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Abstract—Trajectories of stable linear systems with nonzero initial conditions are known to
deviate considerably from the zero equilibrium point at finite time instances. In the paper
we analyze transients in discrete-time linear systems and provide upper bounds on deviations
(peaks) via use of linear matrix inequalities. An approach to peak-minimizing feedback design
is also proposed. An analysis of peak effects for norms of powers of Schur stable matrices
is presented and a robust version of the problem is considered. The theory is illustrated by
numerical examples.
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1. INTRODUCTION

The analysis of transients in dynamical systems has always been an important direction of
research in the theory of automatic control [1] and related areas; also see [2, 3] and other numerous
monographs and textbooks. Traditionally, transient is usually understood as a response of a stable
system with zero initial conditions to “typical” exogenous input signals such as unit step function,
harmonic disturbance, and the like. Possible deviations of the system output from the steady
state is referred to as overshoot, and there exist numerous publications on this subject; besides the
bibliography sources mentioned above, see, e.g. [4].

At the same time, much less attention in the literature has been paid to a closely related phe-
nomenon known as peak, which is caused by nonzero initial conditions in the absence of exogenous
input. Clearly, both overshoot and peak are to be avoided in the engineering practice in order to
implement “smooth” or even monotone transient. We mention [5] as one of the recent publications
on peak effects in continuous-time systems, where numerous bibliography references are given. Cer-
tain considerations on the links between peaks and overshoot are presented in [6] (see section 5.1);
also see discussion on p. 90 of [7]. For instance, in [6, 7] it is shown that, having a large peak of
trajectory of an input-free system ẋ = Ax, x0 �= 0, a vector b can be found such that the overshoot
in the system ẋ = Ax+ bu, x0 = 0, with unit step input u will be large.

To the best of our knowledge, peak effects in discrete-time systems are very poorly explored, and
the corresponding results cannot be directly derived from their continuous-time counterparts, since
these phenomena differ in nature. Among a very few publications in this direction we mention [8, 9],
where the main emphasis has been put to adaptive control of discrete-time SISO systems. Closed-
form expressions for the magnitude of peak and/or lower bounds were obtained in [10] for classes of
scalar difference equations with various initial conditions. Paper [11] also deserves to be mentioned,
where attempts have been made to link peak effects with poor controllability of the system.
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Results close to those presented in this paper are obtained in [12], where discrete-time systems
with integral and phase constraints were analyzed and designed. In the present paper the main
emphasis is put on finding upper bounds on peaks; i.e., we are aimed at estimating from above
maximal deviations of trajectories from unit-norm initial conditions. Similar results for continuous-
time systems were obtained in [6, 13–15]; also see [16], p. 65.

Estimation of peak of trajectories of discrete-time systems is closely related to the estimation
of norms of powers of Schur stable matrices. The well-known monograph [17] provides numerous
general-type results on this problem which appears in the implementation of numerical iterative
processes. More subtle results can be found in [18, 19]. In particular, the so-called Kreiss con-
stant [20] is shown to bound from below the spectral norm of powers of a matrix A, and it can
be used to compute an upper bound. This constant is defined through the resolvent of the linear
operator A; also, it is closely related to the ε-pseudospectrum of the matrix A. The bounds ob-
tained with this approach may happen to be very conservative for generic matrices; moreover, this
constant is rather hard to compute numerically.

Clearly, for a given system and fixed initial conditions, the magnitude of peak can in principle
be found by straightforward exponentiation and finding the desired value numerically. However
for high dimensions and powers of matrices, such an approach may turn out to be numerically
unstable. On top of that, theoretical estimates are of apparent interest.

Next, finding worst-case initial conditions leading to the maximal peak of the trajectory is
not easy. Moreover, estimation of peak values for classes of matrices, in particular, for matrices
containing additive norm-bounded uncertainty is a complicated problem. Yet another consideration
is related to the use of this sort of results in control theory, namely, when designing peak-minimizing
controllers.

Overall, research in this direction is seen to be pretty much important.

In the current paper we are aimed at finding estimates of the value of peak for the trajectories
of discrete-time systems and norms of powers of Schur stable matrices. In Section 2 we present
two simple examples demonstrating that peaks may take arbitrarily large values, and, moreover, its
magnitude can be found in closed form. Section 3 is devoted to the construction of upper bounds
using linear matrix inequalities and to the description of a peak-minimizing design procedure; the
theory is accompanied by a discussion and illustrated by numerical examples. In Section 4 we
formulate a robust version of the peak problem and provide its solution.

