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Hierarchical Cyclic Pursuit: Algebraic Curves
Containing the Laplacian Spectra
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Sergei E. Parsegov , Pavel Y. Chebotarev , Pavel S. Shcherbakov , and Federico Martín Ibáñez3

Abstract—This article addresses the problem of multi-4
agent communication in networks with a regular directed5
ring structure. These can be viewed as hierarchical exten-6
sions of the classical cyclic pursuit topology. We show7
that the spectra of the corresponding Laplacian matrices8
allow exact localization on the complex plane. Furthermore,9
we derive a general form of the characteristic polynomial10
of such matrices, analyze the algebraic curves its roots11
belong to, and propose a way to obtain their closed-form12
equations. In combination with frequency-domain consen-13
sus criteria for high-order single-input single-output linear14
agents, these curves enable one to analyze the feasibility15
of consensus in networks with a varying number of agents.16

Index Terms—Algebraic curves, cyclic pursuit, hierarchy,17
Laplacian spectra of digraphs.18

I. INTRODUCTION19

THE Laplacian spectra of graphs play an important role20

in solving distributed optimization and control problems21

since they mainly determine the stability and the convergence22

rate of the corresponding dynamical systems [1], [2], [3]. For a23

fixed graph, finding the spectrum does not cause any difficulties,24

but if we consider graphs with a scalable structure (i.e., those25

constructed by the repetition of the same component), the prob-26

lem of exact calculation or localization of the spectrum turns out27

to be nontrivial. A huge amount of literature is devoted to the28

derivation of formulas for the Laplacian spectra of undirected29

topologies, including various lattices such as rectangular grids,30
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honeycombs [4], hierarchical small-world networks [5], prod- 31

ucts and coronas of graphs [6], and many others. 32

However, when analyzing the dynamics of network systems, 33

directed communication topologies are of major interest. Say, it 34

can be observed that a group of high-order agents may converge 35

to consensus under an undirected interaction topology, but it fails 36

to do so under the corresponding unidirected one, even though 37

this topology contains a spanning converging tree. A precise 38

localization of the Laplacian spectra of digraphs serves as the 39

basis for the analysis of consensus problems in such situations. 40

In this article, we study several generalizations of the cyclic 41

pursuit multiagent strategy. Its history can be traced back to 42

1878, when Darboux [7] published his elegant work, where 43

he studied a geometric averaging procedure and proved its 44

convergence to consensus. Basically, cyclic pursuit is a strategy 45

where agent i pursues its neighbor i− 1 modulo N , where N is 46

the number of agents. Evidently, such a communication structure 47

is an unidirected ring or a “predecessor–follower” topology, i.e., 48

a Hamiltonian cycle. 49

Cyclic pursuit strategies attracted the attention of different 50

scientific communities (e.g., see [8], [9], [10], [11], [12], and 51

[13]) due to a wide range of applications including but not limited 52

to numerous formation control tasks, such as patrolling, bound- 53

ary mapping, etc. Their extensions to hierarchical structures 54

were considered in [14], [15], [16], and [17]. The work in [18] 55

and [19] addressed the case of heterogeneous agents; the effect 56

of communication delays was analyzed in [20]. Geometrical 57

problems related to cyclic pursuitlike algorithms were studied 58

in [21]. Some pursuit algorithms use the rotation operator in 59

order to follow desired trajectories [22]. The work in [23] shows 60

the connection of discrete-time weighted cyclic pursuit with the 61

general DeGroot model. Another group of strategies (protocols) 62

is based on bidirectional topologies [24], that is, each agent i has 63

relative information about its neighbors i− 1 and i+ 1 (modulo 64

N ). The row straightening problems studied in [25] and [26] also 65

imply symmetric communications except for fixed “anchors” 66

(the endpoints of a segment). The problems of vehicle platooning 67

with cyclic communications (e.g., see [27], [28], [29], and [30]) 68

are also closely related to the problems of cyclic pursuit. In this 69

case, the network system also has inputs including the desired 70

intervehicular distances and communication disturbances. The 71

analysis of the closed-loop stability of such systems is reduced 72

to the study of state matrices close or identical to those studied 73

in cyclic pursuit. 74

Regular ring structures model symmetric hierarchical inter- 75

action between agents. In some cases, these structures allow for 76
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closed-form expressions for the spectra of the corresponding77

