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Abstract: Cyclic pursuit is one of the oldest multi-agent strategies with many interesting
features. The vast majority of the papers dedicated to this strategy cover various extensions
related to the models of interacting agents, delays, uncertainties, asynchronous communication,
etc. A certain line of research studies hierarchical topologies that extend the conventional single-
layer scheme. Our paper contributes to this line. Motivated by the fact that such structures are
scalable, we study the spectral properties of their Laplacian matrices. First, we consider a two-
layer cyclic pursuit strategy and analyze its Laplacian spectrum as the number of agents tends to
infinity. Next, we propose a more sparse two-layer topology, study its spectrum, and describe the
curves that contain a limit location of the eigenvalues of the corresponding Laplacian matrix.
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1. INTRODUCTION

Distributed control and learning over networks has become
an essential research topic due to increasing number of
applications related to transportation systems (Hu et al.
(2020)), cooperative control of unmanned vehicles (Ren
and Beard (2008)), distributed sensor networks (Iyengar
and Brooks (2016)), and others. The distributed algo-
rithms rely on local information exchange and a coop-
erative consensus-based protocol driving all nodes to a
common global solution (Olfati-Saber et al. (2007)). In
the literature, the researches distinguish at least two types
of strategies, namely, leader-following and leaderless. The
scope of this paper is limited to leaderless consensus, where
no leader and no external control inputs are presented in
the system.

In the area of leaderless problems, cyclic pursuit is a spe-
cific and interesting multi-agent strategy with rich history
(see Darboux (1878); Bruckstein et al. (1991); Klamkin
and Newman (1971); Behroozi and Gagnon (1979); Segall
and Bruckstein (2020) and references therein) and a vari-
ety of generalizations. The most common formulation of
cyclic pursuit is as follows: Each node (agent) pursues its
nearest neighbor, and all the nodes communicate in the
same direction thus forming a Hamiltonian cycle. Obvi-
ously, such a digraph contains a spanning converging tree
and its Laplacian matrix has a single zero eigenvalue. This
guarantees that the system achieves consensus.

⋆ The research of P. Shcherbakov and A. Rogozin in Section 4 was
supported by the Russian Science Foundation (project No. 21-71-
30005).

The topic has been explored by researchers in different
ways related to agent models, coupling between them, and
time-varying topology to name a few. Despite great scala-
bility of single-layer cyclic pursuit, the increasing number
of nodes strongly affects the rate of convergence to a com-
mon point slowing down the underlying control algorithms
incorporating such a scheme. This drawback gave rise to
research aimed at convergence rate improvements. Recent
advances have been obtained for hierarchical cyclic pursuit
schemes, where agents are divided into groups, subgroups
of a group, and so on. The basic model presented in Smith
et al. (2005) has become a cornerstone in the analysis
of hierarchical schemes and it has been later extended in
various directions. In particular, the authors of Iqbal et al.
(2018) weakened the assumption requiring the system ma-
trix to be block circulant by using Cartesian product-based
hierarchical scheme and showed the same convergence rate
as in the classic one. Tsubakino et al. (2013) focused on the
design of control laws for systems possessing hierarchical
structures. In a series of works, e.g. Tsubakino and Hara
(2012), the researchers generalized the hierarchical cyclic
pursuit scheme and focused on the intergroup connection
reducing information exchange among the groups. Iqbal
et al. (2017) considered hierarchical block circulant strat-
egy to solve the rendezvous problem and analyzed its
convergence properties. Some papers, see Mukherjee and
Ghose (2016), explored a multi-layer hierarchical struc-
ture generalizing the works featuring single- or two-layer
schemes.

Some other works analyze the spectral properties of Lapla-
cian matrices to study their influence on the convergence
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schemes, where agents are divided into groups, subgroups
of a group, and so on. The basic model presented in Smith
et al. (2005) has become a cornerstone in the analysis
of hierarchical schemes and it has been later extended in
various directions. In particular, the authors of Iqbal et al.
(2018) weakened the assumption requiring the system ma-
trix to be block circulant by using Cartesian product-based
hierarchical scheme and showed the same convergence rate
as in the classic one. Tsubakino et al. (2013) focused on the
design of control laws for systems possessing hierarchical
structures. In a series of works, e.g. Tsubakino and Hara
(2012), the researchers generalized the hierarchical cyclic
pursuit scheme and focused on the intergroup connection
reducing information exchange among the groups. Iqbal
et al. (2017) considered hierarchical block circulant strat-
egy to solve the rendezvous problem and analyzed its
convergence properties. Some papers, see Mukherjee and
Ghose (2016), explored a multi-layer hierarchical struc-
ture generalizing the works featuring single- or two-layer
schemes.
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Laplacian Spectra of Two-Layer
Hierarchical Cyclic Pursuit Schemes