2. MOTIVATING EXAMPLES

We present two examples of estimating the norms of powers of matrices; they admit for a
closed-form solution and show that the value of peak may be arbitrarily large.

Having a Schur stable matrix A, we are interested in finding

η(A) = max
k=1,2,...

‖Ak‖.

If η(A) > 1 and the maximum is attained at k > 1, we say that the quantity ‖Ak‖ experiences
peak, and the peak instant

k∗ = arg max
k=1,2,...

‖Ak‖

is also of our interest.

We start with a very simple example.
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Example 1. Consider the companion-form Schur stable matrix A ∈ R
2×2 with eigenvalues

λ1 = λ2 = λ:

A =

⎛
⎝ 0 1

−λ2 2λ

⎞
⎠ . (1)

By induction we have

Ak =

⎛
⎝ −(k − 1)λk kλk−1

−kλk+1 (k + 1)λk

⎞
⎠ . (2)

Let the matrix l∞-norm ‖A‖∞ = maxi
∑

j |aij | be used; we then find

η(A) = max
k=1,2,...

(
kλk+1 + (k + 1)λk).

Taking the first difference of the quantity under the max sign, we obtain

k∗ =
2λ

1− λ2
(3)

for the peak instant k∗ = argmax ‖Ak‖, or, more precisely,

k∗ =
⌊ 2λ

1− λ2

⌋
,

where �·� denotes rounding towards minus infinity. Peak takes place only with k∗ > 1; i.e., for
λ > (

√
5− 1)/2 ≈ 0.6180. For the value of peak we have

η(A) ≈ λ
2λ

1−λ2
1 + λ

1− λ
>

1 + λ

e(1− λ)
. (4)

From now onwards e denotes the base of the natural logarithm. It is seen that, as λ → 1, both the
peak value and instant grow; for instance, with λ = 0.99, the peak is attained at k = 99 and its
value is equal to 73.2120 (estimate (4) gives 73.2080).

Example 2. Consider the matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

λ 0 · · · 1

0
. . .

. . .
...

...
... λ 0

0 . . . 0 λ

⎞
⎟⎟⎟⎟⎟⎠

∈ R
n×n, (5)

where |λ| < 1. For its spectral norm we have ‖A‖2 = λ2 + 0.5 + 0.5(1 + 4λ2)1/2 > 1.

Next,

Ak =

⎛
⎜⎜⎜⎜⎜⎝

λk 0 · · · kλk−1

0
. . .

. . .
...

...
... λk 0

0 . . . 0 λk

⎞
⎟⎟⎟⎟⎟⎠
,
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so that we arrive at

‖Ak‖2 = λ2k−2

(
λ2 +

k2

2
+

k

2

√
4λ2 + k2

)
;

i.e., ‖Ak‖ ≈ kλk−1. By taking the first difference [kλk−1 − (k+1)λk], we obtain k∗ ≈ λ/(1− λ) for
the peak instant and

η(A) ≈ 1

1− λ
λ

λ
1−λ

for its value; for λ close to unity we have

η(A) ≈ 1

eλ(1 − λ)
.

Hence, likewise Example 1, the magnitude of peak of ‖Ak‖ may take arbitrarily large values.

Similar conclusions are valid for matrices of the form (5), but having distinct eigenvalues, nonzero
super-diagonals, etc., as well as for the matrix l∞-norm.

For general-form matrices, accurate values of peak are not computable, and below we consider
upper bounds.

3. UPPER BOUNDS ON DEVIATIONS

In this section we consider discrete-time linear systems of the form

xk+1 = Axk, xk ∈ R
n, k = 0, 1, . . . , (6)

with initial conditions x0, ‖x0‖ ≤ 1; from now on, the Euclidian vector norm and the spectral
matrix norm ‖A‖ is used. For Schur stable systems we obtain simple upper bounds on the peak of
trajectories:

max
‖x0‖≤1

max
k=0,1,...

‖xk‖;

also, an approach to peak-minimizing state feedback design will be presented. The results are
obtained via use of linear matrix inequality technique (e.g., see, [7, 16], where the foundations of
the theory are presented and numerous control-related applications are discussed) and formulated
as semidefinite programs (SDP).

3.1. Analysis

The following result holds.