Laplacian matrices, which helps to analyze the control protocols78

these matrices are involved in. While cyclic pursuit can be79

treated as a special case of consensus seeking, the properties80

of the underlying interaction topology are closely related to81

classical mathematical considerations including the study of82

algebraic curves. For the basic cyclic pursuit topology, the83

eigenvalues of the corresponding Laplacian matrix are roots of84

unity [14]. No matter how many agents/nodes constitute the85

network, the spectrum lies on the unit circle. This fact prompted86

us to study hierarchical and other generalized ring topologies,87

which led to higher-order curves that contain their Laplacian88

spectra.89

In this article, we study ring digraphs with a hierarchical90

“necklace” structure. It is convenient to explore the Lapla-91

cian spectra of such graphs with regularly interleaved directed92

and undirected arcs using the concept of hierarchy. Namely,93

we introduce a macro-vertex, which is a sequence of directed94

and undirected arcs (the lower level of the hierarchy) and a95

directed ring of macro-vertices (the upper level of the hierarchy).96

The topologies constructed in this way occupy an intermediate97

position between directed and undirected rings, which have98

been widely studied in relation to cyclic pursuit and control99

of homogeneous vehicular platoons running on a ring (e.g., see100

the nearest neighbor ring topologies presented in [28, Fig. 2(h)101

and (i)]).102

A useful classification of consensus problems based on the103

notion of complexity space was proposed in [31, Fig. 1.1]. In104

accordance with it, three independent dimensions of complexity105

can be identified in which the simplest first-order consensus106

model can be generalized, namely: 1) the complexity of the agent107

model; 2) topological complexity (complexity of the structure108

of interactions); and 3) the complexity of couplings between109

agents. The contribution of our article to the general study110

of consensus in network systems can be attributed to the first111

two directions: The analysis and localization of the Laplacian112

spectra of special ring topologies to 2) and complex high-order113

models of agents to 1). Specifically, we prove that the Laplacian114

spectra of the studied digraphs lie on certain high-order algebraic115

curves irrespective of the number of macro-vertices forming the116

network. Along with this, we present an algorithm for obtaining117

equations of these curves. Based on this localization, we pro-118

pose a geometric consensus condition in the frequency domain119

applicable to any number of interacting agents.120

The rest of this article is organized as follows. Section II121

introduces some mathematical preliminaries needed for the sub-122

sequent analysis and discusses the statement of the problem. The123

main results that describe the Laplacian spectra of ring digraphs124

are presented in Section III. We prove that, regardless of the125

number of macro-vertices in such a digraph, its Laplacian spec-126

trum lies on a certain algebraic curve and provide an algorithm127

to derive an implicit equation (of the form p(x, y) = 0) of this128

curve in R
2. In Section IV, we study consensus problems for a129

group of high-order linear SISO agents interacting through the130

discussed ring topologies, that is, performing hierarchical cyclic131

pursuit. We apply the frequency domain criterion [32], [33], [34]132

Fig. 1. Hamiltonian cycle corresponding to the cyclic pursuit strategy
with (a) four agents and (b) a macro-vertex. (a) Hamiltonian cycle on 4
nodes. (b) Macro-vertex on 2 nodes.

to derive a necessary and sufficient consensus condition, which 133

does not depend on the number of agents in the network. The 134

theoretical results are accompanied by numerical illustrations 135

and. Finally, Section V concludes this article. 136

Throughout the article, j :=
√−1 denotes the imaginary unit 137

while letters i and k are used for indexing purposes. 138

II. PRELIMINARIES AND PROBLEM STATEMENT 139

In this article, we study network systems that have a hierar- 140

chical ring structure. After defining the basic terminology, we 141

formulate the problem. 142

Throughout the article, we consider finite digraphs allowing 143

in some cases multiple arcs and loops. A digraph is denoted 144

by GN = (V, E), where V = {1, . . . , N} stands for the node set 145

and E for the multiset1 of arcs. 146

The formal definitions of the adjacency and Laplacian matri- 147

ces of an unweighted digraph GN are given below. 148

Definition 1: The adjacency matrix associated with a digraph 149

GN = (V, E) is the matrix AN = (aik) ∈ R
N×N , where each 150

entry aik is the number of arcs of the form (i, k) in E . 151

Definition 2: The Laplacian matrix LN ∈ R
N×N of GN is 152

the matrix with entries lii =
∑

k �=i aik and lik = −aik for i �= k, 153

where (aik) = AN is the adjacency matrix of GN . 154

For example, consider a graph that represents communica- 155

tions within the conventional cyclic pursuit strategy for four 156

agents [see Fig. 1(a)]. Here, an arc from i to k shows that agent 157

i pursues agent k. 158

The corresponding Laplacian matrix for the general case of 159

N agents can be defined through the counterclockwise principal 160

circulant permutation matrix [37] PN as follows: 161

LN = IN − PN

where IN ∈ R
N×N is the identity matrix 162

PN =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 1

1 0 0 · · · 0

0 1 0 · · · 0
...

...
. . .

. . .
...

0 · · · 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎦ (1)

1A multiset, unlike a set, allows multiple occurrences of each element. We
need this in one particular case in which we assume the presence of multiple
arcs in a digraph [see Fig. 4(b)].
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Fig. 2. Ring digraph with four macro-vertices.

and163

LN =

⎡⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · −1

−1 1 0 · · · 0

0 −1 1 · · · 0
...

...
. . .

. . .
...

0 · · · 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎦ . (2)

We now describe the structure of hierarchical network systems164

studied ahead. The lower level of the hierarchy is a linear macro-165

vertex, which is a specific subdigraph whose n ≥ 1 nodes are166

identified with indexed dynamical agents while the top level is167

a Hamiltonian cycle on2 m ≥ 1 macro-vertices.168

Definition 3: A linear macro-vertex Gi
n = (Vi, E i) of169

a digraph GN = (V, E) is a subdigraph of GN with170

Vi = {vi1, . . . , vin} (n ≥ 1) obtained from the directed path171

vin → vin−1 → · · · → vi1 (main direction; no arcs when n = 1)172

by adding the reverse path vi1 → vi2 → · · · → vin from which173

any subset of arcs is dropped.174

The following definition introduces a topology consisting of175

m identical macro-vertices on disjoint subsets of nodes along176

with a top-level Hamiltonian cycle that forms a Hamiltonian177

cycle on the whole set of N = mn nodes together with the main178

direction paths traversing the macro-vertices. We will associate179

the term ring digraph with such a topology.180

Definition 4: A ring digraph denoted by Gm,n = (V, E) is a181

digraph such that V =
⋃m

i=1 Vi, Vi = {n(i− 1) + 1, . . . , ni},182

E = (
⋃m

i=1 E i) ∪ {e1, . . . , em},(Vi, E i) = Gi
n are identical lin-183

ear macro-vertices on n ≥ 1 nodes, and the arcs ei = (ni+184

1, ni) (i ∈ {1, . . . ,m− 1}) and em = (1, nm) link the first185

node of each macro-vertex with the nth node of the previous186

one (which is the same macro-vertex when m = 1).187

It can be observed that each macro-vertex of a ring digraph188

is its induced3 subdigraph whenever m > 1 while for m = 1,189

it drops the arc (1, n). The arcs e1, . . . , em form a Hamiltonian190

cycle on m macro-vertices.191

An example of a ring digraph with n = 2 and m = 4 is192

presented in Fig. 2. It is constructed from the Hamiltonian cycle193

shown in Fig. 1(a) and the macro-vertex (it is the complete194

2The shortest Hamiltonian cycle consists of one node (in our construction, it
is a macro-vertex) and one directed loop.

