
Second-Order Agents on Ring Digraphs
Sergei Parsegov

Skolkovo Institute of Science and Technology;
V.A. Trapeznikov Institute of Control Sciences

of Russian Academy of Sciences
Moscow, Russia

s.parsegov@skoltech.ru

Pavel Chebotarev
V.A. Trapeznikov Institute of Control Sciences

of Russian Academy of Sciences;
V.A. Kotelnikov Institute of Radioengineering and Electronics

of Russian Academy of Sciences
Moscow, Russia

pavel4e@gmail.com

Abstract—The paper addresses the problem of consensus
seeking among second-order linear agents interconnected in a
specific ring topology. Unlike the existing results in the field
dealing with one-directional digraphs arising in various cyclic
pursuit algorithms or two-directional graphs, we focus on the case
where some arcs in a two-directional ring graph are dropped in
a regular fashion. The derived condition for achieving consensus
turns out to be independent of the number of agents in a network.

Index Terms—ring digraph, cyclic pursuit, second-order agents

I. INTRODUCTION

Simple averaging control laws based on local interactions
have paved the way to a new class of models in modern control
theory and, more widely, in the interconnected dynamical
systems theory. Such systems consist of a large (as usual)
number of identical subsystems and are supposed to achieve
certain global goals. The subsystems, or agents, are coupled
in some way and therefore share an amount of common
information. During the last 15 years, the complexity of
models of networked systems increased significantly starting
from a simple continuous-time consensus model (surprisingly
first proposed by sociologists in 1964 and rediscovered much
later), see [1] for details. It is convenient to analyze the
evolution of these models considering separately three main
entities comprising a dynamical network: agent complexity,
interaction structure complexity, and link complexity. Recent
results and challenging problems in this field may be found
in the lecture course [2] and monographs [3] and [4]. In this
paper, we focus on specific interaction structures and analyze
their properties in the case of second-order agents.

Control problems related to networks with specific com-
munication patterns play an important role in coopera-
tive/decentralized control. Within this trend, it is supposed
that each agent interacts with a predefined number of its
indexed neighbors. A pioneering work on consensus where
a simple averaging rule was proposed and thoroughly studied
was published in 1878 by J.G. Darboux [5]. Although this
problem dealt with the evolution of planar polygons, it turned
out to be the first theoretical result on discrete-time cyclic
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pursuit. This class of algorithms has a long history (see, e.g.,
[6], [7], [8], [9], and references therein), and has a wide
range of applications including but not limited to numer-
ous formation control tasks as patrolling, boundary mapping,
etc. The cyclic pursuit is a strategy where agent i pursues
its neighbor i − 1 , while agent 1 pursues agent n, thus
the topology of communication is a Hamiltonian cycle. The
extensions to hierarchical structures are considered in [10]
and [11]; [12] addresses the case of heterogeneous agents;
geometrical problems related to cyclic pursuit-like algorithms
are investigated in [13] and [14]. Some pursuit algorithms
utilize the rotation operator in order to follow the desired
trajectories, see [15] and references therein. Another group of
strategies/protocols are based on two-directional topologies,
i.e., each agent i has the relative information of the neighbors
i − 1 and i + 1 (with 0 ≡ n). For example, in [16] the
agents are interconnected by a two-directional ring. The row
straightening problems studied in [17], [18], [19] also imply
symmetric communications except for the fixed “anchors”
(the endpoints of the segment). Theoretical motivation behind
studying regular network structures is that for some cases, this
may lead to the closed-form computation of the spectra of the
corresponding Laplacian matrices.

In what follows, we study the problem of reaching consen-
sus for second-order agents with velocity damping (friction).
The models of such kind naturally arise, e.g., in energy
systems [20] and formation control [2], [21], [22]. The com-
munication topology studied in the present paper is a digraph
G with a specific structure: it has n = 2m vertices, m ≥ 3,
and contains a Hamiltonian cycle supplemented by the inverse
cycle, where every second arc is dropped, see Fig. 1. In some
sense, this “intermediate” digraph with regular structure lies
between the two-directional ring and the Hamiltonian cycle
appearing in cyclic pursuit algorithms. The obtained results
fill the gap between undirected and directed ring topologies
for this special case: the loss of arcs may result in instability
of the whole system and therefore a challenging problem is to
derive a suitable condition on the tunable damping parameter
that guarantees convergence to consensus irrespective of the
number of agents in the network. Alternatively, one may
consider the opposite transformation, that is addition of arcs
to an unidirected communication structure in order to reduce
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relatively high damping coefficients of agents.
The paper is organized as follows. The next section presents

the notations used in the paper. Section 3 introduces some
mathematical preliminaries needed for further exposition and
discusses the statement of the problem. The main theoretical
result is formulated and proved in Section 4. Finally, the results
of numerical simulation and conclusions are given.

