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Abstract: The paper addresses the problem of exact average-consensus reaching in a prespeci-
fied time. The communication topology is assumed to be defined by a weighted undirected graph
and the agents are represented by integrators. A nonlinear control protocol which ensures a finite-
time convergence is proposed. With the designed protocol, any a priori specified convergence
time can be guaranteed regardless of the initial conditions.
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1. INTRODUCTION

The consensus or agreement problem is a key problem in
decentralized cooperative control of multi-agent systems
Olfati-Saber et al. (2007), Ren & Cao (2011). This is partly
due to many important applications in control of space-
crafts, mobile robots, UAVs, sensor networks and other
fields such as optimization. In the leaderless consensus
problem, all nodes/agents are required to converge to a
common value which is not prespecified in advance (in
other words, the disagreement between the agents in the
system is to be minimized to zero).

In Olfati-Saber & Murray (2004), a classical continuous
linear consensus control protocol was studied for networks
of integrators. It was shown that the second smallest eigen-
value of the Laplacian matrix of the interaction graph,
called algebraic connectivity, determines the convergence
rate of consensus algorithms. Evidently, the protocols that
provide high convergence rate are more preferred in ap-
plications. In Xiao & Boyd (2004), Shafi et al. (2011),
the problems of vertex/edge weight design were considered
that provide the desired spectra of the graph Laplacians.
It should be noted that, by maximizing the algebraic
connectivity, a better performance of linear algorithms can
be obtained; however, the agreement still can be reached
just asymptotically. Moreover, the convergence time essen-
tially depends on the initial conditions of the agents. On
the other hand, in numerous practical applications, the
transient processes are to be completed in a prescribed
time.

The main objective of this paper is to design an average-
consensus control protocol which provides the multi-agent
system with the finite-time convergence property; on top
of that, any guaranteed settling time is to be specified in
advance regardless of the initial positions of the agents.

⋆ The work is supported by RFBR through grant No. 13-07-00990.

The theory of finite-time stability and stabilization prob-
lems has been the subject of intensive research in the
recent years; e.g., see Haimo (1986), Bhat & Bern-
stein (2000), Moulay & Perruquetti (2006), Orlov (2009),
Polyakov & Poznyak (2012). For use of finite-time con-
trol ideology in consensus problems, see Cortés (2006),
Hui et al. (2010), Wang & Xiao (2010), Xiao et al.
(2009). Finite-time stability analysis usually exploits the
theory of non-smooth Lyapunov functions and involves
such concepts as weak and strong stability, differential
inclusions, generalized gradients and derivatives, Roxin
(1966), Hui et al. (2010).

Obviously, there is a great need in finite-time consensus
algorithms; moreover algorithms that guarantee any pre-
defined convergence time regardless of the initial condi-
tions of the agents are most desired. The corresponding
modification of the finite-time stability was called fixed-
time stability in Polyakov (2012). Fixed-time algorithms
can also be found in Andrieu et al. (2008) and Cruz-
Zavala et al. (2011). In Parsegov et al. (2012), a fixed-time
control protocol for a specific formation control problem
was designed.

Polynomial state feedback control system design has at-
tracted considerable attention in nonlinear control, see
Ebenbauer & Allgöwer (2006). This class of control sys-
tems appears in models of a wide range of applications
such as chemical processes, electronic circuits and mecha-
tronics, biological systems, etc.

This paper presents new consensus control protocols of the
polynomial type which guarantee fixed-time convergence
to a common value.

The paper is organized as follows. The next section
presents the notations used in the paper. Section 3 dis-
cusses the statement of the problem and basic assump-
tions, while Section 4 introduces mathematical prelimi-
naries needed for further exposition. The main theoretical
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result is formulated and proved in Section 5. Finally, the
results of numerical simulations and conclusions are given.

2. NOTATIONS

The following notation will be used throughout the paper:

• R is the set of real numbers; R+ = {x ∈ R : x > 0};
• D∗φ(t) denotes the upper right-hand Dini derivative
of the function φ : R → R at the point t ∈ R, i.e.

D∗φ(t) := lim sup
h→+0

φ(t+ h)− φ(t)

h
;

• the following sign-preserving exponentiation operator
is used:

s[k] := sign(s)|s|k, (1)
where s ∈ R and sign(s) is the sign function

sign(s) =

{
1 if s > 0,
−1 if s < 0,
0 if s = 0.

For instance, (−2)[2] = −4.
For the matrix variable A ∈ Rn×m, this operator

A[p] is understood componentwise. For example,

A =

[
1 −2
3 0

]

, A[2] =

[
1 −4
9 0

]

.