3An induced subdigraph of a digraph is a subdigraph whose arc set consists
of all of the arcs of the digraph that have both endpoints in the node set of the
subdigraph.

digraph on two nodes) shown in Fig. 1(b), where a pair of 195

opposite arcs is represented by a line segment without arrows. 196

Remark 1: A ring digraph can be considered as a 197

Hamiltonian cycle {(1, N), (N,N − 1), . . . , (2, 1)} supple- 198

mented by the path {(1, 2), (2, 3), . . . , (N − 1, N)} in which 199

ν (0 ≤ ν ≤ N − 1) arcs are dropped in a regular fashion. In 200

a sense, ring digraphs fill the gap between the Hamiltonian 201

cycle and the bidirectional ring. Obviously, every ring digraph 202

contains a spanning converging tree. It should be noted that this 203

condition is necessary and sufficient for attaining asymptotic 204

consensus in the system consisting of first-order agents. In 205

Section IV, we consider a more general setting with high-order 206

agent models and derive a consensus condition that does not 207

depend on the number of nodes in the network. 208

We now introduce cooperating agents and then formulate the 209

problem. The agents are assumed to have identical high-order 210

(double integrator or higher) SISO linear models. Let xi ∈ R 211

represent the position of agent i, i ∈ {1, . . . , N}. Therefore, the 212

consensus-seeking communication over the network Gm,n can 213

be described as 214

a(s)xi = ui (3)

ui = b(s)

(∑
k∈Ni

aik(xk − xi)

)
, i ∈ {1, . . . , N} (4)

where aik are the elements of the adjacency matrix AN and Ni 215

is the set of neighbors of node i, i.e., the set of nodes k such that 216

aik �= 0. Here s := d/dt denotes the differentiation operator, the 217

scalar polynomials 218

a(s) = sd + ad−1s
d−1 + . . .+ a1s+ a0

b(s) = bqs
q + bq−1s

q−1 + . . .+ b1s+ b0

determine agent’s dynamics and communications, and ui is the 219

control signal. For convenience, we assume d > q. 220

Let us introduce the vector ξi = [xi, ẋi, . . . , x
(d−1)
i ]	 and 221

transform (3), (4) into the state-space form 222

ξ̇i = Aξi +Bui (5)

ui = K
∑
k∈Ni

aik(ξk − ξi), i ∈ {1, . . . , N} (6)

where 223

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0

0 0 0 · · · 0
...

...
... · · · ...

0 0 0 · · · 1

−a0 −a1 −a2 · · · −ad−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, B =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0
...

0

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
224

K =
[
b0 b1 b2 . . . bq 0 . . . 0

]
.

The entire closed-loop dynamics can thus be written as 225

ξ̇ = (IN ⊗A− LN ⊗BK)ξ (7)
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where ξ = [ξ	1 , ξ
	
2 , . . . , ξ

	
N ]	 and ⊗ is the Kronecker product.226

In Section IV, we will obtain a consensus criterion for ring-227

shaped networks of agents (3), (4).228

Let us formulate a definition of consensus for the systems229

under study.230

Definition 5: We say that the network system (5) with231

feedback control (6) reaches consensus if232

lim
t→∞‖ξi(t)− ξk(t)‖ = 0 ∀i, k ∈ {1, . . . , N} (8)

for any initial condition ξ(0) = [ξ	1 (0), . . . , ξ
	
N (0)]	.233

In the simplest case of a(s) = s and b(s) = 1, we face the234

classical first-order consensus model; e.g., the cyclic pursuit if235

aik = 1 for k = i− 1 (mod N) and aik = 0 otherwise. The236

corresponding Laplacian matrix LN is given by (2), and its237

characteristic polynomial Δ(λ) has the form238

Δ(λ) = (λ − 1)N − 1.

The roots ofΔ(λ) can be found using Lemma 1, which follows239

from De Moivre’s Theorem.240

Lemma 1: The roots of the cyclotomic equation241

σN − 1 = 0 (9)

are242

σk = ej
2πk
N , k ∈ {0, . . . , N − 1} (10)

and the roots of243

σN + 1 = 0 (11)

are244

σk = ej
2πk+π

N , k ∈ {0, . . . , N − 1}. (12)

The roots in both sets are uniformly distributed on the unit circle245

centered at (0, j0) in the complex plane C.246

Therefore, the spectra of the Laplacian matrices (2) with all247

N ∈ N are jointly dense on the unit circle centered at (1, j0).248

The equation of the corresponding unit circle in R
2 is249

(x− 1)2 + y2 − 1 = 0. (13)

This circle is a basic example of a curve that contains the Lapla-250

cian spectrum of a ring digraph; it entirely lies inC+ ∪ {0}. The251

spectrum of any such a digraph contains 0 with multiplicity 1,252

which guarantees consensus in the first-order cyclic pursuit253

process according to the well-known consensus criterion.254

Remark 2: The dynamic system (3), (4) can be considered255

from different points of view: Its coordinates can have different256

physical meanings, and the signal ui can contain both the plant257

dynamics and elements of a local or/and a distributed controller.258

In addition, the right-hand side can also contain other external259

signals and disturbances that do not affect the form of the state260

matrix of the closed-loop system (7). A particular example of261

such a system is a leaderless vehicle platoon moving on a ring,262

e.g., see [27], [28], [29], and [30]. In such problems, two types263

of stability are studied: The classical stability of a closed-loop264

system and string stability associated with the amplification of a265

disturbance propagating through the system [35], [36]. With an266

increase in the number of vehicles N in the platoon, the system267

Fig. 3. Macro-vertex (a) on four nodes can be obtained by connecting
two macro-vertices of type (b) by a directed arc. (a) Macro-vertex on 4
nodes. (b) Macro-vertex on 2 nodes.

