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Abstract—In this paper we consider a special problem of
formation control, that is, the problem of uniform spread (or
deployment) of several identical agents on a line segment. This
problem was exhaustively studied for first-order agents since
the pioneering paper by I.A. Wagner and A.M. Bruckstein who
considered it under the name of “row straightening algorithm”.
We extend it to the more realistic case of second-order agents.
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I. INTRODUCTION

Recently it has been realized that functioning of many
complex systems, arising in physics, biology, economics, so-
ciology, computer science etc. is based on common principles,
examined in the frameworks of multi-agent systems theory,
theory of complex networks and interconnected systems. Nu-
merous examples that include, but are not limited to, oscillator
networks, smart power grids, robotic and sensor networks,
distributed estimation and optimization, models of economical
and social interaction, intellectual behavior of biologic popu-
lations may be found in recent monographs and reviews [1],
[3], [5], [13], [21], [22] and references therein.

The cornerstone principles of multi-agent design are full or
partial autonomy of the simpler parts of the systems (agents),
local interactions between them without use of global informa-
tion about the whole system, and decentralization, i.e. absence
of the central controller or decision making unit. Such benefits
of these principles as robustness, adaptivity, flexibility, and
overall cheapness of decentralized solutions as compared to
classical centralized designs motivated wide use of multi-agent
systems in engineering and technology and rapid development
of correspondent mathematical theory.

One of the most important areas in multi-agent systems
theory is formation control, that is, rendering agents to form
a desired static or dynamic geometric pattern such as some
regular shape, flock or swarm. The problems of dynamic
formation control [3], [11], [15], [21], [29] are primarily
concerned with control of mobile agents such as wheeled
robots, unmanned aerial or underwater vehicles, or spacecrafts,
often being inspired by the motion of biological formations
such as flocks, herds and schools [23]. Distributed algorithms
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providing agents to form a static formation have applications
e.g. to such crucial problems of mobile sensor network theory
as deployment of agents on some area or manifold [12], [14],
[24], optimal coverage [4] and partition of the area [18].

Probably, one of the simplest formation control algorithm,
providing deployment of the agents on a line segment, was
proposed in [27], under the name “row straightening”. The
idea lying in the heart of the control strategy is averaging: each
agent moves towards the middle of the segment connecting its
adjacent neighbors, using only relative position measurements.
Similar in flavor algorithms were proposed for multi-agent de-
ployment of discrete-time “ant-like” agents on a ring graph [7],
[8]. Another iterative procedure leading to uniform deployment
of agents over ellipse is known as the “van Loan scheme” [6],
[25]. Besides formation control, the averaging model was used
in [27] to describe the process of pulse propagation through
distributed resistor–capacitor circuits. In the recent paper [17]
this procedure was extended to the case of disturbed agents,
a nonlinear algorithm proposed in [16], [17] provides uniform
deployment in fixed time independent of the initial conditions.

A serious drawback of control algorithms considered in
[7], [17], [25], [27] is the assumption that agent has no self-
dynamics, obeying the first-order integrator model. In the
present paper we extend the averaging algorithm to more
realistic second-order agents. We show that in presence of
velocity damping in each agent the algorithm from [27]
remains applicable. If the friction in the agents is negligible
(that is, the agents obey a double integrator model), one
may introduce velocity damping term in the protocol from
[10]. However, this approach assumes that each agent has
access to its absolute velocity, which is quite restrictive. We
show, however, that uniform deployment may be provided
by means of the protocol, based on relative measurements
only: unlike the algorithms from [27], each agent measures
not only its position relative to adjacent teammates but also
relative velocities; which is a common idea for control of
second-order agents [20]–[22]. Moreover, we show that the
direct observation of the relative velocities may be replaced
by low-pass differentiation of the relative positions [30] at
the cost of slowing the convergence down. Therefore, for
second-order integrators uniform deployment without velocity
measurements is possible as well.