• λ∗(P ) is the smallest positive eigenvalue of the sym-
metric matrix P ∈ Rn×n : P = P⊤;

• for any p ≥ 1, the lp-norm of the vector z ∈ Rn is
defined by

∥z∥p :=

(
n∑

i=1

|zi|p
) 1

p

; (2)

• the unit vector is defined by 1n = [1, 1, . . . , 1]⊤ ∈ Rn;
• given ν = [ν1, ..., νn]

⊤ ∈ Rn, the notation diag(ν)
is used for the diagonal matrix with the elements
νi ∈ R, i = 1, 2, ..., n.

3. PROBLEM STATEMENT

We consider a group of n numbered mobile agents. Let
their positions at time t ≥ 0 be denoted by xi(t) ∈ R, i =
1, 2, ..., n. The dynamic model of each agent is described
by a simple integrator:

ẋi = ui, i = 1, 2, . . . , n, (3)

where ui ∈ R is the state feedback, called control protocol,
to be designed based on the information received by agent i
from its neighbors, and x = [x1, x2, . . . , xn]

⊤.

The objective in this paper is to design a feedback control
protocol ui which

• solves the average-consensus problem in a fixed time
for all initial conditions, i.e.

∃Tmax ∈ R+ : xi(t) = x∗, t > Tmax,

where i = 1, 2, ..., n, and x∗ := (1/n)
n∑

i=1

xi(0);

• exploits only the local information about the dis-
tances of the agent from its neighbors according to
the communication topology, i.e.

ui =
n∑

j=1

ϕij

(

xj − xi

)

, i = 1, 2, . . . , n, (4)

where ϕij are continuous functions of distances for all
i, j, and ϕij = 0 if the corresponding agents are not
connected.

Below, we consider some helpful notions, definitions and
auxiliary lemmas needed for further discussion.

4. PRELIMINARIES

4.1 Graphs and Linear Consensus Protocol

Algebraic graph theory plays an important role in the anal-
ysis of consensus problems. Each agent of a multi-agent
system communicates with some of the agents according
to the communication topology (structure of the system).
Such a structure can be represented by a (generally speak-
ing) directed graph. In this work, we consider undirected
graphs which are connected and do not contain self-edges.

We use the weighted undirected graph G(A) to represent
the communication topology, where A = [aij ], i, j =
1, 2, . . . , n, is referred to as the weighted adjacency matrix.
Each agent in the multi-agent system is associated with
a vertex in the graph, and aij is thought of as a weight
(capacity) of the information channel represented by the
edge {i, j}. For aij = 0, there is no edge between the
corresponding vertices/agents. The undirected topology
simply means that the neighboring agents receive the same
information about the distances between them.

Note that under the assumptions above, a well-known
linear control protocol Olfati-Saber & Murray (2004),
Chebotarev & Agaev (2009) of the form

ui =
n∑

j=1

aij(xj − xi), i = 1, 2, . . . , n, (5)

does solve the average-consensus problem; however the
agents reach consensus asymptotically and the settling
time depends on the initial conditions.

The dynamics of the multi-agent system (3) under control
protocol (5) can be rewritten in the vector form

ẋ = −Lx, (6)

where the n × n symmetric matrix L defined by L =
diag(A1n)−A is referred to as the Laplacian of the graph
G(A).
The following properties of the matrix L of an undirected
graph are important for the analysis of consensus problems
(see Olfati-Saber & Murray (2004), Chebotarev & Agaev
(2009), Ren & Cao (2011)):

• L has at least one zero eigenvalue with the associated
eigenvector 1n;

• L has a simple zero eigenvalue if and only if the
corresponding graph is connected;

• the quadratic form x⊤Lx = 1
2

∑n
i,j=1 aij(xj − xi)

2 is
positive semidefinite, i.e., all nonzero eigenvalues of L
are positive;

• for a connected graph, the second smallest eigenvalue
λ∗(L) = λ2(L) is called the algebraic connectivity
of L; it quantifies the rate of convergence of consensus
algorithms;

• for the algebraic connectivity we have
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min
∥x∥2 ̸=0, 1⊤

n x=0

x⊤Lx
∥x∥22

= λ∗(L) > 0; (7)

therefore,
n∑

i=1

xi = 0 implies x⊤Lx ≥ λ∗(L)x⊤x.