may exhibit eventual instability [35]. Therefore, the problem of 268

stabilization regardless of the number N is important. 269

The article aims at the following: 270

1) localizing the Laplacian spectra of the ring digraphs de- 271

fined above; 272

2) obtaining a necessary and sufficient consensus condition 273

applicable to any number of agents in the network. 274

III. LAPLACIAN SPECTRA OF RING DIGRAPHS 275

In this section, we propose a method for the exact localization 276

of Laplacian spectra for ring digraphs. It turns out that these 277

spectra always lie on algebraic curves whose expressions can 278

be found in a closed form. Thus, equations of these curves 279

are among the main results of the work. First, we classify ring 280

digraphs and discuss their properties. After that we 281

1) derive a general form of the characteristic polynomial of 282

the corresponding Laplacian matrices; 283

2) present a way to obtain the equations of algebraic curves 284

that contain the roots of the characteristic polynomial 285

regardless of the number of nodes in Gm,n. 286

A. Simple and Complex Rings 287

Let us find out how the set of ring digraphs is organized. 288

Clearly, different macro-vertices can give rise to isomorphic ring 289

digraphs. For instance, consider the two macro-vertices depicted 290

in Figs. 3(a) and (b), where each macro-vertex has an unattached 291

dotted arc of a Hamiltonian cycle connecting macro-vertices 292

within a ring digraph. Obviously, two macro-vertices of type (a) 293

form the same digraph (shown in Fig. 2) as four macro-vertices 294

of type (b). 295

By construction, ring digraphs are scalable, i.e., they can be 296

“inflated” by cloning macro-vertices. To distinguish the types of 297

such digraphs and characterize their simplest components, we 298

introduce the following definition. 299

Definition 6: A ring digraph will be called a complex ring 300

if it can be represented as a Hamiltonian cycle on two or more 301

macro-vertices. If this is not the case, we call it a simple ring. A 302

complex ring Gm,n is said to be a round replication of a simple 303

ringG1,n if the representations ofGm,n andG1,n involve identical 304

macro-vertices. 305

While examples of simple and complex rings are shown in 306

Fig. 4, the theorem ahead recursively counts the number of 307

nonisomorphic simple rings with a given number of nodes. 308

Theorem 1: The number Y (N) of nonisomorphic simple 309

rings on N nodes satisfies the relationship 310

Y (N) =
2N −∑n∈D(N) nY (n)

N
(14)
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Fig. 4. (a) and (b) Two simple rings and (c) a complex ring constructed
as the round replication of the simple ring (b). (a) Simple ring on 4 nodes.
(b) Simple ring on 2 nodes. (c) Complex ring on 4 nodes.

where D(N) is the set of all divisors of N excluding N and311

Y (1) is set to be 2.312

Proof: First, to simplify the proof, we redefine ring digraph on313

N = 1 node (cyclic pursuit of a single agent makes no sense, so314

this redefinition does not affect the application) as a multidigraph315

that has either 1 or 2 directed loops. Then, Y (1) = 2, as stated316

in Theorem 1. Next, for any N > 1, let us supplement the set317

of ring digraphs on N nodes with all digraphs of the same form318

that additionally have arc (N, 1), where N = mn (this arc is319

absent in ring digraphs by definition). The supplemented set of320

ring digraphs will be called the set of necklace digraphs.321

Any necklace digraph on the node set V = {1, . . . , N} can be322

identified with a vector (a1, . . . , aN ),where ai = 2 if and only if323

there are two opposite arcs between nodes i and i+ 1 (mod N)324

and ai = 1 otherwise. A necklace digraph is periodic if its325

vector representation is periodic in the sense that (a1, . . . , aN ) =326

(a1, . . . , an, a1, . . . , an, . . . , a1, . . . , an) with n < N being the327

minimum length of a subvector whose replication gives the328

whole vector.329

Denote by Ỹ (N) the number of nonisomorphic nonperiodic330

necklace digraphs on N nodes. Obviously, there is a bijec-331

tion between such digraphs and distinct cycles of minimal332

period N (in the case of two contractivity factors) enumerated4333

in [40, Sec. 4.8, Lemma 1]. Consequently, Ỹ (N) = (2N −334 ∑
n∈D(N) nỸ (n))/N. Finally, we prove that Y (N) = Ỹ (N)335

for all N ∈ N. We have Y (1) = Ỹ (1) by redefinition. For336

N > 1, consider any nonperiodic necklace digraph. Its vector337

representation contains at least one ai = 1. Therefore, it can338

be transformed into the representation of a simple ring by339

a number of cyclic shifts transferring ai = 1 to the position340

aN corresponding to the pair of nodes (N, 1). This defines a341

one-to-one correspondence between the equivalence classes of342

isomorphic nonperiodic necklace digraphs and the classes of343

isomorphic simple rings (all on N nodes). Hence, the number344

of the latter classes is given by (14). �345

Corollary 1: 1. If N is prime, then Y (N) = (2N − 2)/N. 2.346

If N = 2p, p ∈ N, then Y (N) = (2N − 2N/2)/N.347

Proof: The first statement is a direct consequence of Theo-348

rem 1. To prove the second one by induction, first observe that349

in the base case, p = 1, it follows from the first part. Assume350

that it is true for all N = 2k, k < p and prove it for N = 2p.351

4Problem 3.5 “How many different necklaces of length m can be made from
beads of q given colors?” appeared earlier in [38], although without the desired
formula; see also [39].

Fig. 5. Quantity Y (N) as function of the number of nodes.

In this case, D(N) = {1, 2, . . . , N/2}. By Theorem 1 and the 352

induction hypothesis, it holds that Y (N) = (2N − 21 − (22 − 353

21)− . . .− (2N/2 − 2N/4))/N = (2N − 2N/2)/N, as desired. 354

Some values of the function Y (N) (modified for N = 1) are 355

given in Table I. Fig. 5 illustrates its growth graphically using 356

base-10 logarithmic scale on the vertical axis. � 357

Remark 3: In the proof of Theorem 1, we reduced the 358

enumeration of nonisomorphic simple rings on N nodes to that 359

of distinct cycles of minimal period N. Essentially, the same 360

numerical sequence appeared as a solution to a number of other 361

equivalent enumeration problems including those of dimensions 362

of the homogeneous parts of the free Lie algebras, irreducible 363

polynomials of degree N over the field GF(2), binary Lyndon 364

words of length N , etc. (see sequences A001037 and A059966 365

in [41]). 366

It is worth mentioning that expression (14) has significant 367

consequences regarding the divisibility of numbers. Say, part 1 368

of Corollary 1 implies a special case of Fermat’s little theorem 369

(ap ≡ a (mod p), where p is prime) for a = 2 while extending 370

(14) to multigraphs gives a proof of this theorem in its general 371

form. 372

B. Laplacian Spectra and Algebraic Curves 373

We now consider complex rings with N > 3 nodes and char- 374

acterize the locus of the corresponding Laplacian spectra. 375

Theorem 2: For any simple ring G1,n on n nodes, the 376

Laplacian eigenvalues of all complex rings Gm,n obtained by 377

m-fold round replication of G1,n belong to a bounded algebraic 378

curve of order 2n in C
+ ∪ {0}. 379

Proof: In accordance with [42, Th. 4], the Laplacian char- 380

acteristic polynomial of Gm,n has the form 381

Δ(λ) = (Pn(λ))
m − (−1)N (15)

where Pn(λ) =
∏K

k=1 Zik is an nth-order polynomial and 382

i1, . . . , iK are the path lengths in the decomposition of the 383

cycle {(1, n), (n, n− 1), . . . , (2, 1)} into the paths linking the 384

consecutive nodes of indegree 1 in G1,n. The polynomials Zi are 385

the modified Chebyshev polynomials of the second kind 386

Zn(λ) := (λ − 2)Zn−1(λ)− Zn−2(λ)

where Z0(λ) ≡ 1 and Z1(λ) ≡ λ − 1. 387

By Lemma 1, the roots αk + jβk, k ∈ {0, . . . ,m− 1} of 388

σm − (−1)N = 0 are roots of unity (the roots of σm = −1 are 389

also roots of σ2m = 1) lying on the unit circle in C. Therefore, 390
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TABLE I
FIRST VALUES OF THE FUNCTION Y (N), THE NUMBER OF NONISOMORPHIC RING DIGRAPHS ON N NODES

by (15), the zeros of Δ(λ) satisfy391

Pn(λ) = αk + jβk, k ∈ {0, . . . ,m− 1} (16)

where392

α2
k + β2

k = 1. (17)

