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Abstract— The paper addresses the problem of row straight-
ening of agents via local interactions. A nonlinear control proto-
col that ensures finite-time equidistant allocation on a segment
is proposed. With the designed protocol, any settling time can
be guaranteed regardless of the initial conditions. A robust
modification of the control algorithm based on sliding mode
control technique is presented. The case of multidimensional
agents is also considered. The theoretical results are illustrated
via numerical simulations.

I. INTRODUCTION

In the last two decades, various problems related to multi-

agent and networked nature of systems are in the focus of the

control community, e.g., see [18], [26], [24]. This interest is

motivated by numerous real-life applications; it turns out that

use of simple rules of local communication in the absence of

centralized control may lead to many attractive features such

as robustness, adaptivity, and flexibility. Multi-agent systems

are usually high-order systems due to a large number of

cooperating agents.

The problem of formation of geometric patterns is of par-

ticular interest; it has numerous engineering applications in

the area of mobile robot control, spacecraft flying formations,

UUVs, UAVs, etc. One of the typical problems of formation

control is row straightening of agents via local interactions

[29], [16], [27]. The averaging principle underlying the cor-

responding control protocol was first introduced as early as in

1878 by Jean Gaston Darboux in [9]. This principle suggests

that each agent in the group tends to locate itself toward the

middle of the segment connecting its indexed neighbors. The

existed row straightening protocols provide only asymptotic

convergence property. Moreover, the convergence (settling)

time essentially depends on the initial positions of the agents.

On the other hand, practical considerations typically require

that the time of the transient process be predefined.

The main objective of this paper is to design a new row

straightening protocol which provides the system with the

finite-time convergence property; on top of that, any guaran-

teed settling time can be specified in advance regardless of

the initial positions of the agents. It is also desired that this

protocol be robust against bounded exogenous disturbances

affecting the agents.

Since recently, finite-time stability and stabilization prob-

lems have been a subject of intensive research; e.g., see [13],

[5], [17], [20]. The control theory encounters many systems

that exhibit finite-time convergence to the equilibrium. Often,

The authors are with Laboratory of Adaptive and Robust Control Systems,
Institute of Control Sciences, Russian Academy of Sciences, Profsoyuznaya
65, Moscow, Russia. {parsegov,polyakov,sherba}@ipu.ru

such systems appear in observation problems when finite-

time convergence of the observed states to the real ones is

required [3]. High order sliding mode control algorithms also

ensure finite-time convergence to the origin [28], [15], [19],

[21]; typically, the associated controllers have mechanical

and electromechanical applications [2], [11], [6]. For use of

finite-time control ideology in multi-agent systems see [7],

[14], [30], [31]. Finite-time stability analysis usually exploits

the theory of non-smooth Lyapunov functions and involves

such concepts as weak and strong stability, differential in-

clusions, generalized gradients and derivatives [25], [14].

The finite-time stability concept was then extended to pave

the road to the design of algorithms that guarantee any

predefined settling time regardless of the initial conditions;

these results are presented in [8], [22]. The corresponding

property is referred to as fixed-time stability. Robust fixed-

time algorithms based on sliding mode control technique can

be found in [23].

Usually the finite-time stability is closely related to the

homogeneity property of the system. If the system is asymp-

totically stable and homogeneous of negative degree, the

system is shown to attain the equilibrium point in finite

time [15], [19]. The concept of homogeneity in bi-limit

introduced in [1] generalizes this property by ensuring that

an asymptotically stable system is fixed-time stable if it is

homogeneous of negative degree in 0-limit and homogeneous

of positive degree in ∞-limit. Unfortunately, with the homo-

geneity approach, the settling time cannot be specified in

advance or even estimated.

Control laws that provide a system with the fixed-time

stability property are typically of polynomial-like form

[22], [23]. Polynomial state feedback control systems have

attracted considerable attention in nonlinear control [10].

This class of control systems appears in models of a wide

range of applications such as chemical processes, electronic

circuits and mechatronics, biological systems, etc.