Sergei Parsegov ∗ Pavel Shcherbakov ∗,∗∗ Pavel Chebotarev ∗∗

Victoria Erofeeva ∗∗∗ Alexander Rogozin ∗∗

∗ Institute of Control Sciences of Russian Academy of Sciences,
Moscow, Russia (e-mail: s.e.parsegov@gmail.com, cavour118@mail.ru)

∗∗ Moscow Institute of Physics and Technology (e-mail:
cavour118@mail.ru, pavel4e@gmail.com,

aleksandr.rogozin@phystech.edu)
∗∗∗ Skolkovo Institute of Science and Technology, Moscow, Russia

(e-mail: v.erofeeva@skoltech.ru)

Abstract: Cyclic pursuit is one of the oldest multi-agent strategies with many interesting
features. The vast majority of the papers dedicated to this strategy cover various extensions
related to the models of interacting agents, delays, uncertainties, asynchronous communication,
etc. A certain line of research studies hierarchical topologies that extend the conventional single-
layer scheme. Our paper contributes to this line. Motivated by the fact that such structures are
scalable, we study the spectral properties of their Laplacian matrices. First, we consider a two-
layer cyclic pursuit strategy and analyze its Laplacian spectrum as the number of agents tends to
infinity. Next, we propose a more sparse two-layer topology, study its spectrum, and describe the
curves that contain a limit location of the eigenvalues of the corresponding Laplacian matrix.

Keywords: multi-agent systems, hierarchy, cyclic pursuit, Laplacian matrix, spectrum locus

1. INTRODUCTION

Distributed control and learning over networks has become
an essential research topic due to increasing number of
applications related to transportation systems (Hu et al.
(2020)), cooperative control of unmanned vehicles (Ren
and Beard (2008)), distributed sensor networks (Iyengar
and Brooks (2016)), and others. The distributed algo-
rithms rely on local information exchange and a coop-
erative consensus-based protocol driving all nodes to a
common global solution (Olfati-Saber et al. (2007)). In
the literature, the researches distinguish at least two types
of strategies, namely, leader-following and leaderless. The
scope of this paper is limited to leaderless consensus, where
no leader and no external control inputs are presented in
the system.

In the area of leaderless problems, cyclic pursuit is a spe-
cific and interesting multi-agent strategy with rich history
(see Darboux (1878); Bruckstein et al. (1991); Klamkin
and Newman (1971); Behroozi and Gagnon (1979); Segall
and Bruckstein (2020) and references therein) and a vari-
ety of generalizations. The most common formulation of
cyclic pursuit is as follows: Each node (agent) pursues its
nearest neighbor, and all the nodes communicate in the
same direction thus forming a Hamiltonian cycle. Obvi-
ously, such a digraph contains a spanning converging tree
and its Laplacian matrix has a single zero eigenvalue. This
guarantees that the system achieves consensus.

⋆ The research of P. Shcherbakov and A. Rogozin in Section 4 was
supported by the Russian Science Foundation (project No. 21-71-
30005).

The topic has been explored by researchers in different
ways related to agent models, coupling between them, and
time-varying topology to name a few. Despite great scala-
bility of single-layer cyclic pursuit, the increasing number
of nodes strongly affects the rate of convergence to a com-
mon point slowing down the underlying control algorithms
incorporating such a scheme. This drawback gave rise to
research aimed at convergence rate improvements. Recent
advances have been obtained for hierarchical cyclic pursuit
schemes, where agents are divided into groups, subgroups
of a group, and so on. The basic model presented in Smith
et al. (2005) has become a cornerstone in the analysis
of hierarchical schemes and it has been later extended in
various directions. In particular, the authors of Iqbal et al.
(2018) weakened the assumption requiring the system ma-
trix to be block circulant by using Cartesian product-based
hierarchical scheme and showed the same convergence rate
as in the classic one. Tsubakino et al. (2013) focused on the
design of control laws for systems possessing hierarchical
structures. In a series of works, e.g. Tsubakino and Hara
(2012), the researchers generalized the hierarchical cyclic
pursuit scheme and focused on the intergroup connection
reducing information exchange among the groups. Iqbal
et al. (2017) considered hierarchical block circulant strat-
egy to solve the rendezvous problem and analyzed its
convergence properties. Some papers, see Mukherjee and
Ghose (2016), explored a multi-layer hierarchical struc-
ture generalizing the works featuring single- or two-layer
schemes.