Varying m we obtain a countable set of roots of unity, which393

is everywhere dense on the unit circle. This means that for any394

u, v ∈ R such that u2 + v2 = 1, there exist sequences ui → u395

and vi → v such that ui + jvi are roots of unity (i ∈ N). Based396

on this we apply [43, Th. 11.1] on the continuous depen-397

dence of the roots of a polynomial with leading coefficient 1398

on its other coefficients (cf. [44], [45]). Due to this theorem,399

if λk, k ∈ {0, . . . , n− 1}, are the roots of equation Pn(λ) =400

u+ jv, then the roots λk,i of equations Pn(λ) = ui + jvi401

(k ∈ {0, . . . , n− 1}, i ∈ N) can be numbered in such a way402

that λk,i → λk, k ∈ {0, . . . , n− 1}. This justifies the follow-403

ing method for determining the curve (in the implicit form404

f(x, y) = 0) on which the Laplacian eigenvalues of complex405

rings Gm,n are everywhere dense. Setting λ = x+ jy for (16)406

and substituting Re[Pn(x+ jy)] = αk and Im[Pn(x+ jy)] =407

βk into (17) yields an equation of order 2n, which determines408

the desired algebraic curve of order 2n in the form f(x, y) = 0.409

Indeed, this curve contains the roots of (16) for all αk + jβk410

that belong to the unit circle. According to the above conti-411

nuity theorem, any neighborhood of each such a root contains412

infinitely many roots of (16) in which αk + jβk are roots of413

unity. The latter roots lie on the same curve and are the Laplacian414

eigenvalues of ring digraphs Gm,n. By the properties of the415

Laplacian spectra of digraphs, they lie inC+ ∪ {0}. Substituting416

λ = |λ|(cosϕ+ j sinϕ) into Pn(λ) = λn +
∑n−1

k=0 pkλ
k for417

λ �= 0 we have |Pn(λ)| = |λ|n|1 +∑n−1
k=0 pkλ

−n+k(cos kϕ+418

j sin kϕ)|.Therefore, it is easy to specifyh > 0 such that |λ| > h419

implies |Pn(λ)| > 1. Consequently, λ with |λ| > h cannot sat-420

isfy (16) and thus the Laplacian spectra locus of ring digraphs421

Gm,n is bounded.422

Let us emphasize that an unbounded “inflation” of a ring423

digraph Gm,n by increasing m leaves the Laplacian eigenvalues424

on the same algebraic curve and only increases their density425

on it. �426

Corollary 2: For a fixed n ∈ N, the number of distinct427

algebraic curves of order 2n containing the Laplacian spectra428

of ring digraphs obtained by round replication of simple rings429

onn nodes does not exceed the number of nonisomorphic simple430

rings on n nodes determined by Theorem 1.431

C. Quartic and Sextic Curves432

In this section, we consider several special cases that allow433

relatively simple closed-form expressions of the corresponding434

algebraic curves mentioned in Theorem 2.435

Fig. 6. Round replication of the simple ring shown in Fig. 4(b).

Fig. 7. Cassini ovals.

The case n = 2: We first consider a complex ring with the 436

following structure: It has N = 2m nodes, m ≥ 2, and contains 437

a Hamiltonian cycle supplemented by the inverse cycle, where 438

every other arc is dropped (see Fig. 6). This digraph is a round 439

replication of the simple ring depicted in Fig. 4(b); the ring 440

digraph in Fig. 2 belongs to this class with m = 4. 441

The Laplacian matrix of this digraph has the form 442

LN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 · · · 0 −1

−1 1 0 0 · · · 0 0

0 −1 2 −1 · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 · · · 0 −1 1 0 0

0 · · · 0 0 −1 2 −1

0 · · · 0 0 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(18)

and by (15), its characteristic polynomial is (Z2)
N
2 − 1= (λ2 − 443

3λ + 1)m − 1. Its roots satisfy 444

λ2 − 3λ + 1− αk − jβk = 0, k ∈ {0, . . . ,m− 1}.
From (x+ jy)2 − 3(x+ jy) + 1− αk − jβk = 0, it follows 445

αk = (x− 1.5)2 − y2 − 1.25 andβk = 2xy − 3y. Substituting 446

the last expressions into (17) gives the equation of the curve. 447

In this case, the eigenvalues of the Laplacian matrix (18) lie 448

on the quartic Cassini curve (Cassini ovals) defined by 449

[(x̃−
√
5)2 + ỹ2][(x̃+

√
5)2 + ỹ2] = 24 (19)

where x̃ = 2(x− 3/2) and ỹ = 2y, see [46] for the details. This 450

curve is shown in Fig. 7. 451
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Fig. 8. Two simple rings on n = 3 nodes. (a) Simple ring #1. (b) Simple
ring #2.

Fig. 9. Ring digraph obtained by round replication of the simple ring in
Fig. 8(a).

Fig. 10. Sextic curve defined by (21).