4.2 Fixed-time Convergence

Let us consider the following system:

ż = g(t, z), z(0) = z0, (8)

where z ∈ Rn and g : R+ ×Rn → Rn is a possibly discon-
tinuous nonlinear function. In this case, the solutions of (8)
are understood in the sense of Filippov (1988). Assume
that the origin is an equilibrium point of system (8).

Definition 1. (Bhat & Bernstein (2000)). The origin is
said to be a globally finite-time stable equilibrium point
for system (8) if it is globally asymptotically stable and
any solution z(t, z0) of (8) attains it in finite time, i.e.,
z(t, z0) = 0 ∀ t ≥ T (z0), where T : Rn → R+ ∪ {0} is the
settling-time function.

For example, any solution of the system ż = −z
1
3 , z ∈ R,

converges to the origin in the finite time T (z0) :=
2
3

3
√

|z0|2.

Definition 2. (Polyakov (2012)). The origin is said to be
a fixed-time stable equilibrium point of system (8) if it is
globally finite-time stable and the settling-time function
T (z0) is bounded, i.e. there exists Tmax > 0: T (z0) ≤ Tmax

∀ z0 ∈ Rn.

For example, the origin is a fixed-time stable equilibrium
point of the system

ż = −z[
1
2 ] − z[2], z ∈ R, z(0) = z0,

since its solution has the form

z(t,z0) =







sign(z0) tan
2

(
T (z0)− t

2

)

, 0 ≤ t ≤ T (z0),

0, t > T (z0),

where T (z0) = 2 arctan(
√

|z0|) ≤ π.

Lemma 3. (Polyakov (2012)). If there exists a continuous
radially unbounded function V : Rn → R+∪{0} such that

(1) V (z) = 0 ⇔ z = 0;
(2) any solution z(t) of (8) satisfies the inequality

D∗V (z(t)) ≤ −(αV p(z(t)) + βV q(z(t)))k for some
α, β, p, q, k > 0: pk < 1, qk > 1,

then the origin is globally fixed-time stable for system (8)
and the following estimate of the settling time holds:

T (z0) ≤
1

αk(1− pk)
+

1

βk(qk − 1)
, ∀ z0 ∈ R

n.

This lemma together with its refinement given below are
the cornerstones for the design of the nonlinear fixed-time
average-consensus control protocol.

Consider the special case where the constants p and q are
of the form p = 1− 1

2γ and q = 1 + 1
2γ , γ > 1.

Lemma 4. (Parsegov et al. (2012)). If there exists a con-
tinuous radially unbounded function V : Rn → R+ ∪ {0}
such that

(1) V (z) = 0 ⇔ z = 0;

(2) any solution z(t) of (8) satisfies the inequality
D∗V (z(t)) ≤ −αV p(z(t))−βV q(z(t)) for some α, β >
0, p = 1− 1

2γ , q = 1 + 1
2γ , γ > 1,

then the origin is globally fixed-time stable for system (8)
and the following estimate of the settling time holds:

T (z0) ≤ Tmax :=
πγ√
αβ

∀ z0 ∈ R
n.

The lemma above provides a more precise estimate of the
settling time (see Parsegov et al. (2012) for the details).

In the next section we propose a new fixed-time consensus
control protocol and study its rate of convergence using
the results of Lemma 3 and Lemma 4.

5. FIXED-TIME CONSENSUS CONTROL
PROTOCOL

Consider now the situation where every edge {i, j} is
associated with some function ϕij that satisfy

ϕij

(

xj − xi

)

= −ϕji

(

xi − xj

)

(9)

for any two neighboring agents i, j, and ϕij ≡ 0 if there is
no edge between them. In Olfati-Saber & Murray (2004),
the functions ϕij are referred to as action functions.

Recall that s[k] := sign(s)|s|k (see Section 2) and choose
the following action functions that meet condition (9):

ϕij = α(aij(xj − xi))
[µ] + β(aij(xj − xi))

[ν]. (10)

Here α, β ∈ R+, µ ∈ (0, 1), ν > 1, are the control
parameters and aij = aji ≥ 0, i, j = 1, 2, . . . , n, are the
elements of the adjacency matrix A.

Theorem 5. Consider system (3) with connected commu-
nication topology, i.e. the graph G(A) is connected. Then,
under the control protocol (4) with action functions (10),
system (3) solves the average-consensus problem in finite
time which is globally bounded by T 1

max:

T 1
max =

2

ᾱ(1− µ)
+

2

β̄(ν − 1)
, ∀x0 ∈ R

n, (11)

where

ᾱ = α2µ (λ∗(Lµ))
µ+1
2 , β̄ = β2νn

1−ν
2 (λ∗(Lν))

ν+1
2 .