Some other works analyze the spectral properties of Lapla-
cian matrices to study their influence on the convergence

rate of the corresponding consensus-based algorithms and
system stability (see, e.g., Iqbal et al. (2018); Sharma et al.
(2013)). It was found that hierarchical structures have
specific Laplacian spectra. As an example, in Parsegov
and Chebotarev (2018), the authors consider the cyclic
pursuit of macro-vertices and study the Laplacian spectra
in the case where each macro-vertex is represented by an
undirected connected graph defined on two nodes. In the
classical coupling case, when the number of agents goes
to infinity, the eigenvalues densely fill a unit circle in the
right half-plane. As shown by Parsegov and Chebotarev
(2018), as the number of macro-vertices tends to infinity,
the eigenvalues fill the Cassini ovals. In this paper, we
analyze the relationship between system scalability and
the Laplacian spectra of the hierarchical cyclic pursuit
scheme presented in Smith et al. (2005) as well as its modi-
fication. More precisely, we study the asymptotic behavior
of the Laplacian eigenvalues of two hierarchical schemes.
First, for a two-layer hierarchical scheme, we extend the
results of Smith et al. (2005) by determining the region
holding the Laplacian spectrum for any number of agents.
Second, we propose a more sparse representation of the
two-layer hierarchical scheme and carry out the similar
analysis showing the limit location of the corresponding
eigenvalues. The obtained results can be helpful for sta-
bility (or consensusability) analysis of the systems under
study.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the classical cyclic pursuit and some
properties of circulant matrices. Section 3 defines a two-
layer hierarchical scheme and shows how the spectrum
locus of the corresponding Laplacian matrix evolves as the
scheme parameters tend to infinity. Section 4 proposes a
more sparse hierarchical scheme and provides an analysis
of its Laplacian spectrum including its asymptotics. Sec-
tion 5 concludes the paper.

We use the following notation throughout the paper: (·)⊤
is the matrix or vector transpose; j :=

√
−1 denotes the

imaginary unit, whereas the letters i and k are reserved for
indices. The symbol ⊗ denotes the Kronecker product of
two matrices, and (·)∗ stands for the complex conjugate.
The identity matrix is denoted by In ∈ Rn×n.

2. PROBLEM STATEMENT

2.1 Single-Layer Cyclic Pursuit

To begin with, we introduce the classic cyclic pursuit
scheme using a first-order differential equation model, as in
Marshall et al. (2004). Consider a communication network
of n ordered agents. Let si(t) be the state of the i-th
agent that pursues the agent i − 1 modulo n. The latter
means that we refer to the index (i− 1) mod n instead of
i− 1 whenever it appears in the text. Suppose the agents
start at arbitrary initial conditions and their dynamics is
described by

ṡi = ui

with control inputs

ui = si−1 − si.

Thus, the n-agent system of these equations can be ar-
ranged into the following linear form:

ṡ = −Lns,

where s = [s1, . . . , sn]
⊤, and Ln is a special circulant

matrix. Necessary definitions along with the spectral prop-
erties of this matrix are presented in the following subsec-
tion.

2.2 Circulant Matrices

As a first step towards discussing hierarchical cyclic
schemes, we provide mathematical representation of gen-
eral cyclic schemes through circulant matrices. The section
includes a brief introduction needed for the subsequent
analysis; a more detailed information on circulant matrices
can be found in Davis (2013).

A circulant matrix Cn is a Toeplitz matrix having the form

Cn =




c1 c2 · · · cn
cn c1 · · · cn−1

...
...
. . .

...
c2 c3 · · · c1


 (1)

with the rows formed by the vector c = [c1, c2, . . . , cn] and
its n − 1 circular permutations. In the sequel, we define
such matrices as the operator circ(·); i.e., Cn := circ(c).

A useful property of circulant matrices is that they are
easy to diagonalize using the Fourier matrix Fn ∈ Cn×n

given by

Fn =
1√
n




1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...