The case n = 3. Observe that there are exactly two noniso-452

morphic simple rings on n = 3 nodes; these are depicted in453

Fig. 8.454

Consider two complex rings on N = 3m nodes (m > 1)455

constructed by round replication of these simple rings. The one456

obtained from simple ring #1 is shown in Fig. 9.457

Its Laplacian matrix has the form458

LN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 · · · 0 −1

−1 1 0 0 · · · 0 0

0 −1 1 0 · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 · · · 0 −1 2 −1 0

0 · · · 0 0 −1 1 0

0 · · · 0 0 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(20)

and by (15), its characteristic polynomial is (Z1Z2)
m − (−1)N .459

According to Theorem 2, the eigenvalues of matrix (20) lie460

on a sextic curve. Its equation is461 (
x̃2 + ỹ2

)3
+ (4 + 4x̃)

(
x̃2 + ỹ2

)2 − 2x̃3 − 4x̃2

+ 6x̃ỹ2 + 4ỹ2 = 0 (21)

where x̃ = x− 2 and ỹ = y. This curve is depicted in Fig. 10.462

The complex ring constructed by round replication of simple463

ring #2 [see Fig. 8(b)] is shown in Fig. 11.464

Fig. 11. Ring digraph obtained by round replication of the simple ring
in Fig. 8(b).

Fig. 12. Sextic curve defined by (23).

Its Laplacian matrix is of the form 465

LN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −1 0 0 · · · 0 −1

−1 2 −1 0 · · · 0 0

0 −1 1 0 · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 · · · 0 −1 2 −1 0

0 · · · 0 0 −1 2 −1

0 · · · 0 0 0 −1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(22)

and by (15), its characteristic polynomial is (Z3)
m − (−1)N . 466

By Theorem 2, the eigenvalues of matrix (22) lie on a sextic 467

curve; it is defined by equation 468(
x̃2 + ỹ2

)3
+ 2x̃

(
x̃2 + ỹ2

)2 − 3x̃4 − 6x̃3 + 2x̃2ỹ2

+ 2x̃2 + 2x̃ỹ2 + 4x̃+ 5ỹ4 + 6ỹ2 = 0 (23)

where x̃ = x− 2 and ỹ = y. This curve is depicted in Fig. 12. 469

Graphs with a more complex structure based on simple rings 470

on 4, 5, . . . , nodes can be obtained in the same way along 471

with the corresponding expressions for higher-order curves that 472

contain the spectrum loci. 473

In Section III-D, we present a result involving a weighted 474

necklace digraph. Such a structure generalizes the topology of 475

cyclic pursuit in a different way: There are no macro-vertices, 476

but the arcs of one of the directions are weighted and have the 477

same weight. 478

Due to the presence of this variable weight, the corresponding 479

Laplacian spectra belong to a certain drop-shaped region rather 480

than lie on an algebraic curve. 481

D. Weighted Ring 482

Consider a weighted necklace digraph on N nodes consisting 483

of a Hamiltonian cycle and the inverse one. 484

Assume that all arcs of one of the cycles have the same 485

weight a, and the arcs in the opposite direction have weight b. 486

Without loss of generality, we can restrict ourselves to the case 487

where one weight is unity and the other one is c ∈ [0, 1]. 488
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Fig. 13. Two-cycle weighted digraph.

Fig. 14. Sequence of five ellipses that contain the spectrum loci of the
Laplacian matrices (24) as c increases from 0 to 1, including a unit circle
(c = 0) and a segment (c = 1); the boundary f1,2(x) of a drop-shaped
region, which is the union of all the ellipses (see Theorem 3), is shown
in red.

A digraph of this type is shown in Fig. 13.489

Its Laplacian matrix has the form490

LN =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1+c −c 0 0 · · · 0 −1

−1 1+c −c 0 · · · 0 0

0 −1 1+c −c · · · 0 0
...

...
. . .

. . .
. . .

...
...

0 · · · 0 −1 1+c −c 0

0 · · · 0 0 −1 1+c −c

−c · · · 0 0 0 −1 1+c

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (24)

Lemma 2: For any weight c ∈ [0, 1] and any N ∈ N, the491

eigenvalues of matrix (24) lie on the ellipse492

(x− (1 + c))2

(1 + c)2
+

y2

(1− c)2
= 1. (25)

Proof: Obviously, LN = (1 + c)IN − PN − cPN−1
N , where493

PN is the counterclockwise principal circulant permutation494

matrix (1). Therefore, the eigenvalues of the Laplacian ma-495

trix are λk = (1 + c)− ej
2πk
N −c ej

2π(N−1)k
N , k ∈ {1, . . . , N}.496

Rewriting this expression in a trigonometric form leads to the497

parametric equation of the ellipse (25) in R
2.498

Remark 4: The limit cases of (25) are the unit circle centered499

at (1, 0) (for c = 0) and the segment [0, 4] of the real axis (for500

c = 1). These two limit shapes are shown in Fig. 14 along with501

the three ellipses of the form (25).502

Theorem 3: Every eigenvalue of matrix (24) for any c ∈503

[0, 1] and N ∈ N lies in the drop-shaped region bounded by the504

functions 505

f1,2(x) ={
±√1− (x− 1)2 if x ∈ [0, 1.5]

± 1√
2
(3−√

1 + 2x)
√√

1 + 2x− x+ 1 if x ∈ (1.5, 4].

(26)

Proof: For ellipses (25), we have x ∈ [0, 2(1 + c)] and 506

y ∈ [−(1− c), (1− c)], with the maximum and minimum at 507

x = 1 + c (cf. Fig. 14). Thus, for any two different ellipses of this 508

family, each one extends beyond the other. Let us fix c ∈ (0, 1). 509

Suppose that (xcz,±ycz) with xcz �= 0 are the intersection 510

points of the two ellipses corresponding to arc weights c and 511

z �= c. Then, xcz increases in z. Let fz(x) be the function repre- 512

senting the upper (nonnegative) part of the ellipse corresponding 513

to z ∈ (0, 1). We have 514

fz(x) > fc(x)whenever

((z < c)& (0 < x < xcz)) or ((c < z)& (xcz < x ≤ 2 + 2c)) .
(27)

Let 515

xc = lim
z′→c−0,z′′→c+0

xz′z′′ = lim
z′→c−0

xz′c = lim
z′′→c+0

xcz′′ .