This paper presents new control protocols of a polynomial

type which guarantee fixed-time equidistant allocation of

agents on a segment and demonstrate the robustness in the

presence of bounded exogenous disturbances.

The paper is organized as follows. Section II presents the

statement of the problem and basic assumptions. Preliminary

facts related to the row straightening problem and the fixed-

time stability concept are discussed in Section III. The

nonlinear fixed-time control protocol together with its robust

modification and a multidimensional generalization are given

in Section IV. In the last two sections, we present the results

of numerical simulations and brief concluding remarks.
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II. PROBLEM STATEMENT

We consider a group of n numbered mobile agents. Let

their positions at time t ≥ 0 be denoted by xi(t) ∈ R, i =
1,2, ...,n, and let x0,xn+1 denote the fixed endpoints of the

segment. The dynamical model of each agent is described

by a simple integrator:

ẋi = ui +di(t,x), i = 1,2, . . . ,n, (1)

where ui ∈R is the control input, x = [x1,x2, . . . ,xn]
⊤, di(t,x)

is a bounded exogenous disturbance

|di(t,x)| ≤ dmax, (2)

and the nonnegative number dmax is assumed to be given.

The objective in this paper is to design a feedback control

protocol which:

• guarantees the equidistant allocation of the agents on

the segment in a fixed time for any initial conditions;

• exploits the information only about the distances be-

tween each of the agents and its two indexed neighbors

so that

ui = ui(xi−1 − xi,xi+1 − xi), i = 1, . . . ,n, (3)

• is robust against bounded exogenous disturbances.

The extension of the protocol to the case of multidimen-

sional agents x ∈ R
m is also of interest.

III. PRELIMINARIES

A. Uniform allocation on a segment: The linear approach

Consider the following linear control protocol devised in

[29], [27]:

ui =
1

2
(xi−1 − xi)+

1

2
(xi+1 − xi), i = 1, . . . ,n. (4)

To show the idea of the protocol, we rewrite it in the form

ui =
xi+1+xi−1

2
− xi, i = 1, . . . ,n, which is interpreted to mean

that each agent in the group tends to locate itself toward the

middle of the segment that links its indexed neighbors.

Let x = [x1,x2, . . . ,xn]
⊤

be the state vector of the multi-

agent system; then the dynamics of the overall system can

be written in compact form as

ẋ = Ax+b, (5)

where the matrix A and the vector b are of the form

A =











−1 0.5 0 . . . 0

0.5 −1 0.5 . . . 0
...

...

0 0 . . . 0.5 −1











∈ R
n×n

, (6)

b = [0.5x0,0, . . . ,0.5xn+1]
⊤ ∈ R

n
. (7)

The matrix A is a tridiagonal matrix having eigenvalues [4]

λk = −2sin2 kπ

2(n+1)
, k = 1,2, ...,n. (8)

Since λk < 0,k = 1,2, ...,n, the state x∗ ∈R
n : x∗ =−A−1b is

a stable equilibrium point of system (5), so that as t →∞, we

have xi → x0 + i
n+1

(x0 − xn+1), i = 1,2, . . . ,n. This exactly

means that, no matter what the initial conditions are, the

agents tend to locate themselves uniformly on the segment

with the fixed endpoints x0 and xn+1.

It can be shown that the following estimate

‖x(t)− x∗‖ ≤ eλ̂‖x(0)− x∗‖

is true for system (5), where x(0) is the vector of the initial

positions and λ̂ is of the form

λ̂ = max
k

λk = −2sin2 π

2(n+1)
. (9)

Obviously, the control protocol (4) satisfies condition (3)

but it provides only asymptotic convergence, i.e., the agents

will not attain the final positions on the segment in any

finite time. In this paper, we develop a nonlinear control

protocol that guarantees convergence in a prescribed finite

time; moreover, the obtained upper bound on the settling

time does not depend on initial conditions of agents.

Below we consider some helpful notions, definitions and

auxiliary lemmas needed for further discussion.