1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)



, (2)

where ω = ej
2π
n . Note that ω depends on the matrix

dimension, which will be clear from the context. This
property will be used within the analysis of “sparse” two-
layer hierarchical cyclic pursuit proposed in Section 4.

Let ei ∈ Rn be a canonical basis column-vector that has
a unit entry at position i and zeros elsewhere. Then, the
counter-clockwise principal circulant permutation matrix
Pn ∈ Rn×n is defined as follows, see Johnsen (1973):

Pn = circ(e⊤n ) =




0 0 0 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...

...
. . .

. . .
...

0 · · · 0 1 0



.

Obviously, the characteristic polynomial of Pn is p(λ) =
λn − 1. Its n roots are the roots of unity:

λk = ej
2πk
n , k ∈ {0, . . . , n− 1}.

This matrix is directly related to the Laplacian matrix
of the cyclic pursuit scheme. For the general case of n
agents, this matrix can be defined through the matrix Pn

as follows:
Ln = In − Pn.

Its explicit form is given by

Ln =




1 0 0 · · · −1
−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
. . .

. . .
...

0 · · · 0 −1 1



.
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scheme presented in Smith et al. (2005) as well as its modi-
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results of Smith et al. (2005) by determining the region
holding the Laplacian spectrum for any number of agents.
Second, we propose a more sparse representation of the
two-layer hierarchical scheme and carry out the similar
analysis showing the limit location of the corresponding
eigenvalues. The obtained results can be helpful for sta-
bility (or consensusability) analysis of the systems under
study.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the classical cyclic pursuit and some
properties of circulant matrices. Section 3 defines a two-
layer hierarchical scheme and shows how the spectrum
locus of the corresponding Laplacian matrix evolves as the
scheme parameters tend to infinity. Section 4 proposes a
more sparse hierarchical scheme and provides an analysis
of its Laplacian spectrum including its asymptotics. Sec-
tion 5 concludes the paper.

We use the following notation throughout the paper: (·)⊤
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√
−1 denotes the

imaginary unit, whereas the letters i and k are reserved for
indices. The symbol ⊗ denotes the Kronecker product of
two matrices, and (·)∗ stands for the complex conjugate.
The identity matrix is denoted by In ∈ Rn×n.

2. PROBLEM STATEMENT

2.1 Single-Layer Cyclic Pursuit

To begin with, we introduce the classic cyclic pursuit
scheme using a first-order differential equation model, as in
Marshall et al. (2004). Consider a communication network
of n ordered agents. Let si(t) be the state of the i-th
agent that pursues the agent i − 1 modulo n. The latter
means that we refer to the index (i− 1) mod n instead of
i− 1 whenever it appears in the text. Suppose the agents
start at arbitrary initial conditions and their dynamics is
described by

ṡi = ui

with control inputs

ui = si−1 − si.

Thus, the n-agent system of these equations can be ar-
ranged into the following linear form:

ṡ = −Lns,

where s = [s1, . . . , sn]
⊤, and Ln is a special circulant

matrix. Necessary definitions along with the spectral prop-
erties of this matrix are presented in the following subsec-
tion.

2.2 Circulant Matrices

As a first step towards discussing hierarchical cyclic
schemes, we provide mathematical representation of gen-
eral cyclic schemes through circulant matrices. The section
includes a brief introduction needed for the subsequent
analysis; a more detailed information on circulant matrices
can be found in Davis (2013).

A circulant matrix Cn is a Toeplitz matrix having the form

Cn =




c1 c2 · · · cn
cn c1 · · · cn−1

...
...
. . .

...
c2 c3 · · · c1


 (1)

with the rows formed by the vector c = [c1, c2, . . . , cn] and
its n − 1 circular permutations. In the sequel, we define
such matrices as the operator circ(·); i.e., Cn := circ(c).

A useful property of circulant matrices is that they are
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given by
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, (2)
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dimension, which will be clear from the context. This
property will be used within the analysis of “sparse” two-
layer hierarchical cyclic pursuit proposed in Section 4.

Let ei ∈ Rn be a canonical basis column-vector that has
a unit entry at position i and zeros elsewhere. Then, the
counter-clockwise principal circulant permutation matrix
Pn ∈ Rn×n is defined as follows, see Johnsen (1973):
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λn − 1. Its n roots are the roots of unity:
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n , k ∈ {0, . . . , n− 1}.