Here, α, β ∈ R+, µ ∈ (0, 1) and ν > 1 are the control
parameters, Lµ and Lν are the Laplacians of the graphs

G
(

A[
2µ

µ+1 ]
)

and G
(

A[ 2ν
ν+1 ]

)

, respectively.

Proof. The proof uses some ideas introduced in Olfati-
Saber & Murray (2004) for nonlinear action functions φij

of the general form.

Namely, denote

x∗ := (1/n)

n∑

i=1

xi(0)

and introduce the vector δ = [δ1, δ2, . . . , δn]
⊤

called dis-
agreement, xi(t) = x∗ + δi(t). It is easy to see that

δ̇i(t) = ẋi(t) and xj − xi = δj − δi for all i, j = 1, 2, . . . , n.

Since equality (9) holds, we have
n∑

i=1

ẋi(t) = 0. (12)
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Hence, (1/n)
∑n

i=1 xi(t) = (1/n)
∑n

i=1 xi(0) = x∗ and
n∑

i=1

δi(t) = 0, ∀ t > 0. (13)

Therefore, average consensus will follow from the stability
of the system

δ̇i =
n∑

j=1

ϕij

(

δj − δi

)

, i = 1, 2, . . . , n. (14)

To prove stability, introduce now the following Lyapunov
function candidate:

V (δ) = 1
2δ

⊤δ = 1
2

n∑

i=1

δ2i . (15)

Its total derivative is computed as

V̇ (δ) =
n∑

i=1

δiδ̇i =
n∑

i=1

δi

n∑

j=1

ϕij

(

δj − δi

)

.

Taking property (9) into account, we obtain

V̇ (δ) =
n∑

i=1

n∑

j=1

δiϕij

(

δj − δi

)

= 1
2

n∑

i=1

n∑

j=1

δiϕij

(

δj-δi

)

+ 1
2

n∑

i=1

n∑

j=1

δjϕji

(

δi-δj

)

= 1
2

n∑

i=1

n∑

j=1

δiϕij

(

δj-δi

)

− 1
2

n∑

i=1

n∑

j=1

δjϕij

(

δj-δi

)

=−1
2

n∑

i=1

n∑

j=1

(δj − δi)ϕij

(

δj − δi

)

. (16)

Since s = sign(s)|s|, relations (10) and (16) imply

V̇ (δ) = 1
2

n∑

i,j=1

(δi − δj)
(

αaµij(δj − δi)
[µ]+βaνij(δj − δi)

[ν]
)

=− 1
2

n∑

i,j=1

(
αaµij |δj − δi|µ+1+βaνij |δj − δi|ν+1

)
≤ 0.

Since 1 < µ+1 < 2, ν+1 > 2, we use the norm equivalence
property:

∥z∥l ≤ ∥z∥r ≤ n2( 1
r−

1
l )∥z∥l

for any z ∈ Rn2

and l > r > 1 (where ∥ · ∥p is defined by

(2)). Evidently, ∥z∥2 ≤ n1− 2
ν+1 ∥z∥ν+1 and ∥z∥2 ≤ ∥z∥µ+1.

With this in mind, we evaluate V̇ (δ) as follows:

V̇ (δ)≤− 1
2α





n∑

i,j=1

a
2µ

µ+1

ij (δj − δi)
2





µ+1
2

− 1
2βn

1−ν





n∑

i,j=1

a
2ν

ν+1

ij (δj − δi)
2





ν+1
2

.

Next, from (7) and (13) we have

n∑

i,j=1

a
2µ

µ+1

ij (δj − δi)
2 = 2δ⊤Lµδ ≥ 4λ∗(Lµ)V (δ) (17)

and
n∑

i,j=1

a
2ν

ν+1

ij (δj − δi)
2 = 2δ⊤Lνδ ≥ 4λ∗(Lν)V (δ). (18)

Taking (17), (18), and (13) into account we arrive at

V̇ (δ(t)) ≤− 2µα(λ∗(Lµ))
µ+1
2 V

µ+1
2

− 2νβn1−ν(λ∗(Lν))
ν+1
2 V

ν+1
2 .

Introduce now the following quantities: p = µ+1
2 , q = ν+1

2 ,

ᾱ = 22p−1α(λ∗(Lµ))
p, β̄ = 22q−1βn2(1−q)(λ∗(Lν))

q.