Theorem 1. Let γ be a solution of the semidefinite program

min γ subject to APA� − P ≺ 0, I � P � γI, (7)

in the variables γ ∈ R and P = P� ∈ R
n×n.

Then the trajectories of system (6) satisfy

max
‖x0‖≤1

max
k=0,1,...

‖xk‖ ≤ ηupp(A) = γ1/2.
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Proof. Schur stability of system (6) is equivalent to the existence of the quadratic Lyapunov
function V (xk) = x�k P

−1xk with matrix P � 0 satisfying the discrete-time Lyapunov inequality

APA� − P ≺ 0. (8)

Consider the ellipsoid

E =
{
x ∈ R

n : x�P−1x ≤ 1
}
. (9)

By the definition of the Lyapunov function, the condition x0 ∈ E implies xk ∈ E for all k > 0. In
particular, if the ellipsoid contains the unit ball B = {x ∈ R

n : ‖x‖ ≤ 1}, which can be written as
P � I, then x0 ∈ B implies xk ∈ E for all k > 0. This means ‖xk‖ ≤√

λmax(P ) (i.e., the norm of
the solutions does not exceed the square root of the length of the largest semiaxis of the ellipsoid)
for all k > 0. Hence, to obtain the best upper bound on ‖xk‖, the quantity λmax(P ) is to be
minimized over all positive-definite matrices P satisfying the Lyapunov inequality together with
the condition P � I.

Note that the Lyapunov inequality in (7) in strict; i.e., the optimization is performed over an
open set. In the formulation of this theorem and the subsequent assertions we will omit subtleties
related to use of strict/nonstrict inequalities; a detailed discussion of this issue can be found in [16];
also see [7, Subsection 2.1].

A numerical solution of the SDP (7) can be found by using numerous computational tools; e.g.
such as the Matlab-compatible toolboxes LMI lab [21] (part of the Robust Control Toolbox) or
cvx [22].

Theorem 1 provides an upper bound—over all initial conditions in the unit ball—on the peak
of norms of solutions of a stable system. In other words, we have obtained an upper bound on the
norms of matrix powers ‖Ak‖; this immediately follows from the definition of the matrix spectral
norm.

Accuracy of the estimates obtained along this way is an open issue; see discussion is Subsec-
tion 3.3.

3.2. Design

Consider now the design problem for the system

xk+1 = Axk +Buk, k = 0, 1, . . . . (10)

Here, the pair of matrices A ∈ R
n×n, B ∈ R

n×m, m < n, is assumed to be controllable, and the
matrix A is not necessarily Schur stable; uk ∈ R

m is the control input.

We restrict our considerations by linear static state feedback

uk = Kxk, (11)

so that the problem is to find a matrix K ∈ R
m×n that leads to the minimal peak of trajectories

of the closed-loop system

xk+1 = (A+BK)xk

for all initial conditions ‖x0‖ ≤ 1.

The only difference with the analysis problem is the presence of the additional variable K, and
the first inequality in the SDP (7) is to be modified properly.
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Let a stabilizing gain matrix K be already found; then, by Schur lemma [16], the Lyapunov
inequality (8) for the closed-loop matrix A+BK can be re-written in the equivalent form as

⎛
⎝ P (A+BK)P

P (A+BK)� P

⎞
⎠ � 0.

Introducing the auxiliary matrix variable Y = KP this inequality writes

⎛
⎝ P AP +BY

PA� + Y �B� P

⎞
⎠ � 0, (12)

which is a linear matrix inequality in P, Y .

Further considerations mimic the proof of Theorem 1, and we arrive at the following result.

Theorem 2. Let γ, P, Y provide a solution to the SDP

min γ subject to (12) and I � P � γI

in the variables γ ∈ R, P = P� ∈ R
n×n, Y ∈ R

m×n.

Then the control law (11) with gain matrix K = Y P−1 stabilizes system (10), and the trajectories
of the closed-loop system with matrix Ac = A+BK admit the following estimate:

max
‖x0‖≤1

max
k=0,1,...

‖xk‖ ≤ ηupp(Ac) = γ1/2.

3.3. Discussion and Examples

The formulations of Theorems 1 and 2 are simple, but the accuracy of the resulting estimates is
not addressed. We therefore discuss some of their properties and present the results of numerical
simulations which testify to a reasonable performance.

Consider the analysis problem.

