленных элементов, и принимается равным нулю в противном случае.

Описательные статистики (в зависимости от интенсивности инновационной политики)

Эффективность инновационной политики

Дмитрий Терещенко

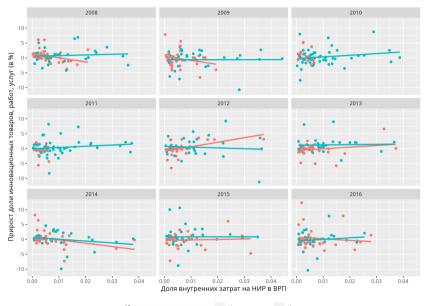
ведение


.

Данные

езультаты

. Эбсуждение


	Не интенсивная				Интенсивная			
	mean	sd	min	max	mean	sd	min	max
sig_diff	0.04	2.50	-7.30	12.30	0.36	2.94	-11.24	10.60
sig_lag	4.50	4.68	0.00	25.50	5.72	4.56	0.02	21.10
rde_sh	0.01	0.01	0.00	0.04	0.01	0.01	0.00	0.04
resorg10000	8.17	3.14	2.10	21.05	8.53	3.34	2.07	20.65
stud10000	383.49	104.46	184.50	784.00	411.58	169.45	52.50	1251.50
man_sh	0.53	0.29	0.04	1.34	0.57	0.29	0.02	1.52
empl_sh	0.93	0.02	0.82	0.99	0.94	0.02	0.86	0.99

> Дмитрий Терещенко

Введение

Данные

Дмитрий Терещенко

Введение

Данные

Описательные результаты

(2008)	(2009)	(2010)	(2011)	(2012)
-0.884	-1.387	-2.531+	-0.425	2.446+
(0.985)	(1.198)	(1.397)	(1.295)	(1.252)
161.010	136.973	430.104	212.560	-258.891
(130.794)	(126.804)	(263.602)	(372.498)	(160.693)
`-0.727 ´	3.121	-10.264+	4.603	-9.121*
(3.036)	(2.937)	(5.935)	(5.541)	(3.500)
23.820	-214.841	871.980	-1133.447	894.149**
(337.816)	(305.503)	(640.322)	(685.379)	(272.548)
	-0.884 (0.985) 161.010 (130.794) -0.727 (3.036) 23.820	-0.884 -1.387 (0.985) (1.198) 161.010 136.973 (130.794) (126.804) -0.727 3.121 (3.036) (2.937) 23.820 -214.841	-0.884 -1.387 -2.531+ (0.985) (1.198) (1.397) 161.010 136.973 430.104 (130.794) (126.804) (26.502) -0.727 3.121 -10.264+ (3.036) (2.937) (5.935) 23.820 -214.841 871.980	-0.884 -1.387 -2.531+ -0.425 (0.985) (1.198) (1.397) (1.295) 161.010 136.973 430.104 212.560 (130.794) (126.804) (263.602) (372.498) (-0.727 3.121 -10.264+ 4.603 (3.036) (2.937) (5.935) (5.541) 23.820 -214.841 871.980 -1133.447

	(2013)	(2014)	(2015)	(2016)
intensity	1.678+	-0.669	0.813	-0.805
	(0.963)	(0.938)	(1.230)	(1.277)
intensity:rde sh	-42.293	92.732	72.156	46.876
_	(119.528)	(110.199)	(121.664)	(124.955)
wintensity	-1.395	4.197+	-4.795	0.217
-	(3.286)	(2.392)	(3.556)	(4.647)
wintensity:wrde sh	137.063	-393.168	616.058+	-294.642
_	(282.425)	(286.510)	(360.832)	(432.091)

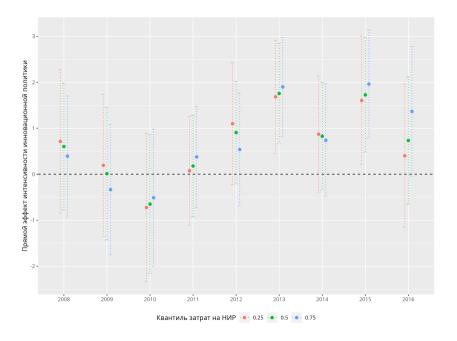
⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Зависимая переменная — sig_diff

Все модели включают константу, rde_sh, wrde_sh

Эффективность инновационной политики

> Дмитрий Терещенко

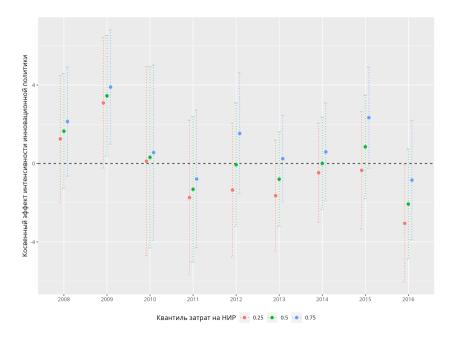

Введение

viетоды

Результаты

Эбсуждение

В скобках даны робастные стандартные ошибки



Дмитрий Терещенко

Введение

VIетоды

Результаты

> Дмитрий Терещенко

Введение

методы

Результаты

Основные выводы

- Годовые прямые и косвенные эффекты интенсивности инновационной политики и их кросс-произведения с затратами на НИР по отдельным годам совместно значимы.
- Прямые и косвенные предельные эффекты интенсивности инновационной политики значимы только для некоторых лет и некоторых значенияй затрат на НИР.

Эффективность инновационной политики

> Дмитрий Терещенко

Введение

Иетоды

Результаты

Дальнейшие шаги

- Проверка воспроизводимости результатов на других пространственно-эконометрических моделях.
- ▶ Борьба с эндогенностью путем подбора инструментальных переменных и методов работы с динамическими панелями (difference GMM, system GMM).

Эффективность инновационной политики

> Дмитрий Терещенко

Зведение

Иетоды

Результать