II. NOTATIONS

The following notation will be used throughout the paper:
• j :=

√
−1 denotes the imaginary unit, the letters i and k

are reserved for indices;
• the unit vector is defined by 1n := [1, 1, . . . , 1]> ∈ Rn;
• ⊗ denotes the Kronecker product of two matrices.
Below we consider some definitions and auxiliary lemmas

needed for further discussion and give an exact problem
formulation.

III. PRELIMINARIES AND PROBLEM STATEMENT

Throughout the paper, we consider a group of n identical
agents with a directed communication topology and suppose
that n = 2m, where m ≥ 3. Each agent obeys the second-
order dynamics of the form{

ẋi = vi,
v̇i = −γvi + ui,

i ∈ 1 : n, (1)

where xi, vi, ui ∈ R are the position coordinate of the ith
agent, its velocity and control input, respectively; γ > 0
denotes the damping coefficient.

The state-space representation of system (1) writes as

ξ̇i = Aξi +Bui, (2)

where ξi = [xi, vi]
>, A =

[
0 1
0 −γ

]
, and B = [0, 1]

>.

Suppose that the agents interact through the topology de-
picted in Fig. 1. Thus, each agent knows the relative distances

Fig. 1. The interaction topology between agents (1).

between itself and the nearest one or two indexed neighbors.
Let K ∈ R1×2 be the matrix K = [1, 0], therefore the
decentralized control protocol has the form

ui=

{
K(ξi+1 − ξi) +K(ξi−1 − ξi), i is odd,
K(ξi−1 − ξi), i is even, i ∈1 : n. (3)

The main objective of the paper is to establish conditions for
a network of second-order agents (1), (2) governed by protocol
(3) that guarantee consensus in the sense of

lim
t→∞

‖ξi(t)− ξk(t)‖ = 0, ∀i, k ∈ 1 : n. (4)

These conditions turn out to be independent on the number of
agents comprising the network system.

The following definitions and results are used in the further
considerations.

A. Graph Theory

We suppose that the communication network is represented
by a fixed, directed graph G = (V, E), where V = {1, . . . , n}
denotes the vertex (or node) set and E is the set of arcs. We
also assume that the graph is simple, i.e., it has no self-loops,
and no multiple arcs. Let us define the Laplacian matrix of an
unweighted digraph G as follows:

Definition 1 ([23]). The Laplacian matrix of a digraph G is
the matrix L = (lik) ∈ Rn×n in which, for k 6= i, lik =
−1 whenever (i, k) ∈ E(G), otherwise lik = 0. The diagonal
entries of L are of the form lii = −

∑
k 6=i lik, i, k ∈ V(G).

Lemma 1 ([24], [25]). The Laplacian matrix L of a directed
graph G has at least one zero eigenvalue with 1n as a corre-
sponding right eigenvector and all nonzero eigenvalues have
positive real parts. Furthermore, zero is a simple eigenvalue
of L if and only if G has a spanning converging tree, i.e., it
has at least one vertex accessible from all other vertices.

Obviously, the digraph G depicted in Fig. 1 is simple,
unweighted, and contains a spanning converging tree.

The system of n agents (1) with feedback protocol (3) obeys
the following dynamics:

ẍ+ γẋ = −Lx, (5)

where x = [x1, . . . , xn]> and L is the Laplacian matrix
associated with the dependency digraph G:

L =



2 −1 0 0 · · · 0 −1
−1 1 0 0 · · · 0 0

0 −1 2 −1 · · · 0 0
...

...
. . . . . . . . .

...
...