It follows from (27) that the only x for which fc(x) = 516

maxz fz(x) is xc. 517

Let us find xc as a function of c. To this end, we first find 518

xcz as a function of c and z. Using (25), it is straightforward to 519

verify that 520

xcz = 2

(1−z)2

1+z − (1−c)2

1+c(
1−z
1+z

)2
−
(

1−c
1+c

)2 . (28)

Now it can be shown that 521

xc = lim
z→c

xcz =
(1 + c)(3 + c)

2
(29)

and by (25) it holds that 522

fc(xc) =
1

2
(1− c)

√
(1− c)(3 + c) . (30)

Substitution of the expression for c from (29) into (30) yields 523

the form of f1,2(x) given in Theorem 3. 524

In the following section, we show how the localization of the 525

Laplacian spectra helps to analyze the stability of networks of 526

high-order agents. 527

IV. CONSENSUS CRITERION 528

A. Consensus Region 529

A system composed of agents (3) controlled by distributed 530

protocol (4) can be equivalently represented as 531

a(s)x = b(s) (−LNx) (31)

where s := d/dt, x = [x1, x2, . . . , xN ]	, and LN is the Lapla- 532

cian matrix of the dependence digraphGN containing a spanning 533

converging tree. 534
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The following condition simplifies the analysis of reaching535

consensus in system (31) by dividing the problem into two536

subproblems.537

Definition 7 ([32], [33], [34]): The consensus region (or Ω-538

region) of the functionφ(s) = a(s)/b(s) in the Laplace variable539

s is the set of points λ in C for which the function φ(s)− λ has540

no zeros in the closed right half-plane541

Ω = {λ ∈ C : φ(s)− λ �= 0whenever Re(s) ≥ 0}.
The function φ(s) is sometimes referred to as the generalized542

frequency variable [34], [47].543

Such a set can be found using the general D-decomposition544

method.5 In accordance with [33], to do this, we construct a545

curve z = φ(jω) on the complex plane C. We say that this curve546

encircles l times the point λ (the number l may not necessarily be547

integer) if the increment of the argument of the functionφ(jω) is548

2πl asω changes from−∞ to+∞. Typically, for a fixed domain549

Λi, the number of encirclements does not depend on the choice550

of λ ∈ Λi. Therefore, we can talk about the encirclements about551

a domain. Thus, the following result on the consensus (stability)552

region Ω of a hierarchical system consisting of subsystems with553

identical transfer functions φ(s) is valid.554

Lemma 3 ([33]): Let φ(s) have the form φ(s) = a(s)/b(s)555

(the degrees of the polynomials a(s) and b(s) are equal to d and556

q, respectively), b(jω) �= 0, ω ∈ R, and let b(s) have l right557

zeros. Then, the Ω-region is the domain Λi encircled exactly N558

times by the curve z = φ(jω). Here, the following statements559

hold.560

1) N = l if φ(s) is a proper function (d ≤ q).561

2) N = (d− q)/2 + l if φ(s) is not proper (d > q).562

Thus, we can formulate the following necessary and sufficient563

consensus condition.564

Lemma 4 ([32], [33], [34]): The network system with agents565

described by (3) reaches consensus under protocol (4) if and only566

if567

λi ∈ Ω, i ∈ {2, . . . , N}
where λi, i ∈ {2, . . . , N}, are the nonzero eigenvalues of −LN .568

The details of determining the consensus region may be found569

in [33]. In the case of φ(s) = s2 + γs, γ > 0, this region has570

the form of the interior of a parabola in the complex plane:571

φ(jω) = −ω2 + jγω,−∞ < ω < ∞, and ifφ(s) = s, then the572

Ω-region is the open left half-plane of the complex plane.573

B. Consensus in Systems on Ring Digraphs574

In this section, we formulate and prove a consensus criterion575

for systems (31).576

Theorem 4: System (31), where LN is the Laplacian matrix577

of a ring dependence digraph, reaches consensus in the sense578

of (8) for all numbers of agents if and only if the locus of the579

spectrum of −LN lies entirely in the open consensus region580

5The D-decomposition method proposed by Neimark [48], [49] allows one
to construct a stability region in the parameter space of a linear system that
depends on the parameters. The history of the method and an overview of the
results on its generalization can be found in [50].

Ω defined by φ(s) and shares only the point (0, j0) with its 581

boundary. 582

Proof: By Theorem 2, the Laplacian spectra of ring digraphs 583

Gm,n obtained by round m-fold replication from a given simple 584

ringG1,n lie on a certain algebraic curve of order 2n, irrespective 585

of m. Taking this fact into account, it suffices to apply Lemma 4 586

to prove Theorem 4. 587

Remark 5: As mentioned above, Theorem 4 applies to 588

systems whose ring topology always contains a spanning con- 589

verging tree, which guarantees consensus in the case of first- 590

order agents. Thus, this theorem gives additional conditions that 591

ensure consensus at a higher order of agents. 592

C. Consensus in Networks of Second-Order Agents 593

Consensus problems in networks of second-order agents have 594

been widely studied; e.g., see [1], [51], [52], and [53]. Here, we 595

consider the cases with absolute and relative velocity gain from 596

the point of view of the consensus criterion of Theorem 4. Thus, 597

the consensus conditions derived for the examples ahead are 598

based on finding the intersection of the consensus region and 599

the curve that contains the spectrum of system matrix −LN . In 600

some cases, we will use Vieta’s theorem. 601

Example 1: Consider the following system of N intercon- 602

nected second-order agents with absolute velocity gain γ > 0 603

(see [46] for the details) 604

ẍ+ γẋ = −rLNx (32)

where r > 0 is a scaling factor. This factor is introduced for the 605

sake of generality and can be considered either as part of agent’s 606

dynamics or as a parameter of the communication Laplacian 607

matrix. In any case, the matrix −rLN now plays the role of 608

−LN in Theorem 4. 609

The consensus region of system (32) is bounded by the curve 610

φ(jω) = −ω2 + jγω, and the corresponding curve inR2 has the 611

form y2 = −γ2x. By Theorem 4, the system reaches consensus 612

if and only if the spectrum of−rLN belongs to the interior of the 613

parabola y2 = −γ2x (except for the intersection at the origin) 614

for all N . 615

Consider the communication topology represented by a 616

Hamiltonian cycle [the classical cyclic pursuit illustrated by 617

Fig. 1(a)] as the dependence digraph. The corresponding Lapla- 618

cian matrix is given by (2); therefore, the eigenvalues of −rLN 619

are located on the circle of radius r centered at (−r, j0). It 620

is straightforward to check that this circle has no intersection 621

with the above parabola except for the origin point whenever 622

r/γ2 ≤ 1/2. Note that this result for the “predecessor–follower” 623

topology corresponds to the condition of asymptotic stability of 624

the platoon solution in [27, Th. 2], as N tends to infinity. 625

If the dependence digraph has the form shown in Fig. 6, then 626

the system reaches consensus in the sense of (8) if and only if the 627

Cassini ovals (19) (see Fig. 7) reflected about the vertical axis 628

and r-scaled, belong to the consensus region. This is satisfied 629

whenever r/γ2 ≤ 7/6. In terms of the vehicular platoon control 630

problem, this result means that the system becomes eventually 631

unstable when the inequality above does not hold. 632
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Fig. 15. Ω-region bounded by y2 = −γ2x and the unit circle (r = 1),
where γ ∈ {1, 2}.