First, it is clear that trajectories of system (6) experience no peak for any initial conditions if and
only if ‖A‖ < 1. This inequality is equivalent to AA� ≺ I, i.e., to the existence of the Lyapunov
function with P = I (see the Lyapunov inequality in (7)), whence it follows that the estimate given
by Theorem 1 is exact, and ellipsoid (9) is the unit ball.

The next issue relates to the choice of the worst-case initial conditions x0 from the unit ball:

xwc = arg max
‖x0‖=1, k=1,2...

‖xk‖.

This is an open problem; however, experiments testify to the fact that the point x0 = emin,
Pemin = emin “often” happens to be close to the worst one. Here, emin denotes the eigenvector
of the matrix P (the solution given by Theorem 1) associated with its minimal eigenvalue equal to
unity. It is these initial conditions which will be considered in all the experiments below.

Next, the experiments were performed with matrices A in companion form; this case is of
interest because it represents the vector form of the scalar difference equation (the coefficients of
this equation are the elements of the last row of A). In a number of situations, the upper bounds
obtained are “precise.” For example, for the matrix

A =

(
0 1

−0.9801 1.4001

)
(13)
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Fig. 1. The trajectory of the system with λ1,2 = 0.99 e±jπ/4, and the bounding ellipse.

Fig. 2. Accuracy of the upper bound from Theorem 1; a histogram from 10 000 randomly generated Schur
stable matrices in R

3×3.

with eigenvalues λ1,2 = 0.99 e±jϕ, ϕ = π/4, Theorem 1 gives ηupp(A) = 2.3803, which exceeds the
actual magnitude of peak (calculated by straightforward exponentiating ‖Ak‖, k = 1, 2, . . .) by less
than 0.6%. Figure 1 depicts the trajectory of the system, the bounding ellipse, and the unit circle
of initial conditions.

On the other hand, for ϕ = 0 (i.e., for λ1 = λ2 = 0.99), the trajectory experiences a large peak
equal to 73.2120 (see Example 1), and the estimate ηupp(A) = 99.5025 is much worse. For systems
with companion-form matrix, the magnitude of peak (and, probably, the conservatism) is high if
the eigenvalues are multiple and/or located close to the stability boundary. Results of this sort for
scalar systems can be found in [10].

As said, accuracy of the estimates for matrices of general form is an open question. We performed
the following experiment. Schur stable matrices A were generated randomly; for each of them,
the estimate ηupp(A) was found by Theorem 1, and the quantity η(A, x0)

.
= maxk ‖xk‖ (with x0

mentioned above) was obtained by direct computations. The accuracy of the estimate ηupp(A) was
characterized by the quantity acc = ηupp(A)/η(A, x0). The corresponding histogram is depicted
in Fig. 2; the quality of the estimate provided by Theorem 1 is seen to be reasonable.
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Needless to say, the results obtained along this way depend on the method of random generation
of matrices, their dimension, etc., though overall, they testify to rather meaningful quality of the
estimates.

Theorem 1 gives an upper bound on ‖Ak‖. Estimates based on the Kreiss constant [20]

K(A) = sup
z∈C:|z|>1

(|z| − 1)‖(zI −A)−1‖

mentioned above turn out to be much worse. In particular, the quantity Kupp(A)
.
= e nK(A) can

be shown to bound ‖Ak‖ from above, see [18, 19]. For the test matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

20

21
2 0 0

0
40

41
2 0

0 0
60

61
2

0 0 0
80

81

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)

analyzed in [19] (cf. (5)), the true value of peak of its norm is equal to η(A) ≈ 1.4721 × 105,
and it is observed at step k = 142. We point out that ‖A‖ = 2.8072, i.e., during iterations,
the norm increases more than 50 000 times, before start decreasing! The Kreiss upper bound
equals Kupp(A) ≈ 7.88 × 105, which does not make much sense. Using Theorem 1, we obtain
ηupp(A) ≈ 1.6823 × 105, i.e., the accuracy of this estimate is about 14%. We also note that the
matrix P computed in the optimization problem in Theorem 1 has a huge condition number
(about 1010). This forced us to properly tune the numerical parameters of the LMI solvers (such
as the maximal number of iterations, accuracy, etc.).

We now turn to the peak-minimizing control design.

First, note an obvious peculiarity of the approach in the discrete time case. It is well-known
that for controllable systems, the trajectory can be settled to zero in a finite number of steps, by
choosing zero poles for the closed-loop system. For systems in the canonical controllable form [3],
the matrix of the closed-loop system has companion form with the zero last row; this guarantees
the absence of peak. In continuous-time systems, such a complete mitigation of peak is impossible
(e.g., see discussion in [6]). For matrices of general form, setting eigenvalues to zero may cause
significant peak.