0 · · · 0 −1 1 0 0
0 · · · 0 0 −1 2 −1
0 · · · 0 0 0 −1 1


. (6)

Also note that this closed-loop network system can be
equivalently described by

ξ̇ = Fξ, (7)

where F ∈ R2n×2n has the form

F = I ⊗A− L⊗BK, (8)

and I ∈ Rn×n denotes the identity matrix.
Although the consensus conditions for (5), (7) can be

verified in a straightforward way, this may be computationally
expensive in the case of a large number of agents. The
framework presented below allows to reduce the problem to a
couple of simpler ones using the notion of consensus region.
The criterion for scalar agents was first proposed by Polyak
and Tsypkin in [26]; similar results were obtained later in [28]
and [27]. Some other extensions may be found in [3] and [4].
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B. Consensus Region

Suppose that the consensus problem is studied for a net-
worked dynamical system described by the equation

φ(s)x = −Lx,

where φ(s) is a scalar polynomial, s := d
dt , and L is the

Laplacian matrix of the dependency digraph containing a
spanning converging tree.

Definition 2 ([4], [26], [27]). The Ω-region of the function
φ(s) is the set of points λ on the complex plane for which the
function φ(s)− λ has no zeros in the closed right half-plane:

Ω = {λ ∈ C : φ(s)− λ 6= 0 whenever Re(s) ≥ 0}.

Note that Ω is precisely the region of parameters λ such
that the matrix A − λBK is Hurwitz stable. The function
φ(s) is sometimes referred to as the generalized frequency
variable [27], [28].

Lemma 2 ( [4], [26], [27]). The system described by (2)
reaches consensus under protocol (3) if and only if

λi ∈ Ω, i ∈ 2 : n,

where λi, i ∈ 2 : n, are the nonzero eigenvalues of −L.

The details of determining the consensus region may be
found in [26]; in the case of φ(s) = s2 + γs, γ > 0, this
region has form of the interior of a parabola in the complex
plane: φ(jω) = −ω2 + jγω, −∞ < ω <∞.

C. Cyclotomic Equation

Lemma 3 ([29]). The roots of the cyclotomic equation

zm − 1 = 0

are the de Moivre numbers

zk = ej
2πk
m , k ∈ 0 : m− 1.

They form a regular polygon with each vertex lying on the
unit circle in the complex plane.

D. Cassini Ovals

Definition 3 ([30]). The Cassini curve (or the Cassini ovals)
is a quartic curve defined as the set of points in the plane such
that the product of the distances (denoted by b2) to two fixed
points (a, 0) and (−a, 0) is constant:

[(x− a)2 + y2][(x+ a)2 + y2] = b4. (9)

IV. MAIN RESULTS

Based on the above problem formulation and preliminary re-
sults, in this section we derive analytic conditions of achieving
consensus for network systems (5), (7). These conditions turn
out to be independent of the number of agents.

First, we study the spectrum of the Laplacian matrix de-
fined by (6) and obtain the curves which are the loci of its
eigenvalues.

Lemma 4. The eigenvalues of Laplacian matrix (6) have the
form

λ
(1,2)
k = 1.5± 0.5

√
5 + 4ej

2πk
m

and lie on the Cassini ovals defined by

[(x̃−
√

5)2 + ỹ2][(x̃+
√

5)2 + ỹ2] = 24, (10)

where x̃ = 2(x− 3/2), ỹ = 2y.

Proof. According to Theorem 4 in [31] our graph is essentially
cyclic (i.e., the spectrum of L contains non-real eigenvalues)
and the characteristic polynomial of L is of the form

(Z2(λ))m − 1,

where Zn(λ) = (λ − 2)Zn−1(λ) − Zn−2(λ) is a modified
Chebyshev polynomial of the second kind with the initial
conditions Z0(λ) ≡ 1, Z1(λ) ≡ λ − 1, see [31] for details.
Armed with the knowledge gained from Theorem 4 in [31]
and Lemma 3 we find Z2 = λ2 − 3λ + 1, the characteristic
polynomial of L is

(λ2 − 3λ+ 1)m − 1, (11)

and its roots are

λ
(1,2)
k = 1.5± 0.5

√
5 + 4ej

2πk
m . (12)

Let the kth root of unity zk = ej
2πk
m be ak + jbk, k ∈ 0 :

m− 1. Then
a2k + b2k = 1. (13)

The 2m roots of (11) can be found from the equation

λ2 − 3λ+ 1− ak − jbk = 0, k = 0, 1, . . . ,m− 1.