Fig. 16. Ω-region bounded by y2 = −γ2x and the reflected Cassini
ovals (19) (r = 1), where γ ∈ {0.7, 2}.

Fig. 17. Ω-region bounded by y2 = − γ2x3

γ2x+1
and the circle containing

the spectrum of −rLN , where γ = 1 and r = 0.15.

Figs. 15 and 16 illustrate the cases where the condition of633

Theorem 4 is satisfied or violated.634

Example 2: Now consider the system635

ẍ = −rLNx− γrLN ẋ, r > 0 (33)

with relative velocity gain γ > 0 and r > 0.636

Here, the generalized frequency variable is φ(s) = s2/(1 +637

γs). Sinceφ(jω) = −ω2/(1 + γ2ω2) + jγω3/(1 + γ2ω2), the638

boundary of the consensus region of system (33) on R
2 has639

algebraic expression y2 = −γ2x3/(γ2x+ 1).640

Similarly to the previous example, consider two communica-641

tion topologies and the two corresponding curves containing the642

spectrum of−rLN : 1) the circle of radius r centered at (−r, j0)643

and 2) the Cassini ovals (19) reflected about the vertical axis644

and r-scaled. In the first case, there always exists an intersection645

at x = −2r/(1 + 2rγ2). In the second case, the corresponding646

cubic equation always has one negative real root x0 regardless647

of the values of r and γ, as illustrated in Figs. 17 and 18.648

Fig. 18. Ω-region bounded by y2 = − γ2x3

γ2x+1
and the Cassini ovals

containing the spectrum of −rLN , where γ = 1 and r = 0.3.

Fig. 19. Ω-region bounded by y2 = − γ2x3

γ2x+1
, the circle that contains

the spectra locus of −rLN (r = 0.15, γ ∈ {3.4, 4}), and the eigenvalues
of the matrix for N = 7.

Corollary 3: For system (33) with predefined relative velocity 649

gain γ, no cyclic topology whose Laplacian spectrum belongs to 650

the curve (13), (19), (21), (23), or (26) guarantees consensus for 651

all N ∈ N. For vehicle platoons control problems, this means 652

that the system is eventually unstable. 653

Sketch of the proof: Observe that both the curve 654

y2 = −γ2x3/(γ2x+ 1) bounding the consensus domain of sys- 655

tem (33) and the curve containing the Laplacian spectrum of 656

−rLN share the origin point (0, j0). Near this point, under a 657

negative increment of x, the positive branch of any of the curves 658

under consideration containing the Laplacian spectra of −rLN 659

grows faster than that of the curve y2 = −γ2x3/(γ2x+ 1), 660

which can be straightforwardly confirmed by the analysis of 661

derivatives. Therefore, starting from the origin, all the positive 662

branches of the spectra curves lie above the positive branch of 663

the boundary curve. Thus, they do not belong to the Ω-region. 664

Consequently, by Theorem 4, none of the topologies listed in 665

Corollary 3 guarantees consensus for all N ∈ N. 666

Remark 6: It follows from the analysis of the spectrum 667

of −rLN that system (33) with a certain value of the relative 668

velocity gain γ can reach consensus in the sense of (8), provided 669

that the number of agents N is sufficiently small. For example, 670

for γ = 3.4, the system with a unidirected topology reaches 671

consensus if and only if N ≤ 6. With a slightly increased factor 672

γ = 4, the system always reaches consensus if and only if 673

N ≤ 7, see Fig. 19 . 674

Example 3: Let the system have the dynamics 675

ẍ = − r

γ
LNx+

(
rLN − 1

γ
IN

)
ẋ, γ, r > 0

and a more exotic generalized frequency variable 676

φ(s) = (s+ γs2)/(1− γs) [34]. For s = jω, we have 677
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Fig. 20. Ω-region bounded by y2 = −x(1 + γx)2/(γ(γx+ 2)) and the
circles that contain the spectra loci of −rLN , where r ∈ {0.15, 0.35} and
γ = 1.

φ(jω) = −2γ2ω2/(1 + γ2ω2) + jγ(ω − γ2ω3)/(1 + γ2ω2),678

with the boundary of the consensus region Ω in R
2 expressed679

as y2 = −x(1 + γx)2/(γ(2 + γx)).680

Consider a unidirected topology, whose Laplacian spectrum681

lies on a circle. It can be shown that the consensus condition of682

Theorem 4 is satisfied if and only if rγ ≤ 0.25. The consensus683

region and two versions of the circle that contains the spectra684

locus of −rLN are depicted in Fig. 20.Consensus is reached for685

r = 0.15, but this is not the case with r = 0.35.686

V. CONCLUSION687

Cyclic pursuit is one of the most attractive and interesting688

problems of network communication. In this article, its prop-689

erties are studied using its Laplacian spectrum, which allows690

for exact localization on the unit circle. In this article, we691

studied several versions of hierarchical cyclic pursuit, where692

each macro-vertex of the dependence digraph is a sequence of693

directed and bidirectional arcs.694

The contribution of this article is threefold. For the network695

dynamical systems on ring digraphs, we696

1) proved that the corresponding Laplacian spectra lie on697

certain high-order algebraic curves regardless of the num-698

ber of macro-vertices in the network;699

2) presented an algorithm for obtaining implicit equations700

of these curves;701

3) proposed a consensus condition in the frequency domain702

applicable to any number of agents in the network.703

A characteristic feature of the algebraic curves obtained in704

this study is that they contain the spectrum loci of specific705

(Laplacian) matrices associated with network dynamical sys-706

tems. Some of them, such as the Cassini ovals, have a simple707

geometric interpretation [54]; some others do not seem to have708

appeared in handbooks on special functions.709

Possible extensions of this work include spectra localization710

of more general weighted networks that represent hierarchical711

pursuit. These problems are the subject of continuing research.712
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