We also consider hierarchical control scheme analogous
to that presented in [26]. In this case, we consider several
equally sized groups of agents. The groups have to rendezvous
at the points that are uniformly spread over the fixed line
segment. In principle, this problem may be subdivided into
several problems of uniform deployment for independent teams
of agents. However, as was demonstrated in [26] for the
closely related problem of cyclic pursuit, the performance and
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convergence of the algorithm may be considerably improved
by using a “two-layer” protocol. This approach, applied to the
problem at hand, implies that we solve first the problem of
uniform deployment for group centroids, which is the “lower”
level of the algorithm. The agents in each group participate not
only in the averaging with neighbors from the adjacent groups
but also in cyclic pursuit with their group mates (the ”upper”
level of the algorithm) which guarantees the convergence to the
centroid and hence rendezvous at the uniformly spread target
points. We confine ourselves to the hierarchical algorithms
for first-order agents, whereas the second-order case may be
considered in the same way.

The paper is organized as follows. Section II presents
preliminary information and problem formulation. Our main
results, namely three designed control algorithms are presented
and discussed in Section III, which also contains proofs and
numerical simulations. In the last Section IV a two-layer
hierarchical control scheme is discussed.

II. PRELIMINARIES AND PROBLEM STATEMENT

Throughout the paper, we deal with a team of N ≥ 1 mobile
agents indexed 1 through N and two static agents to which
we assign indices 0 and N+ 1. Denoting the position of the
j-th agent with x j ∈ Rd (where j = 0,1, . . . ,N + 1), we are
interested in the control policies (or protocols) which guarantee
uniform allocation of the mobile agents along the line segment,
connecting the constant points x0 and xN+1.

The problem just outlined may be formally reduced to the
classical reachability problem if the agents have to arrive at
the desired positions in finite time or problem of stabilization,
if only asymptotic convergence is required. For each agent the
desired position is to be calculated. Aiming, for instance, at
the arrangement the agents in the increasing order of indices,
the target point for the j-th agent is x0

j := x0+xN+1( j−1)/N.
After this initial step, each agent moves to its planned target
point independently of the remaining teammates. Assuming
that the agent has first-order dynamics

ẋ j(t) = u j(t) ∈ Rd , j ∈ 1 : N, (1)

the simplest algorithm for the allocation of the agents may be
given by a proportional controller:

ẋ j(t) = γ(x0
j − x j), x0

j := x0+ xN+1( j−1)/N. (2)

The algorithm (2), in spite of its simplicity, relies on a very
restrictive assumption, which may fail in practice and in fact
makes controller (2) inapplicable for large-scale formations,
that is, agent’s ability to measure its position relative to the
target point. In particular, each agent has either to compute its
terminal point (being thus aware of its own index, positions of
both endpoint agents and the formation size) and measure its
own position in the global reference frame, or to distinguish
the target in some other way (by using unique transponders
etc.) In both cases the mobile agents in the formation are not
“equal”, using different control algorithms and being thus non-
replacable. Moreover, if a few of the agents fail, regrouping
of the formation requires full re-initialization of target values.

A. Decentralized protocol for uniform deployment of single
integrators

Contrary to a straightforward “centralized” solution (2), a
more attractive decentralized protocol for the first-order agents
(1) was examined in [10], [25], [27] for the first-order agents
(1) which provides uniform deployment of the agents by using
only “local” interactions:

u j(t) =
1

2
(x j−1(t)−x j(t))+

1

2
(x j+1(t)−x j(t)), j ∈ 1 : N. (3)

Protocol (3) has many advantages over algorithm (2). The
agents use only relative measurements without any knowledge
of the whole formation. Moreover, each agent only has to
know its “successor” and “predecessor” in the formation,
being unaware of its own index. If the agent j fails, the only
necessary “rewiring” in the system is to link the agents j−1
and j+1 to be adjacent, after which protocol (3) will allocate
the remaining N−1 agents uniformly.