This matrix is directly related to the Laplacian matrix
of the cyclic pursuit scheme. For the general case of n
agents, this matrix can be defined through the matrix Pn

as follows:
Ln = In − Pn.

Its explicit form is given by
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−1 1 0 · · · 0
0 −1 1 · · · 0
...

...
. . .

. . .
...

0 · · · 0 −1 1



.



248 Sergei Parsegov  et al. / IFAC PapersOnLine 55-13 (2022) 246–251

The following property of this matrix is crucial: All its
eigenvalues lie on the unit circle on the complex plane
centered at (1, j0) regardless of the number of nodes
constituting the graph. Figure 1a illustrates a single-layer
cyclic pursuit scheme, whereas Fig. 1b shows the spectra
of the corresponding matrix Ln for two different values
of n.

1 2

n n-1n n-1 n-2 5n-2 5

3 43 4

(a) Single-layer cyclic pursuit scheme

(b) The eigenvalues of Ln, n = 5 (red) and n = 8 (blue),
and the unit circle that contains them

Fig. 1. Cyclic pursuit: The scheme and the Laplacian
spectra

Parsegov and Chebotarev (2018) proposed and studied a
strategy with special macro-vertices in cyclic pursuit. In
particular, it was shown that the fourth-order algebraic
curve known as Cassini ovals contains the spectrum of the
corresponding Laplacian matrix regardless of the number
of macro-vertices in the graph. In both cases (the unit
circle and Cassini ovals), as the number of agents tends to
infinity, this only increases the density of eigenvalues on
the curves, but the curves remain the same.

Motivated by this fact, our goal is to

• analyze two strategies that extend the conventional
cyclic pursuit scheme. Both strategies use the con-
cept of hierarchy in the sense that they include two
communication layers based on the cyclic topology;

• investigate the asymptotic behavior of the strategies
as the number of agents tends to infinity. Such an
analysis will make it possible to get closer to the
problem of localizing the spectrum of the Laplacian
matrices of these hierarchical systems, regardless of
their dimension. The localization of the spectrum of
such matrices is important for analyzing consensus-
ability of groups of high-order agents; e.g., see Polyak
and Tsypkin (1996); Hara et al. (2013); Li and Duan
(2017); Parsegov and Chebotarev (2018).

3. TWO-LAYER HIERARCHICAL SCHEME

We start our analysis with a two-layer hierarchical scheme
that generalizes the classic cyclic pursuit strategy pre-
sented and studied in Smith et al. (2005). Such an update
of the conventional cyclic pursuit scheme was performed
to obtain a higher rate of convergence. The scheme is rep-
resented by the graph depicted in Fig. 2. We can construct
the graph in two steps. Suppose we have m groups with
n nodes in each group. First, assume that the structure of
each group is initially a Hamiltonian cycle (the ith node
“pursues” its neighbor i − 1). Next, we add an extra arc
to each node i, i ∈ {1, . . . , n}, of the kth group linking it
to the ith node of group k − 1, k ∈ {1, . . . ,m}.

n n-1

21

n n-1

21

n n-1

21

n n-1

21

group m group m-1

group 1 group 2

Fig. 2. Two-layer hierarchical scheme. Links within groups
are depicted in black and links between groups in
green

The corresponding Laplacian matrix has the following
form:

Lnm = Im ⊗ Ln + Lm ⊗ In, (3)

where Ln = In−Pn and Lm = Im−Pm are circulant ma-
trices defining interactions within each group and between
groups, respectively.

Let us study what happens to the eigenvalues of Lnm

as m,n → ∞ and describe a domain that contains the
spectrum. In the following lemma we find a more visual
representation of the spectrum of Lmn as compared to
the one presented in Smith et al. (2005) and study the
asymptotics of the resulting expression as the number of
groups and the number of agents in each group tend to
infinity.

Lemma 1. Suppose that the graph has a two-layer struc-
ture shown in Fig. 2 with the corresponding Laplacian
matrix (3). Then, for any number n of agents within groups
and any number m of groups, the eigenvalues of Lnm lie
within the disk of radius ρ = 2 centered at (2, j0) in the
complex plane and fill the disk densely as m,n → ∞.

Proof. First, the matrix Lnm can be represented as the
Kronecker sum of the matrices Ln and Lm:

Ln ⊕ Lm := Im ⊗ Ln + Lm ⊗ In.