Let λ = x+ jy. Then from

x+ jy = 1.5± 0.5
√

5 + 4ak + j4bk

we find ak = (x − 3/2)2 − y2 − 5/4 and bk = 2yx − 3y.
Taking into account (13) one arrives at

((x− 3/2)2 − y2 − 5/4)2 + 4y2(x− 3/2)2 = 1.

The last equation can be simply rewritten in the form of (10).

The eigenvalues of L with n = 16 and n = 44 are shown in
Fig. 2. The egg-shaped Cassini ovals can be recognized easily.

Corollary 1. The eigenvalues of −L are

λ
(1,2)
k = −1.5± 0.5

√
5 + 4ej

2πk
m (14)

and the equation of the corresponding Cassini curve is

((x+ 3/2)2 − y2 − 5/4)2 + 4y2(x+ 3/2)2 − 1 = 0. (15)

Remark 1. According to consensus criterion [4], [26], [27]
for the second-order agents (1), the consensus is reached if
and only if all the nonzero eigenvalues of −L lie in the Ω-
region of φ(s) = s2 + γs. Checking this criterion requires
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Fig. 2. The eigenvalues of L with n = 16 and n = 44.

computation of the spectrum. Below we propose a condition
independent of the number of agents. It is sufficient yet simple
and not that much conservative.

Theorem 1. The system of interconnected second-order agents
(7) reaches a consensus in the sense of (4) for all γ >

√
6
7 .

Proof. Since φ(jω) = −ω2 + jγω, the equation can be
rewritten as y2 = −γ2x. Therefore, the consensus condition
can be reduced to the condition that the Cassini ovals described
by (15) in Corollary 1 belong to the interior of the parabola
y2 = −γ2x without intersection (except for the one at the
origin), see Fig. 3. Substituting this into (15) we arrive at the

Fig. 3. Ω-region bounded by y2 = −γ2x and the Cassini ovals, γ = 2.

equation in x with parameter γ:

x(x3 +(6−2γ2)x2 +(γ4−6γ2 +11)x+6−7γ2) = 0. (16)

The zero root is out of our interest, thus let us study the
properties of the cubic polynomial

x3 + (6− 2p)x2 + (p2 − 6p+ 11)x+ 6− 7p = 0, (17)

where p = γ2. The case that determines the required condition
corresponds to one intersection, and therefore one real negative
root and a pair of roots with the same sign of their real parts.
According to Vieta’s formulas, a product of the roots satisfies
x1x2x3 = 7p− 6 and is negative. Therefore, p > 6/7 implies
the absence of any intersection except for the one at (0, 0).

The consensus condition independent of the number of
agents follows immediately.

Fig. 4. Ω-region bounded by y2 = −γ2x and the Cassini ovals, γ = 0.7.

Remark 2. In this paper, we limit ourselves to the case of
m ≥ 3 due to the fact that for m = 1, the considered graph
does not exist and the case of m = 2 results in a real spectrum
of L [31] which implies reaching consensus for any γ > 0.

Remark 3. By virtue of the consensus region approach, a
similar condition for second-order agents whose dependency
digraph is a Hamiltonian cycle (Fig. 5) can be derived. In this
case, the corresponding Laplacian matrix is a circulant matrix
(see, e.g., [32] for details). Its eigenvalues are located on a unit
circle centered at (−1, j0). Recall that the consensus region

Fig. 5. Digraph of the cyclic pursuit.

Fig. 6. Ω-region bounded by y2 = −γ2x and the unit circle, γ = 2.

defined by the transfer function of agent (1) is the interior
of a parabola. It can be verified that the equation for the
intersection writes as x2 + 2x− γ2x = 0, which implies that
the absence of intersection (except for the one at the origin)
holds true for γ >

√
2. This demonstrates that the consensus
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condition for second-order agents (1) in cyclic pursuit can be
derived easier as compared to, e.g., [7].

The consensus condition for the case of undirected (or, in
terms of digraph, two-directional) ring topology is even sim-
pler. Since the spectrum of the Laplacian matrix is completely
real, the eigenvalues λ2, . . . , λn all belong to the Ω-region for
any γ > 0 providing consensus in the sense of (4).