Since protocol (2) is coordinate-wise decoupled, one may
assume without loss of generality that d = 1: x j(t) ∈ R. Let

x = [x1,x2, . . . ,xN ]
� be the state vector of the multi-agent

system; then the dynamics of the overall system can be written
in compact form as

ẋ= Ax+b, (4)

where the matrix A and the vector b are of the form

A :=

⎡
⎢⎢⎣
−1 0.5 0 . . . 0
0.5 −1 0.5 . . . 0

...
...

0 0 . . . 0.5 −1

⎤
⎥⎥⎦ ∈ RN×N , (5)

b := [0.5x0,0, . . . ,0,0.5xN+1]
� ∈ RN . (6)

The matrix A is a tridiagonal matrix with eigenvalues [2]

λk =−2sin2 kπ
2(N+1)

, k ∈ 1 : N. (7)

Since λk < 0,k ∈ 1 : N, the matrix is Hurwitz and hence
system (4) has a unique and exponentially stable equilibrium

x∗ :=−A−1b= x0[1, . . . ,1]�+
xN+1− x0

N+1
[1,2, . . . ,N]� ∈ RN .

(8)
In other words, protocol (3) establishes uniform allocation
of the agents on the segment with endpoints x0 and xN+1

independently of the initial conditions. From formula (7) the
following estimate for the convergence rate is immediate:

‖x(t)− x∗‖ ≤ e−λ̂ t‖x(0)− x∗‖ (9)

for any solution of system (4), where x(0) is the vector of the

initial positions and the convergence rate λ̂ is given by

λ̂ =min
k
|λk|= 2sin2 π

2(N+1)
. (10)

It should be noticed that a discrete-time counterpart of
system (1),(3) may be examined in the same way [27].
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In the present paper, we are going to consider the problem
of uniform deployment of the agents with more realistic
second-order dynamics.

ẍ j+aẋ j = u j, j ∈ 1 : N. (11)

Here a ≥ 0 stands for the constant friction coefficient, in the
case where a= 0, model (11) is the double integrator model.
The problems of multi-agent consensus and formation control
for second-order agents have recently attracted intensive in-
terest, basically motivated by concerns of multi-agent mobile
robotics, see e.g. [3], [21], [22], [28].

III. MAIN RESULTS

In this section our main results are given, which offer
distributed protocols for uniform deployment of second-order
agents (11) along the line segment with fixed endpoints.

To start with, we examine applicability of algorithm (3)
for the second-order agents (11). We introduce some notations.
For two numbers p,q ∈R let h1(p,q),h2(p,q) ∈C be the two
roots (real or complex) of the equation h2+ hp+ q = 0 and
H(p,q) :=max(Reh1(p,q),Reh2(p,q)). In other words,

H(p,q) =

{−p/2, p2−4q < 0

−p+
√

p2−4q
2 , p2−4q≥ 0.

(12)

The following theorem shows that in presence of the
velocity damping (a > 0) the protocol turns out to be applicable
to such agents and estimates the convergence rate.

Theorem 1: Let a > 0. Then protocol (3) establishes uni-
form allocation of the agents (11) along the line segment with
endpoints x0 and xN+1, that is, x(t) → x∗ and ẋ(t) → 0 as
t →+∞. The convergence is exponential:

‖x(t)− x∗‖+‖ẋ(t)‖ ≤Ce−μt , (13)

where C =C(x(0), ẋ(0)) and μ :=−H(a, λ̂ )> 0.

In the absence of friction (a = 0) protocol (3) obviously
does not lead to uniform allocation of the agents as the
system (4) is only Lyapunov stable but not exponentially
stable, admitting e.g. solutions x(t) = x∗ + Re[vkeiωk ] where
vk is an eigenvector of A, matching to the eigenvalue λk, and
ωk :=

√|λk|. Nevertheless, Theorem 1 suggests the following
modification of protocol (3), applicable not only for double
integrator but even for the case of unstable agent (11) (a < 0).