According to the properties of the Kronecker sum, any
eigenvalue λi of Lnm, i ∈ {1, . . . , nm}, is the sum of two
eigenvalues of Ln and Lm. Using the properties of circulant
matrices, the eigenvalues of the two latter matrices are
given by

λk = 1− ej
2πk
n , k ∈ {0, . . . , n− 1},

λl = 1− ej
2πl
m , l ∈ {0, . . . ,m− 1},

respectively. Hence, we have

λi = λk + λl = 2− ej
2πk
n − ej

2πl
m . (4)

We now analyze the locus of λi. Note that the locus of λk

lies on the unit circle centered at (1, j0). Then, the first two
terms appearing in (4) produce the numbers lying on the

unit circle centered at (2, j0). Now, we define zk = 2−ej
2πk
n

and substitute it into (4). The parameter zk becomes a
shifting one. Then, the eigenvalues λi belong to the union
of k unit circles centered at (2−cos 2πk

n , sin 2πk
n ), see Fig. 3.

Next, fix the parameter m and let the other parameter
n tend to infinity (no matter which parameter we fix,
as they are interchangeable in (4)). Obviously, the den-
sity of the points located on the circles centered at (2 −
cos 2πk

n , sin 2πk
n ) increases, whereas the circles themselves

stay the same. Now, with the growth of the other param-
eter m, the number of circles increases to densely fill the
disk of radius ρ = 2 centered at (2, j0), see Fig. 4.

Fig. 3. The eigenvalues of Lnm for n = 70 and m = 2
(blue), m = 3 (black), and m = 7 (red)

Remark 2. The asymptotics of the spectrum of matrix (3)
can be studied using the basic result obtained in Smith
et al. (2005). We illustrate the fact that, regardless of
the dimension of the hierarchical multi-agent system, the
spectrum of its Laplacian matrix remains in the described
disk-shaped region. This can be used for stability (or con-
sensusability) analysis of linear dynamical systems with
generalized frequency variable; e.g., see Polyak and Tsyp-
kin (1996); Hara et al. (2013); Li and Duan (2017). Using
the obtained localization of the spectrum, stability (or con-
sensus) conditions can be verified or derived irrespective of
the number of agents forming such a hierarchical system.

4. A MORE SPARSE TWO-LAYER HIERARCHY

An essential feature of the two-layer hierarchical scheme
described in the previous section is a necessity for each

Fig. 4. The disk region that contains the spectrum loci of
the Laplacian matrix (3) and the eigenvalues of Lnm

for m = 4 (black), m = 7 (red), and n = 70

agent in the system to pursue its neighbors in both layers
of hierarchy. In such a structure, it is easy to observe the
redundancy of links between agents for reaching consensus.
Even a single link between the groups is enough to reach
consensus, though at the cost of slower convergence. In
what follows, we propose a new two-layer hierarchical
topology, which is more sparse.

As in the previous section, we consider m groups of n
single-layered agents. Without loss of generality, we as-
sume that the first agent in each group is a “negotiator”
with the first agent in the previous one. The communica-
tion topology is presented in Fig. 5, and the corresponding
Laplacian matrix is easily shown to have the following
form:

Lnm = Im ⊗ Ln + Lm ⊗ B, (5)

where Ln and Lm are the matrices of cyclic pursuit
introduced above, and B is the rank-one matrix B = e1e

⊤
1 .

n n-1

21

n n-1

21

n n-1

21

n n-1

21

group m group m-1

group 1 group 2

Fig. 5. A more sparse two-layer hierarchical scheme. The
links within groups are depicted in black and those
between groups are plotted in red
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According to the properties of the Kronecker sum, any
eigenvalue λi of Lnm, i ∈ {1, . . . , nm}, is the sum of two
eigenvalues of Ln and Lm. Using the properties of circulant
matrices, the eigenvalues of the two latter matrices are
given by

λk = 1− ej
2πk
n , k ∈ {0, . . . , n− 1},

λl = 1− ej
2πl
m , l ∈ {0, . . . ,m− 1},

respectively. Hence, we have

λi = λk + λl = 2− ej
2πk
n − ej

2πl
m . (4)

We now analyze the locus of λi. Note that the locus of λk

lies on the unit circle centered at (1, j0). Then, the first two
terms appearing in (4) produce the numbers lying on the

unit circle centered at (2, j0). Now, we define zk = 2−ej
2πk
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and substitute it into (4). The parameter zk becomes a
shifting one. Then, the eigenvalues λi belong to the union
of k unit circles centered at (2−cos 2πk

n , sin 2πk
n ), see Fig. 3.