B. Fixed-time convergence

Consider the following system:

ż = g(t,z), z(0) = z0, (10)

where z ∈ R
n and g : R+×R

n → R
n is a possibly discontin-

uous nonlinear function. In this case, the solutions of (10)

are understood in the sense of Filippov [12]. Assume that

the origin is an equilibrium point of system (10).

Definition 1 ([5]): The origin is said to be a globally

finite-time stable equilibrium point for system (10) if it

is globally asymptotically stable and any solution z(t,z0)
of (10) attains it in finite time, i.e., z(t,z0) = 0∀ t ≥ T (z0),
where T : R

n → R+ ∪{0} is the settling-time function.

The finite-time stability property is typical, e.g., to ho-

mogeneous systems with negative degree [15], [19]. For

example, any solution of the system ż =−z
1
3 ,z∈R converges

to the origin in finite time T (z0) := 2
3

3
√

|z0|2.

Definition 2 ([22]): The origin is said to be a fixed-time

stable equilibrium point of system (10) if it is globally finite-

time stable and the settling-time function T (z0) is bounded,

i.e., there exists Tmax > 0: T (z0) ≤ Tmax ∀z0 ∈ R
n.

For the system ż =−z
1
3 −z3,z ∈R, the origin is fixed-time

stable, since it is globally finite-time stable and z(t,z0) = 0

for ∀t ≥ 2.5 and ∀z0 ∈ R.

Denote by D∗ϕ(t) the upper right-hand derivative of the

function ϕ(t), D∗ϕ(t) := lim
h→+0

sup
ϕ(t+h)−ϕ(t)

h
.

Lemma 1 ([22]): If there exists a continuous radially

unbounded function V : R
n → R+ ∪{0} such that

1) V (z) = 0 ⇔ z = 0;

2) any solution z(t) of (10) satisfies the inequality

D∗V (z(t)) ≤ −(αV p(z(t)) + βV q(z(t)))k for some

α,β , p,q,k > 0: pk < 1, qk > 1,
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then the origin is globally fixed-time stable for system (10)

and the following estimate holds:

T (z0) ≤
1

αk(1− pk)
+

1

β k(qk−1)
∀z0 ∈ R

n
.

This lemma together with its refinement (Lemma 2),

which will be presented shortly, are the cornerstones for the

design of the nonlinear fixed-time control protocol aimed at

allocating the agents equidistantly on the segment. This is

the subject of the rest of the paper.

IV. NONLINEAR FIXED-TIME CONTROL PROTOCOL

A. Disturbance-free Case

We first concentrate on the case di(t,xi) ≡ 0. Prior to

designing the nonlinear control protocol, let us introduce the

function φ(s),s ∈ R defined by

φ(s) := αs[p] +β s[q]
, 0 < p < 1, q > 1, (11)

where α , β are some positive constants and

s[k] := sign(s)|s|k. (12)

Consider now the following nonlinear control law for each

individual agent:

ui = φ

(

1

2
(xi−1 − xi)+

1

2
(xi+1 − xi)

)

. (13)

Then the overall dynamics of the compound nonlinear system

of n agents has the form

ẋ = φ̄(Ax+b), (14)

where the matrix A and the vector b are defined by (6)

and (7), and the vector-valued function φ̄ is given by

φ̄(z) := [φ(z1),φ(z2), . . . ,φ(zn)]
⊤,

z = [z1,z2, . . . ,zn]
⊤ ∈ R

n.

Theorem 1: Assume di(t,xi) ≡ 0 and let the control pro-

tocol ui be defined by (13) with α > 0, β > 0, 0 < p < 1,

q > 1. Then the agents of the multi-agent system (1) allocate

equidistantly on the segment in a fixed time and the settling

time function is globally (over all initial conditions) bounded

by Tmax given by

Tmax :=
2

α(1− p)(2|λ̂ |) p+1
2

+
2n

q−1
2

β (q−1)(2|λ̂ |) q+1
2

, (15)

where λ̂ is defined in (9).

Proof: Introduce the new variable

z = Ax+b

for simplicity of analysis. Clearly, we have

ż = Aφ̄(z), (16)

and the origin is an equilibrium point for system (16).