Corollary 1: The following control algorithm

u j(t) =−κẋ j(t)+
1

2
(x j−1(t)− x j(t))+

1

2
(x j+1(t)− x j(t))

(14)
provides establishes uniform allocation on the line segment
with endpoints x0 and xN+1 whenever a+κ > 0. The protocol
provides exponential convergence with rate (13) with μ :=
−H(a+κ, λ̂ )> 0.

Proof: Protocol (14), applied to the agents (11), leads to
the same closed-loop system as one can obtain by applying the
original algorithm (14) to the agents with modified velocity
damping gain a 
→ a+ κ. The claim of Corollary is now
obvious from Theorem 1.

Unlike protocol (3), algorithm (14) employs not only
relative measurements but also absolute velocity of the agent.
There are some classes of applications where the velocity may
be available even though agents cannot measure their absolute
positions. For instance, marine vehicles may be equipped with
electromagnetic or Doppler log, which measure speed over
water or over ground, giving however very imprecise absolute
position measurements. For practical implementation, however,
it is desirable to have an algorithm for uniform deployment of
double integrator agents (a= 0) which is based only on relative
measurements. We consider the following control algorithm

u j(t) =
1

2
(x j−1(t)− x j(t))+

1

2
(x j+1(t)− x j(t))+

+
p
2
(ẋ j−1(t)− ẋ j(t))+

p
2
(ẋ j+1(t)− ẋ j(t)), j ∈ 1 : N.

(15)

Here p > 0 is a fixed coefficient. The following result shows
that protocol (15) uniformly allocates the agents over the line
segment and provides exponential convergence.

Theorem 2: Let a = 0 and p > 0. Then protocol (15)
establishes uniform allocation of the agents (11) along the
line segment with endpoints x0 and xN+1, that is, x(t)→ x∗
and ẋ(t)→ 0 as t →+∞, moreover, (13) holds with

μ =−max
k

H(−pλk,−λk)> 0, where λk are from (7). (16)

Protocol (15) allows to deploy agents uniformly using
only relative velocity measurements. A closer analysis reveals,
however, that in fact the direct velocity measurement may
be avoided at the cost of slower convergence. By denoting
w j(t) := (x j−1(t)+ x j+1(t))/2− x j(t), algorithm (15) may be
rewritten as u j(t) = w j(t)+ pẇ j(t). The idea, borrowed from
[30], is to replace the derivative ẇ j(t) by the output of a low-
pass differentiator ẇ j(t)≈ ẏ j(t), where

ẏ j(t) =−γy j(t)+w j(t), γ > 0.

By doing so, algorithm (15) shapes into the following

u j(t) = w j(t)+ pẏ j(t) = (1+ p)w j(t)− pγy j(t),
ẏ j(t) =−γy j(t)+w j(t)

w j(t) =
1

2
(x j−1(t)− x j(t))+

1

2
(x j+1(t)− x j(t)).

(17)

Protocol (17) also provides uniform deployment with ex-
ponential convergence, as shown by the following theorem.

Theorem 3: Let a = 0 and p,γ > 0. Then protocol (17)
establishes uniform allocation of the agents (11) along the line
segment with endpoints x0 and xN+1, that is, x(t)→ x∗ and
ẋ(t)→ 0 as t →+∞, moreover, (13) holds, where

μ =−max{Rez : z3+ γz2− (p+1)λkz− γλk = 0}> 0. (18)

A. Proofs: stability analysis

To prove stability of the closed-loop systems, resulting
from applying the protocols (3),(15),(17) to the agents (11),
we employ the following stability criterion, elaborated by B.T.
Polyak and Y.Z. Tsypkin [19] and reformulated later by S. Hara
[9] using the concept of “generalized frequency variable”.
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Suppose that we are interested in stability of the following
high-order linear system