Next, fix the parameter m and let the other parameter
n tend to infinity (no matter which parameter we fix,
as they are interchangeable in (4)). Obviously, the den-
sity of the points located on the circles centered at (2 −
cos 2πk

n , sin 2πk
n ) increases, whereas the circles themselves

stay the same. Now, with the growth of the other param-
eter m, the number of circles increases to densely fill the
disk of radius ρ = 2 centered at (2, j0), see Fig. 4.

Fig. 3. The eigenvalues of Lnm for n = 70 and m = 2
(blue), m = 3 (black), and m = 7 (red)

Remark 2. The asymptotics of the spectrum of matrix (3)
can be studied using the basic result obtained in Smith
et al. (2005). We illustrate the fact that, regardless of
the dimension of the hierarchical multi-agent system, the
spectrum of its Laplacian matrix remains in the described
disk-shaped region. This can be used for stability (or con-
sensusability) analysis of linear dynamical systems with
generalized frequency variable; e.g., see Polyak and Tsyp-
kin (1996); Hara et al. (2013); Li and Duan (2017). Using
the obtained localization of the spectrum, stability (or con-
sensus) conditions can be verified or derived irrespective of
the number of agents forming such a hierarchical system.

4. A MORE SPARSE TWO-LAYER HIERARCHY

An essential feature of the two-layer hierarchical scheme
described in the previous section is a necessity for each

Fig. 4. The disk region that contains the spectrum loci of
the Laplacian matrix (3) and the eigenvalues of Lnm

for m = 4 (black), m = 7 (red), and n = 70

agent in the system to pursue its neighbors in both layers
of hierarchy. In such a structure, it is easy to observe the
redundancy of links between agents for reaching consensus.
Even a single link between the groups is enough to reach
consensus, though at the cost of slower convergence. In
what follows, we propose a new two-layer hierarchical
topology, which is more sparse.

As in the previous section, we consider m groups of n
single-layered agents. Without loss of generality, we as-
sume that the first agent in each group is a “negotiator”
with the first agent in the previous one. The communica-
tion topology is presented in Fig. 5, and the corresponding
Laplacian matrix is easily shown to have the following
form:

Lnm = Im ⊗ Ln + Lm ⊗ B, (5)

where Ln and Lm are the matrices of cyclic pursuit
introduced above, and B is the rank-one matrix B = e1e

⊤
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Fig. 5. A more sparse two-layer hierarchical scheme. The
links within groups are depicted in black and those
between groups are plotted in red
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Obviously, the matrix Lnm defined in (5) is a block
circulant one. Therefore, it can be diagonalized using
unitary Fourier matrix (2). Block diagonalization of Lnm

gives

(Fm ⊗ In)
∗(Im ⊗ Ln + Lm ⊗ B)(Fm ⊗ In) (6)

= Im ⊗ Ln + (Fm ⊗ In)
∗(Lm ⊗ B)(Fm ⊗ In)

= Im ⊗ Ln +Ψm ⊗ B,
where Ψm is the diagonal matrix of the eigenvalues of Lm,
namely

Ψm = diag(1− ω0, 1− ω, . . . , 1− ωm−1).

From now on, we set ω = ej
2π
m .

Consequently, for finite n,m, the spectrum of Lnm is the
union of the spectra of Ln+(1−ωk)B, k ∈ {0, . . . ,m−1}:

eigs(Lnm) =

m
k=1

eigs(Ln + (1− ωk)B). (7)

Let us find the characteristic polynomial of the matrix

M(n, k) = Ln + (1− ωk)B (8)

for a fixed k. Apparently, this matrix differs from Ln only
in the first entry. The determinant of M(n, k) − λIn can
be found by expansion along the first row:

det




1 + (1− ωk)− λ 0 0 0 · · · 0 −1
−1 1− λ 0 0 · · · 0 0
0 −1 1− λ 0 · · · 0 0
0 0 −1 1− λ · · · 0 0
...

...
...

...
. . .

. . .
...

0 0 0 0 · · · 1− λ 0
0 0 0 0 · · · −1 1− λ




(9)

= (1− λ− (ωk − 1))(1− λ)n−1 − 1

= (1− λ)n − (ωk − 1)(1− λ)n−1 − 1.