V. NUMERICAL EXAMPLES

First, we demonstrate the low conservatism of the proposed
criterion.

The sufficient condition of Theorem 1 guarantees conver-
gence to consensus in the sense of (4) whenever γ >

√
6/7.

However, small groups of agents may still reach consensus
with dampings γ ≤

√
6/7: if all the nonzero eigenvalues

λi, i ∈ 2 : n, of −L lie inside the Ω-region, then the
conditions of the general criterion formulated in Lemma 2 are
satisfied (which implies that the corresponding eigenvalues λ̂i,
i ∈ 2 : 2n, of the system matrix F represented by (8) lie in the
open left half-plane of the complex plane). This can be verified
as follows. Let us set γ =

√
6/7 and compute the eigenvalues

of F for various numbers of agents n = 6, 8, 10, . . .. Taking
the maximum of their real parts we observe that this maximum
approaches zero as the number of agents increases, see Fig. 7.

Fig. 7. The values of max
i∈2:2n

Re(λ̂i) subject to n = 6, 8, 10, . . . , 60

(logarithmic scale); the damping coefficient is γ =
√

6/7.

Now, to illustrate the dynamics of convergence to consensus,
consider a formation of n = 50 identical second-order agents
(1) linked by the topology depicted in Fig. 1. Let the initial
state of each agent be randomly generated within [0, 10].

System (7) exhibits stable behavior of the transients with
a damping coefficient γ = 2, see Fig. 8. Computation of the
eigenvalues of F yields max

i∈2:2n
Re(λ̂i) = −0.0032.

In the case of smaller gain γ = 0.95 close enough to the
stability margin γ =

√
6/7 ≈ 0.926 presented by Theorem 1

we still observe similar behavior, see Fig. 9.

Fig. 8. The trajectories of the system (5) with n = 50 agents, γ = 2.

Fig. 9. The trajectories of the system (5) with n = 50 agents, γ = 0.95.

The dynamics becomes different when the consensus con-
dition is violated. For example, for γ = 0.9 the transients
diverge; max

i∈2:2n
Re(λ̂i) = 0.000633. Fig. 10 presents the results

of simulations for this unstable case.
Table 1 illustrates the dependence of the actual consensus

margin γ on the number of agents n.

TABLE I
CONSENSUS MARGINS

n 10 20 30 40 50 60
γ 0.8195 0.8999 0.9149 0.9195 0.9218 0.9230

Therefore, the simulation results confirm the theoretical
conclusions of Theorem 1 and demonstrate low conservatism
of the provided sufficient condition of consensus for a large
number of agents.
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Fig. 10. The trajectories of the system (5) with n = 50 agents, γ = 0.9.

VI. CONCLUSIONS

The contribution of the paper is threefold:
• First, the specific communication ring topology was in-

vestigated; it was discovered that the eigenvalues of the
corresponding Laplacian matrix lie on the Cassini ovals;

• Second, the criterion for reaching consensus was pro-
posed that relies solely on the value of the damping
coefficient of a single agent and neglects the number of
them;

• Third, the theoretical results were supplemented by nu-
merical experiments. It was shown that for a large number
of interacting agents, the sufficient condition presented by
Theorem 1 is quite close to the necessary one.

The possible extensions include establishing consensus con-
ditions for second-order agents distributed on other regular
topologies together with the control protocols that use solely
local measurements. These problems will be the subject of
continuing research.

REFERENCES

[1] A. V. Proskurnikov and R. Tempo, “A Tutorial on Modeling and Analysis
of Dynamic Social Networks. Part I,” Annual Reviews in Control, no.
43, pp. 65–79, 2017.

[2] F. Bullo, Lectures on Network Systems (With contributions by J. Cortés,
F. Dörfler, and S. Martı́nez), 2018, http://motion.me.ucsb.edu/book-lns/

[3] F. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das, Cooperative
Control of Multi-Agent Systems: Optimal and Adaptive Design Ap-
proaches, London: Springer, 2014.

[4] Z. Li and Z. Duan, Cooperative Control of Multi-Agent Systems: A
Consensus Region Approach, CRC Press, 2017.

[5] J. G. Darboux, “Sur un Problème de Géométrie Élémentaire,” Bulletin
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