Consider now the following Lyapunov function candidate:

V (z) =
1

2
z⊤Pz (17)

with the matrix P of the form P = −A−1. It is easy to see

that P is a positive-definite matrix, since all eigenvalues of A

are negative, see (8). We then compute the derivative of V

along the trajectories of the system:

V̇ (z) =
1

2
(ż⊤Pz+ z⊤Pż) =

1

2
(−φ⊤(z)z− z⊤φ(z)).

Taking into account (12) and

zi = sign(zi)|zi|,
we easily obtain

V̇ = −α
n

∑
i=1

zi · z[p]
i −β

n

∑
i=1

zi · z[q]
i

= −α
n

∑
i=1

|zi|p+1 −β
n

∑
i=1

|zi|q+1
.

Hence, we conclude that the origin of the system (16) is

stable. Obviously, for z = 0, the equality x = −A−1b holds,

or equivalently, xi = x0 + i
n+1

(x0 −xn+1), i = 1,2, . . . ,n. This

shows that the proposed nonlinear control protocol solves the

problem of equidistant allocation of agents on the segment

[x0, xn+1].
To obtain an estimate for the settling time we use the

inequality
V ≤ 1

2
λmax(P)‖z‖2

2

for the Lyapunov function (17) and the norm equivalence

property, namely,

‖z‖l ≤ ‖z‖r ≤ n
1
r − 1

l ‖z‖l

for any z ∈ R
n and l > r > 0.

Then the inequality ‖z‖2 ≤ ‖z‖p+1 implies

n

∑
i=1

|zi|p+1 ≥ (‖z‖2
2)

p+1
2 ≥

(

2V

λmax(P)

)

p+1
2

,

where λmax(P) denotes the maximum eigenvalue of the

matrix P. In the same way we derive

n

∑
i=1

|zi|q+1 ≥ n
1−q

2 (‖z‖2
2)

q+1
2 ≥ n

1−q
2

(

2V

λmax(P)

)

q+1
2

.

Hence for the total derivative of the Lyapunov function V

we have the following estimate:

V̇ = −α
n

∑
i=1

|zi|p+1 −β
n

∑
i=1

|zi|q+1 ≤−ᾱV
p+1

2 − β̄V
q+1

2 , (18)

where

ᾱ := α

(

2

λmax(P)

)

p+1
2

, β̄ := βn
1−q

2

(

2

λmax(P)

)

q+1
2

.

Therefore we showed that the Lyapunov function (17) sat-

isfies the conditions of Lemma 1, and the following settling

time estimate can be found as

Tmax :=
2

ᾱ(1− p)
+

2

β̄ (q−1)
. (19)

Taking into account

λmax(P) = λmax(−A−1) = |λ̂ |−1
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and substituting ᾱ and β̄ in (19), we arrive at (15).

The theorem presents quite a conservative settling time

estimate, since its proof is based on the results of Lemma 1.

A more accurate estimate can be derived with the use of the

lemma below.

Specifically, consider a case where the constants p and q

are of the form p = 1− 1
2µ and q = 1+ 1

2µ , µ > 1.

Lemma 2: If there exists a continuous radially un-

bounded function V : R
n → R+ ∪{0} such that

1) V (z) = 0 ⇔ z = 0;

2) any solution z(t) of (10) satisfies the inequality

D∗V (z(t))≤−αV p(z(t))−βV q(z(t)) for some α,β >

0, p = 1− 1
2µ , q = 1+ 1

2µ , µ > 1,

then the origin is globally fixed-time stable for system (10)

and the following estimate of the settling time function holds:

T (z0) ≤ Tmax :=
πµ
√

αβ
,∀z0 ∈ R

n
.

Proof: Consider an auxiliary differential equation of

the form

ẏ = −αy
1− 1

2µ −βy
1+ 1

2µ , y ≥ 0, α,β > 0, µ > 1, (20)

with initial conditions y0 = y(0)≥ 0. Obviously, y = 0 is the

equilibrium point of this system.

Using separation of variables, rewrite equation (20) in the

form

t = −
∫

dy

αy
1− 1

2µ +βy
1+ 1

2µ

.