Then, finding the spectrum of Lnm leads to the analysis of
the roots of the family of polynomials xn−(ωk−1)xn−1−1,
k ∈ {0, . . . ,m− 1}.
For sufficiently small values of n and m, closed-form
expressions for the roots can be derived; however, they get
overly complicated for higher values, yielding no efficient
formulas for the root location of the whole family. Instead,
we present the following asymptotic result.

Lemma 3. As m,n → ∞, the limiting location of the roots
of the polynomial

p(x) = xn−(ωk−1)xn−1−1, k ∈ {0, . . . ,m−1}, (10)

is the union of the unit circle and the arc {x ∈ C | x =
ejφ − 1, π

3 < φ < 5π
3 } on the complex plane.

Proof. Instead of the multiplier (ωk−1) in (10), consider
(ejφ − 1), where φ sweeps the segment [0, 2π]; this is
equivalent to the condition m → ∞.

Now, introduce the new variable z = 1
x ; then p(x) = 0

writes as

p(z) = zn + z(ejφ − 1)− 1 = 0. (11)

First, consider the case |z| < 1; then, as n → ∞, the
first term vanishes, and the roots of p(z) are given by
z = (ejφ − 1)−1. Hence, the (reciprocal) roots of p(x) are
equal to x = ejφ−1. From |z| < 1 we have |x| > 1, so that

the condition |ejφ − 1| > 1 implies π
3 < φ < 5π

3 ; i.e., as
m,n → ∞, the roots of p(z) fill the arc

x ∈ C | x = ejφ − 1,
π

3
< φ <

5π

3


.

In the case of |z| = 1, we have z(ejφ − 1) = 0, and due to
the identity ejφ = 1, the zeros of p(z) lie on the unit circle
and fill it densely as m,n → ∞.

Finally, with |z| > 1 there are clearly no roots of (11) as
n → ∞.

An illustration of the result in Lemma 3 is presented in
Fig. 6.

Fig. 6. Root location of polynomials (10) for m = 100 and
n = 40 (left) and n = 120 (right)

In particular, it follows from the proof (see the case of
|z| = 1) that, for any fixed n and sufficiently large m,
the polynomial family (10) has at least n roots on the unit
circle.

Since the eigenvalues λ of M(n, k) and the zeros x of (10)
are related via λ = 1 − x, as an immediate corollary of
Lemma 3, we arrive at

Corollary 4. As m,n → ∞, the limiting location of the
eigenvalues of Lnm defined in (5) is the union of the unit
circle centered at (1, j0) and the arc {x ∈ C | x = ejφ +
2, − 2π

3 < φ < 2π
3 } on the complex plane.

Remark 5. Similarly to the hierarchical structure analyzed
in the previous section, for n large enough the increase
of m leads to a higher density of the points on the
corresponding curve, which approaches the limit curve
described in Corollary 4 as n grows.

An illustration of Corollary 4 is given in Fig. 7.

Remark 6. Observe the following fact: In contrast to the
case of the two-layer hierarchy with a disk region that
contains the spectrum of any matrix Lnm of the form (3),
the curves shown in Fig. 7 represent the limit location only.
Neither the curves, nor the region they bound contain all
possible spectra for all finite m and n. As an example, let
us show the eigenvalues of Lnm for a few values of n and
m = 300 (Fig. 8). It can be seen that the eigenvalues do
not belong to the region bounded by the green circles.

5. CONCLUSION

The strategy of cyclic pursuit has been and remains the
focus of attention of several scientific communities. An
interesting feature of the “classical” multi-agent model
of cyclic pursuit is the following property: regardless of

Fig. 7. The limit location of the spectrum of Lnm for
m,n →∞

Fig. 8. The eigenvalues of Lnm for n = 2 (blue), n = 3
(black), n = 7 (red), n = 30 (magenta), and m = 300.
The limit location of the eigenvalues is shown in green

the number of agents in the system, the spectrum of the
Laplacian matrix lies on a shifted unit circle, which is a
second-order curve.

In this paper, we analyzed the behavior of the Laplacian
spectrum of two schemes of hierarchical cyclic pursuit and
its limiting location.

Future research directions include further studies of more
sparse hierarchical schemes. In finite dimensions, we can
obtain a commonly known curve, e.g., an ellipse, that
covers the eigenvalues for all finite m and n. In addition,
we plan to explore potential applications of the developed
theoretical results.
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