We illustrate the efficiency of the peak-attenuation procedure of Theorem 2 by applying it to
system (10) with Schur stable matrix A of the form (14), and B = (0, 0, 0, 1)�, i.e., having scalar
control input (11). Theorem 2 gives the matrix Ac of the closed-loop system, and the upper
bound for the peak was found to be ηupp(Ac) = 16.1031. The actual peak computed numerically
is η(Ac) = 15.6778, i.e., our estimate is quite accurate. Notably, the value of peak is 10 000 times
smaller than that of the open-loop system.

3.4. Peak Effects and Superstability

Yet another direction of the analysis of peak effects relates to the notion of superstability; e.g.,
see [23, 24] for numerous useful properties of such systems.

Recall that a matrix A (and the associated system (6)) is said to be superstable if ‖A‖∞ < 1.
Superstability is a sufficient condition for stability; importantly, such systems do not exhibit peaks,
since the �∞-norm of solutions decreases monotonically.
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Note that the value of peak in stable systems is not invariant to change of basis; i.e., the
transients of two systems with matrices having the same spectra may differ dramatically. Indeed,
if a matrix is diagonalizable, then in the new basis there is obviously no peak, whereas in the old
basis it may happen to be large.

Superstability is also not invariant to coordinate transformations, since it is formulated in terms
of conditions on its entries, not eigenvalues. Therefore, change of basis may gain superstability and
the absence of peak; see [23–25] for more details.

Certain classes of matrices admit simple conditions on gaining superstability; one of them is the
class of Schur stable diagonalizable matrices with real spectra, which are superstable in the new
basis and experience no peak. A more interesting example is the class of matrices with distinct
eigenvalues λi that satisfy the condition

|Reλi|+ |Imλi| < 1. (15)

By a nonsingular transformation, such a matrix can be converted to the real block-diagonal form,
and by (15) it becomes superstable [23], hence, no peak. More subtle results can be found in [25];
they relate to a characterization of diagonal transformations which make a matrix superstable;
finding such transformations reduces to solving a linear program.

In the case of the spectral matrix norm, description of the respective transformations is more
complicated, though it can be performed for certain classes of matrices. For instance, if the above-
mentioned diagonal transformations with matrix D = diag(d1, . . . , dn) are considered, then in the
new coordinates for matrix (5) we obtain

Ã = D−1AD =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

λ 0 · · · dn
d1

0
. . .

. . .
...

...
... λ 0

0 . . . 0 λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and taking the quantity dn
d1

small enough, we obtain ‖Ã‖ < 1.

The notion of superstability is also handy in the design of peak-annihilating controllers. Finding
such a controller reduces to solving a linear program, and if a solution exists, the closed-loop system
exhibits no peak. Note however that the class of superstabilizable systems is relatively small; for
instance, a system in the canonical controllable form cannot be superstabilized.

4. UPPER BOUNDS: A ROBUST VERSION

The results of Theorems 1 and 2 can be modified to cope with uncertainties in the system matrix.

Consider the analysis problem. Let the matrix A of the system

xk+1 = Axk, xk ∈ R
n, k = 0, 1, . . . , (16)

contains uncertainty of the form

A = A0 + FΔH, (17)

where the nominal matrix A0 ∈ R
n×n is Schur stable, F ∈ R

n×p, H ∈ R
q×n are fixed and known,

and the matrix perturbation Δ ∈ R
p×q is bounded in the spectral norm:

‖Δ‖ � δ. (18)
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Structured uncertaint of this form is typical to numerous control problems (e.g., see [7]); we
are interested in certifying stability of the whole family and the goal is to evaluate the maximal
possible peak.

As above, the initial conditions x0 in (16) are assumed to be bounded ‖x0‖ ≤ 1. Let us estimate
from above the maximum value of ‖xk‖ in (16), (17) for all such initial conditions and all admissible
uncertainties (18).

The mandatory requirement is that the system be stable; hence, we first evaluate the maximum
magnitude δ of the span of Δ that retains the stability of the system for all admissible values of Δ.
More specifically, using the concept of robust quadratic stability, we find the quadratic stability
margin, which is defined as the maximal value of δ that admits the existence of the common
quadratic Lyapunov function for the uncertain system.