Change of variables w = y
1

2µ , or equivalently, y = w2µ gives

t = −2µ

∫

w2µ−1dw

αw2µ−1 +βw2µ+1
= −2µ

∫

dw

α +βw2
.

Hence, the solution of (20) for t ≥ 0 has the form

2µ
√

αβ
arctan

(
√

β

α
y

1
2µ (t))

)

= −t +C0,

where

C0 =
2µ
√

αβ
arctan

(
√

β

α
y

1
2µ

0 > 0

)

.

For t = C0 we have y(t) = 0, so that any solution of (20)

reaches the equilibrium in finite time. Moreover, since arc-

tangent is a bounded function, the maximum settling time

can be estimated by

Tmax =
πµ
√

αβ
.

This implies the settling time estimate for the Lyapunov

function V (z(t)).
With this lemma, a less conservative estimate of the

settling time can be obtained.

Corollary 1: If, under the conditions of Theorem 1, the

constants p and q of system (14) are chosen as p = 1− 1
µ

and q = 1+ 1
µ , µ > 1, then the settling time estimate can be

found as

Tmax :=
πµn

1
4µ

2|λ̂ |
√

αβ
. (21)

The proof of this corollary immediately follows from in-

equality (18) and Lemma 2.

Estimate (21) yields an extremely important conclu-

sion; namely, the system can be forced to have any

a priori specified settling time by properly choosing the

parameters µ,α , and β .

B. Robustification of Control Algorithm

To provide the presented control protocol with robustness

property against bounded disturbances, we introduce the

following simple modification of the function φ :

ϕ(s) := αs[p] +β s[q] +dmax sign(s),

where 0 < p < 1,q > 1,α > 0,β > 0.

Corollary 2: Let the control protocol ui be defined by

ui = ϕ

(

1

2
(xi−1 − xi)+

1

2
(xi+1 − xi)

)

. (22)

Then Theorem 1 and Corollary 1 remain valid in the presence

of bounded disturbances (2), di(t,x) 6≡ 0.

Proof: Similarly to the proof of Theorem 1 we in-

troduce the variable z = Ax + b and the Lyapunov function

candidate V (z) = 0.5z⊤(−A−1)z. The total derivative of V

calculated along the trajectories of system (1) has the form

V̇ = −α
n

∑
i=1

|zi|p+1 −β
n

∑
i=1

|zi|q+1 −dmax

n

∑
i=1

|zi|−
n

∑
i=1

zidi

Taking into account |di(t,x)| ≤ dmax, we obtain

V̇ ≤−α
n

∑
i=1

|zi|p+1 −β
n

∑
i=1

|zi|q+1

All other considerations repeat the proof of Theorem 1.

C. A Generalization to the Multidimensional Case

So far, the individual dynamics of an agent was described

by a scalar differential equation. We now discuss a general-

ization of the proposed control protocol to the case where

the state of each agent is multidimensional; for brief, we deal

with “multidimensional agents.” In this setting, a coordinate-

wise analysis is valid, so that the overall dynamics of the

system can be written as

ẋ = φ̄
(

(A⊗ Im)x+ b̂
)

, (23)

where x =
[

x⊤1 ,x⊤2 , . . . ,x⊤n
]⊤ ∈ R

nm, the symbol ⊗ denotes

the Kronecker product, b̂ =
[

0.5x⊤0 ,0, . . . ,0.5x⊤n+1

]⊤ ∈ R
nm,

and φ̄ is the vector-valued function

φ̄(z) := [φ(z1),φ(z2), . . . ,φ(znm)]⊤,

z = [z1,z2, . . . ,znm]⊤ ∈ R
nm,

with φ defined by (11).

Due to the properties of the Kronecker product, the matrix

A ⊗ Im is positive definite and its eigenvalues are of the

form (8), hence, all the previous results remain valid. More-

over, since system (23) can be considered as an aggregate

of m independent subsystems having the same settling time

estimate, relations (15) and (21) hold no matter what m is.
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V. NUMERICAL EXAMPLES

To demonstrate the efficiency of the proposed fixed-time

control protocol we consider the multi-agent system (1) with

the following parameters:

n = 3, x0 = 0, xn+1 = 16, di(·, ·) = 2sin(5t).