φ
(

d
dt

)
x(t) = Ax(t), (19)

where φ(s) is a scalar polynomial and A is a constant N×N-
matrix. Denoting the characteristic polynomial of A by D(s) :=
det(sI−A), one easily show that system (19) is stable if and
only if the polynomial G(s) := D(φ(s)) is Hurwitz. More
generally, let φ(s) =ψ(s)/ρ(s) be a rational function, which is
analytic in the closed right half-plane C̄+ := {s : Res≥ 0} (that
is, ρ is Hurwitz polynomial). System (19) may be interpreted
in this case as follows:

ψ
(

d
dt

)
x(t) = ρ

(
d
dt

)
Ax(t),

being stable if and only if the rational function G(s) =D(φ(s))
has no zeros in C̄+. Although this property may be verified
in a straightforward way, disregarding the structure of G(s),
this procedure is computationally expensive for polynomials of
high degree. Instead, one may use the concept of Ω-domain.

Definition 1: [19] The Ω-domain of the function φ(s) is
defined to be the set of points λ on the complex plane, for
which the function φ(s)−λ has no right zeros:

Ω= {λ ∈ C : φ(s)−λ �= 0,Res≥ 0}

The Polyak-Tsypkin criterion [19] reduces the problem of
stability of system (19) to a couple of simpler problems, which
can be effectively solved, that is, computation of eigenvalue
of A and computation of Ω-domain for φ(s):

Theorem 4: The characteristic function G(s) = D(φ(s))
has no zeros in C̄+ if and only if all of the zeros of D(s) (e.g.
eigenvalues of A) belong to Ω-domain of the function φ(s).

Moreover, since the set of roots of G(s) is constituted by
the roots of N equations φ(s) = λk, where λk (k ∈ 1 : N) are
the eigenvalues of A. Hence the solutions of (19) have the
following asymptotic behavior at infinity.

Lemma 1: For any solution of (19) one has

|x(t)| ≤Ceαt , α :=max{Res : φ(s) = λk for some k ∈ 1 : N}.

For our goals the precise computation of Ω-domain will be
unnecessary (the details of the corresponding algorithm may
be found in [19]). Our protocols lead in fact to system (19)
with Hurwitz matrix A of the form (5), and Ω-domain in fact
contains all negative real numbers.

We are now ready to prove our main results.

1) Proof of Theorem 1: By denoting x = [x1,x2, . . . ,xN ]
�,

the closed-loop system (11), (3) may be rewritten as

φ
(

d
dt

)
x(t) = Ax(t)+b, (20)

where A and b are given respectively by (5),(6) and φ(s) :=
s2+as. The stability of the equilibrium solution x∗ =−A−1b
is equivalent then to the stability of autonomous system (19).
Since a > 0 by assumption, the equation φ(s)= λ has no unsta-
ble roots whenever λ < 0 (the polynomial φ(s)−λ is Hurwitz),

from where stability is immediate since all eigenvalues of A are
real and negative, given by (7). In accordance with Lemma 1,
the convergence rate μ in (13) is μ = maxk H(a,−λk) which

entails that μ = H(a, λ̂ ) since H(a, ·) is non-decreasing.�
2) Proof of Theorem 2: Let a= 0. The closed-loop system

(11), (15) shapes into

s2x= (ps+1)(Ax+b), s :=
d
dt

,

which may be treated as system (20) with a rational function
φ(s) := s2/(ps+ 1). The stability of the equilibrium solution
x∗=−A−1b is equivalent to the stability of autonomous system
(19) which is entailed by Theorem 4 since the equation φ(s) =
λ has no unstable roots whenever λ < 0 (the polynomial
s2− pλ s− λ is Hurwitz if p > 0 and λ < 0). In particular,
Ω-domain contains all the eigenvalues λk. The formula for
convergence rate is obvious from Lemma 1. �

3) Proof of Theorem 2: Retracing arguments from two
previous proofs, system (11), (15) boils down into

s2x= q(s)(Ax+b), s :=
d
dt

, q(s) := 1+
ps

s+ γ
,

which is equivalent to (20) with φ(s)= s2(s+γ)/(s(p+1)+γ).
To prove stability, it suffices to verify that the function φ(s)−λ
has no unstable roots as λ < 0. This is implied by the Routh-
Hurwitz criterion, stating that a polynomial s3+as2+bs+c is
Hurwitz if and only if a,b,c > 0 and ab > c. In particular, the
polynomial s2(s+ γ)− λ (p+ 1)s− λγ is Hurwitz whenever
γ, p > 0 and λ < 0. Therefore, the equilibrium solution is
exponentially stable. The formula for convergence rate is
immediate from Lemma 1. �

B. Numerical Examples

To demonstrate the efficiency of the proposed control
protocols for deployments we consider the problem of uniform
deployment for agents on the plane:

ξ̈ j+aξ j = u j, ξ j = [x j,y j]
� ∈ R2. (21)

As was mentioned in the foregoing, all our results are appli-
cable for the space of arbitrary dimension since the protocols
are coordinate-wise decoupled. All the tests deal with a team
of N = 5 agents (21) to be deployed uniformly on the line
segment with endpoints ξ0 = [−2,3.1]�,ξ6 = [2,2.1]�.

Our first numerical test illustrates the motion of agents (21)
with a= 2, coupled via the protocol (3). Fig. 1 illustrates that
the protocol uniformly allocates the agents on the line segment
in accordance with Theorem 1.

Our next numerical tests illustrate the applicability of
algorithms (15) and (17) for agents without velocity damping:
a = 0. For simulations, we take p = 10 and γ = 1.4 (the
latter parameter is employed only by algorithm (17)). Fig. 2
illustrates the performance under protocol (15) which uses
relative velocities, and Fig. 3 shows the dynamics under
protocol (17). Both protocols provide uniform deployment
as claimed respectively by Theorems 2 and 3. It should
be noticed, however, that the algorithm (15) provides more
“smooth” trajectories and faster convergence. Such a behavior
is expectable since the low-pass filter in fact introduces a delay
in the velocity measurement.
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Fig. 1. The protocol (3) for agents with velocity damping (a= 2)
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Fig. 2. Frictionless agents (a= 0) under protocol (15)
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Fig. 3. Frictionless agents (a= 0) under protocol (17)

IV. EXTENSION: HIERARCHICAL PURSUIT-BASED

ALGORITHMS

In this section we consider a group of uniform allocation
for several equal groups of agents. Suppose that the team of
N agents divided into ng groups, each containing n agents so
that N = n×ng. The agents of each group has to rendezvous at
the prescribed point, which points are to be uniformly spread
over the line segment with endpoints x0 and xng+1. Let xk, j
stands for the position of the j-th agent of the k-th group.
For simplicity, we confine ourselves to the first-order agents,
whereas the second-order case may be considered likewise.

To solve the rendezvous problem, one may subdivide the
team of agents into ng independent sub-teams, each consisting
of the agents with the same index, taken from different groups
{xk, j}ng

k=1 (here j ∈ 1 : n). Each sub-team may perform the
task of uniform deployment independently by using protocol

(3). Instead, one may consider more sophisticated “two-layer
scheme” which provides, firstly, convergence of the centroids
of the groups to the desired rendezvous points (the “lower
layer”) and, secondly, spiral motion of the group-mates around
their centroid using the circular pursuit in each group. Such
an approach allows to increase the converge rate and improve
overall performance of the closed-loop system, as discussed
in [26] on the example of the problem of circular formation
stabilization. As an additional benefit, one obtains that agents
surround the desired rendezvous point and the approach it
with the same speed, which performance can not be achieved
without interactions inside the group.