Then the total derivative of the Lyapunov function com-
puted along the trajectories of (14) satisfies the following
inequality

V̇ (δ(t)) ≤ −ᾱV p(δ(t))− β̄V q(δ(t)), (19)

ᾱ, β̄ > 0, 0 < p < 1, q > 1.

By Lemma 3, this immediately implies that the origin
is a fixed-time stable equilibrium point of the auxiliary
system (14), and estimate (11) for the settling time holds.
The proof is complete.

The theorem presents quite a conservative settling time
estimate, since its proof is based on the results of Lemma 3.
A more accurate estimate can be derived with the use of
Lemma 4 as formulated in the corollary below.

Corollary 6. If, under the conditions of Theorem 5, the
parameters µ and ν of protocol (4), (10) are chosen as
µ = 1 − 1

γ , ν = 1 + 1
γ for some γ > 1, then the settling

time can be estimated by the following value

T 2
max :=

πγn
1
2γ

2
√
αβ
(
λ∗(Lµ)

) 1
2−

1
4γ
(
λ∗(Lν)

) 1
2+

1
4γ

. (20)

The proof immediately follows from inequality (19) and
Lemma 4.

We therefore have designed the fixed-time average-consen-
sus control protocol and obtained the two estimates of
the settling time. We conclude this section with a brief
discussion on the practical aspects of the algorithms of
this sort.

Fixed-time control protocols possess higher theoretical
rates of convergence as compared to both finite-time
and linear protocols. Moreover, this is also the case in
real-life applications, where so-called “practical stability
concept” is of primary interest. Indeed, under practical
realization, control protocols provide only convergence
to a neighborhood of the origin. This is explained by
the presence of various unavoidable “impurities” such
as system uncertainties, exogenous disturbances, delays,
measurement noises, etc.

Hence, in practice both finite-time and linear protocols
expose similar qualitative behavior; namely, they provide
finite-time convergence to the neighborhood of the origin.
Moreover, in practical applications finite-time algorithms
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are only locally faster than the linear ones. In contrast,
the fixed-time control guarantees convergence to the same
region in a fixed time which can be pre-specified a priori
regardless of the initial conditions. The rate of convergence
is higher than that of finite-time and linear protocols
globally and locally. A more detailed analysis of the
practical fixed-time stability is given in Polyakov (2012).

5.1 An Illustrative Example

To demonstrate the efficiency of the proposed fixed-time
consensus protocol, we consider the multi-agent system
which consists of six agents with integrator dynamics (3)
and the interaction topology defined by the weighted
undirected graph depicted in Fig. 1.

Fig. 1. Structure of the system.

For the same initial conditions

x(0) = x0 := [350, 100, 200, 250, 400, 500]⊤,

Fig. 1 presents the results of simulations for the linear
and the proposed nonlinear control protocols. The values
of the parameters of the fixed-time control law (4), (10)
were chosen as

α = β = 1,

and
γ = 1.1,

leading to
µ ≈ 0.091, ν ≈ 1.909.

0 0.5 1 1.5 2
100

150

200

250

300

350

400

450

500

time

st
at

es

fixed−time average consensus

 

 
linear system
nonlinear system

Fig. 2. The trajectories of the system under the linear and
the proposed nonlinear protocols.

The results obtained confirm the theoretical conclusions of
Theorem 5 showing fixed-time convergence to the average
consensus in the nonlinear case.

The actual convergence time was approximately computed
as T (x0) ≈ 1.647, while the estimates given by Theorem 5
and Corollary 6 were found as

T 1
max ≈ 4.885, T 2

max ≈ 3.829. (21)

It is seen that the second estimate is much more accurate.

6. CONCLUSIONS

The contribution of the paper is the following:

• a nonlinear control protocol to solve an average-
consensus problem is developed;

• it is proved that the guaranteed settling time for
the system can be specified in advance regardless
of the initial conditions of the agents (fixed-time
convergence);

• the two different estimates for the settling time are
obtained;

• as compared to the finite-time and linear consensus
control protocols known from the literature, the fixed-
time protocol proposed in this paper is guaranteed to
have better convergence both globally and locally.

Clearly, the proposed algorithm is not free of drawbacks.
For instance, it assumes the exact measurements of dis-
agreements (though this undesirable property is somewhat
inherited from the finite-time case). Next, we considered
only undirected topologies, while directed graphs might
represent more adequate models of interaction. These
problems will be the subject of future research.

The theoretical results were successfully tested through
several numerical experiments. The fixed-time stability
framework applied in the paper looks promising in various
multi-agent problems.
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