For the same initial conditions

x1(0) = −5, x2(0) = −5
√

2, x3(0) = −5,

Fig. 1 presents the results of simulations for the linear and the

proposed nonlinear control protocols in the disturbance-free

case (di ≡ 0); the values of the parameters of the fixed-time

control law (13) were chosen as

α = 1, β = 1, p = 1− 1

µ
, q = 1+

1

µ
, µ = 2.

The results obtained confirm the theoretical conclusions
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s
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s

 

 

linear system

nonlinear system

Fig. 1. Trajectories of the system subject to the linear and nonlinear
protocols (disturbance-free case)

of Theorem 1 showing finite-time equidistant allocation of

agents on a segment in the nonlinear case. The settling time

is seen to be less than the theoretical estimate

Tmax =
πµn

1
4µ

2|λ̂ |
√

αβ
=

πn
1
8

|λ̂ |
≈ 12.3 (24)

of Corollary 1.

Figure 2 depicts the settling time as function of the

distance between the initial position and the equilibrium

point x∗ = [4,8,12]⊤. The settling time remains bounded

even for large initial conditions, testifying to the fixed-time

nature of the developed control protocol. It is seen that

estimate (24) of the settling time is of moderate conservatism.

Notably, for a large number of agents, n > 100, calculations

show that the estimate obtained in Corollary 1 is twice less

conservative than estimate (15).

We make the following important comment at this point.

Clearly, the nonlinear fixed-time protocol might require

higher control resources, since it forces a system to enter

10
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estimate
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Fig. 2. Settling time as function of the distance between the initial position
and the equilibrium

an ε-neighborhood of the equilibrium much faster than the

linear control does. By way of comparison, Fig. 3 depicts the

control signals for both the linear and nonlinear protocols.

It is seen that in the nonlinear case, the peak magnitudes

of u are much greater than those in the linear case. There

is nothing surprising in this observation: A smaller settling

time for the nonlinear algorithm is obtained at the expense

of applying a more powerful control. On the other hand,
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Fig. 3. Magnitudes of control signals for linear and nonlinear systems

computing the energy of component-wise control signals

E(ui(·)) =
∫ T (ε)

0
|ui(τ)|dτ

associated with this kind of behavior for the two types of

control, we obtain the nearly coinciding values

E(ulin
1 (·)) ≈ 8.9599 E(unonlin

1 (·)) ≈ 8.9785

E(ulin
2 (·)) ≈ 15.0159 E(unonlin

2 (·)) ≈ 15.0142

E(ulin
3 (·)) ≈ 16.9411 E(unonlin

3 (·)) ≈ 17.0939
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Fig. 4. Comparison of the linear and nonlinear protocols (disturbed case)

for ε = 0.03, T lin(ε) ≈ 15 and T nonlin(ε) ≈ 6.

The simulation results for the disturbed case are depicted

in Fig. 4. They demonstrate the robustness of the nonlin-

ear control protocol (22) against exogenous disturbances

bounded by dmax = 2. Fixed-time stability property holds.

VI. CONCLUSIONS

The contribution of the paper is the following:

• a nonlinear control protocol for finite-time equidistant

allocation of agents is developed;

• it is proved that the guaranteed settling time of the

system can be specified in advance regardless of the

initial positions of the agents (fixed-time convergence);

• to provide the system with robustness against bounded

exogenous disturbances, a sliding mode based modifi-

cation of the control protocol is presented;

• a generalization of the proposed nonlinear control pro-

tocol to the case of multidimensional agents is given;

• the prespecified settling time is shown to be independent

of the dimension of the agents.

The theoretical results were successfully tested through

several numerical experiments.

The fixed-time stability framework developed in the paper

looks promising in applications to other problems related to

multi-agent systems and formation control. Of a special inter-

est is the extension of the proposed algorithms to consensus-

like problems. But this is another story.
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