A. Two-Layer Hierarchical Scheme for Single Integrators

As was mentioned, we consider first-order agents

ẋk, j = uk, j, k ∈ 1 : ng, j ∈ 1 : n, (22)

coupled via the control protocol as follows:

uk, j = xk, j+1− xk, j+
xk+1, j+ xk−1, j

2
− xk, j. (23)

Here x0, j = x0, xng+1, j = xng+1 for any j, and if j = n, we put
by definition j+1 = 1. The protocol (23) makes the the j-th
agent of the k-th group tends to locate itself in the middle of the
segment joining the respective agents from the adjacent groups,
pursuing also the ( j+ 1)-th teammate. The overall dynamics
of N agents has the form

ẋ= Āx+ b̄, (24)

where the matrix of the system has the form Ā= Ing⊗C+D⊗
In. The matrix C is a circulant matrix for each group of agents

C =

⎡
⎢⎢⎣
−1 1 0 . . . 0
0 −1 1 . . . 0
...

...
1 0 . . . 0 −1

⎤
⎥⎥⎦ ∈ Rn×n, (25)

the matrix D ∈ Rng×ng has the form (5) and b̄= b⊗1, where
1 = [1,1, . . . ,1]� ∈ Rn, where b ∈ Rng is defined similarly to
(6). The matrices In, Ing are identity matrices, and ⊗ stands for
the Kronecker product of two matrices [2].

Using the fact that the matrix Ā is the Kronecker sum [2]
of the matrices C and D: Ā=C⊕D, we arrive at the following.

Theorem 5: System (24) is stable and the set of eigenval-
ues of the matrix Ā is the direct sum of the sets of eigenvalues
of the matrices C and D. Moreover, there exists a final position
of agents xk, j → x0+

k
ng+1 (xng+1−x0), t →∞,k= 1, . . . ,ng, i.e.

for every initial condition, each agent converges to the centroid
of the group and the centroids tend to allocate uniformly on
a segment with fixed endpoints x0 and xng+1. The rate of

convergence estimate for ng → ∞ is λ̂ ≈− π2

2n2
g
.

Proof: As it was shown before the eigenvalues of the
matrix D have the form λk = −2sin2 kπ

2(ng+1) , k = 1, . . . ,ng,

and the eigenvalues of C are also known and can be written as
λ̄ j = e2πı j/n−1, j= 1, . . . ,n. The eigenvalues of the matrix Ā=
Ing⊗C+D⊗ In =C⊕D can be easily found by the properties
of the Kronecker sum. The matrix C has one zero eigenvalue
and the nonzero eigenvalues are left, the eigenvalues of the
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matrix D are negative. Thereby, the eigenvalues of the matrix
Ā are left and the system (24) is stable. It is evident that the
rate of convergence estimate of the system (24) for ng → ∞
has the form λ̂ ≈− π2

2n2
g
.

B. Numerical simulation

To illustrate the performance of the algorithm, we made
a simulation for the case of N = 9 agents on the plane R2,
subdivided into three groups of three agents each (n = ng =
3). The trajectories of agents are displayed on Fig. 4. The
simulation confirms the convergence of each group to its target
point, which points are uniformly spread over the line segment.
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Fig. 4. First-order agents coupled via hierarchic control algorithm

V. CONCLUSIONS

In this paper we consider distributed control algorithms
(protocols) for uniform deployment of second-order agents.
We show that the well-known first-order averaging algorithm
proposed in [27] is applicable if the agents model involves
velocity damping however its convergence deteriorates as the
damping becomes negligible. To cope with this problem, one
may introduce damping velocity term in the protocol, which
assumes, however, access to the absolute velocity. To discard
this assumption, we develop a novel algorithm for uniform
deployment based on relative velocity measurements. We show
also this algorithm remains feasible, replacing relative velocity
with its estimate from a low-pass differentiator. Therefore, it
is possible to solve uniform deployment problem for second-
order agents even without velocity measurements. The applica-
bility of the algorithms is confirmed by numerical simulations.
We also consider a two-layer hierarchical protocol for uniform
deployments of several equal groups of agents.
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