A straightforward modification of Theorem 2.3.3 [7] on the robust quadratic stability of the
family (17), (18) leads to the following result, which was obtained in [7] for the case δ = 1. The
so-called Petersen’s lemma [26] is a key tool for the derivation of the proposition below (various
modifications and reformulations of this lemma and can be found in [7]).

Proposition. The feasibility of the matrix inequality

⎛
⎜⎜⎜⎝

P − FF� A0P 0

PA�
0 P PH�

0 HP δ−2I

⎞
⎟⎟⎟⎠ � 0

in the matrix variable P � 0 is equivalent to the quadratic stability of system (16)–(18) for all
‖Δ‖ � δ. Any solution P defines the common quadratic Lyapunov function V (x) = x�P−1x.

Here, 0 denotes the zero matrix of compatible dimensions.

The maximization of δ over the solutions of the linear matrix inequality above is equivalent to
the minimization of the quantity δ−2; hence, introducing the new variable μ

.
= δ−2, we immediately

arrive at the following result.

Theorem 3. Let μ̃ be a solution of the following semidefinite program:

μ −→ min

subject to the constraint

⎛
⎜⎜⎜⎝

P − FF� A0P 0

PA�
0 P PH�

0 HP μI

⎞
⎟⎟⎟⎠ � 0 (19)

in the matrix variable P � 0 and the scalar variable μ. Then the quadratic stability margin of the
family (17), (18) is given by r = μ̃−1/2.

We now evaluate the magnitude of peaks of trajectories of the uncertain system (17), (18).
To guarantee the quadratic stability of the family, we assume ‖Δ‖ ≤ δ < r; then, for μ = δ−2,
Ineq. (19) is feasible in P . This inequality is a robust counterpart of the Lyapunov inequality
APA� − P ≺ 0; hence, mimicking the logic of Theorem 1, we obtain its robust version.

Theorem 4. Let γ̃ be a solution of the following semidefinite program:

γ −→ min
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subject to the constraints

⎛
⎜⎜⎜⎝

P − FF� A0P 0

PA�
0 P PH�

0 HP δ−2I

⎞
⎟⎟⎟⎠ � 0, I � P � γI,

in the matrix variable P = P� and the scalar variable γ. Then, for the trajectories of system
(16)–(18) we have

max
‖Δ‖≤δ

max
‖x0‖≤1

max
k=0,1,...

‖xk‖ ≤ γ1/2.

Example 3. Consider system (16), (17) with matrix A0 of the form (13) and F = H = I . The-
orem 1 provides the upper bound ηupp(A0) = 2.3803 on the magnitude of peak. Use of Theorem 3
leads to r = 0.0071 for the quadratic stability margin, a small value, since A0 is close to instability.
Letting δ = 0.9 r and using Theorem 4, we obtain an upper bound on the magnitude of “robust”
peak, equal to 15.3720, which is much greater than the estimate ηupp(A0) = 2.3803 obtained for the
uncertainty-free nominal matrix. This is explained both by the very formulation of the problem
and, more importantly, by using the approach based on common Lyapunov functions, which may
introduce additional high conservatism.

A robust version of the design problem can be formulated in a similar way, by combining the
results of Theorems 2 and 4. We do not present a rigorous result, since the formulation and
computations become more bulky, whereas its substantive richness is mild; indeed, likewise the
analysis problem, the accuracy of the bound is hard to estimate.

5. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH

In the paper, numerical routines were proposed for the computation of upper bounds on the
deviations of trajectories of discrete-time systems (and norms of powers of Schur stable matrices)
in the state space, having nonzero initial conditions from the unit ball. The peak-minimizing
controller design problem was also addressed, and a robust modification of the analysis problem
was considered.

The following research directions seem to be promising.

• Description of “good” classes of matrices which admit non-conservative upper bounds from
Theorems 1 and 2; similarly, for “bad” matrices.

• Since peak effect is not invariant to change of basis, it would be interesting to characterize
classes of coordinate transformations that reduce the value of peak or attenuate it completely.

• Further research related to application of the superstability tools looks natural. In this case,
evaluation of peak and/or controller design assumes use of linear programming rather than
the apparatus of linear matrix inequalities as in the theorems presented above.

• Finding the worst-case initial conditions (yielding maximal peak) in the unit ball, and the
worst-case uncertainty in the robust formulation of the problem.
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