
A new model of opinion dynamics for social actors with multiple
interdependent attitudes and prejudices

Sergey E. Parsegov, Anton V. Proskurnikov, Roberto Tempo, Noah E. Friedkin

Abstract— Unlike many complex networks studied in the
literature, social networks rarely exhibit regular cooperative
behavior such as synchronization (referred usually as consensus
or agreement of the opinions). This requires a development
of mathematical models that capture the complex behavior of
real social groups, where opinions and the actions related to
them form clusters of different size, and yet are sufficiently
simple to be examined. One such model, proposed in [1], deals
with scalar opinions and extends the idea in [2] of iterative
pooling in a way to take into account the actors’ prejudices,
caused by some exogenous factors and leading to disagreement
in the final opinions. In this paper, we offer two extensions,
where opinions are multidimensional, representing the agents’
attitudes on several topics, and those topic-specific attitudes are
interrelated. We examine convergence of the proposed model
and find explicitly the steady opinions of the agents. Although
our model assumes synchronous communication among the
agents, we show that the same final opinion may be achieved “on
average” via asynchronous randomized gossip-based protocol.

I. INTRODUCTION

Real-world social networks are captivating classes of
complex multi-agent systems that are attracting more and
more attention from the research community. Unlike many
natural and man-made complex networks with cooperative
behaviors motivated by the attainment of consensus between
the nodes, opinions of social actors often do not reach any
agreement but rather form highly irregular factions (clusters)
of different sizes. A challenging problem is to develop a
model of opinion dynamics, which admits mathematically
rigorous analysis and yet is sufficiently instructive to capture
the main properties of real social networks.

The backbone of many mathematical models, explaining
the clustering of continuous opinions, is the idea of ho-
mophily or biased assimilation [3]: a social actor readily
accepts opinions of like-minded individuals, examining the
deviant opinions with discretion. This principle is promi-
nently manifested by various bounded confidence models,
where the agents completely ignore the opinions outside their

S.E. Parsegov is with Institute of Control Sciences RAS, Moscow, Russia,
e-mail: s.e.parsegov@gmail.com

A.V. Proskurnikov is with the ENTEG institute at the University of
Groningen, The Netherlands, and also with St. Petersburg State University,
Institute for Problems of Mechanical Engineering (IPME RAS) and ITMO
University, St. Petersburg, Russia, e-mail: avp1982@gmail.com

R. Tempo is with CNR-IEIIT, Politecnico di Torino, Italy, e-mail:
roberto.tempo@polito.it

N.E. Friedkin is with the University of Santa-Barbara, CA, USA e-mail:
friedkin@soc.ucsb.edu

Partial funding is provided by the European Research Council (grant
ERCStG-307207), CNR International Joint Lab COOPS, RFBR (grants 13-
07-00990, 13-08-01014, 14-08-01015) and St. Petersburg State University,
grant 6.38.230.2015. Theorem 1 was obtained by A. Proskurnikov under
sole support of RSF grant 14-29-00142 at IPME RAS.

confidence intervals [4]–[7]. Demonstrating opinion polariza-
tion or clustering, the models from [3]–[7] are however quite
complicated from the mathematical point of view and their
nonlinear dynamics are far from being fully investigated.
Another possible explanation for opinion disagreement is
presence of antagonism or negative ties among the agents
[8]. A simple yet instructive dynamics of this type, leading
to opinion polarization, was addressed in [9]–[12]. It should
be noticed, however, that no experimental evidence securing
the postulate of ubiquitous negative interpersonal influences
(referred to as boomerang effects) seems to be available.1

It is known that even a network with positive and linear
couplings may exhibit persistent disagreement and cluster-
ing, if its nodes are heterogeneous, e.g. some agents are
“informed” (have some external input) [14]. One of the first
models of opinion dynamics, taking into account such a het-
erogeneity, was suggested by N.E. Friedkin and E.C. Johnsen
[1], [15], henceforth referred to as the Friedkin-Johnsen (FJ)
model. The FJ model promotes and extends the idea of
DeGroot’s iterative pooling [2], where each agent updates its
opinion, based not only on its own and neighbors’ opinions,
but in general also on its initial opinion, or prejudice. In
other words, some (possibly, all) of the agents are stubborn
in the sense that they never forget their prejudices, and factor
their initial opinions into every iteration of opinion. This
can be otherwise treated as constant influence of exogenous
conditions under which those prejudices were formed [1],
[15]. In recent papers [16], [17] a condition for stability of
the FJ model was obtained, which requires any agent to
be influenced by at least one stubborn one. Furthermore,
although the original FJ model is based on synchronous
communication, in [16], [17] its “lazy” version was proposed
that is based on asynchronous gossip influence and provides
the same steady opinion on average, no matter if one
considers the probabilistic average (that is, the expectation)
or time-average (the solution Cesàro mean). It should be
noticed that both the “simultaneous” deterministic FJ model
and its randomized gossip modification are closely related to
the PageRank computation algorithms [17]–[21].

The models of opinion dynamics from [1], [16], [17] deal
with scalar opinions. However, during social interactions
each actor usually changes its attitudes to several topics,
which makes it natural to consider vector-valued opinions

1Since the first definition of boomerang effects [13], the empirical
literature has concentrated on the special conditions under which these
effects might arise; there is no assertion in this literature that such odd
effects, sometimes observed in n = 2 dyad systems, are non-ignorable
components of n > 2 interpersonal influence systems.
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[22], which may be e.g. subjective distributions of outcomes
in some random experiment [2], [23]. In this paper we
suggest a multidimensional extension of the FJ model, where
each opinion is constituted by an agent’s attitudes or beliefs
on several interdependent issues. This multidimensional ex-
tension cannot be obtained by mechanical replication of the
scalar FJ model on each issue, nevertheless, as we show,
the condition for its convergence remains the same as in
the scalar case. We also develop a randomized asynchronous
protocol, which provides convergence to the same steady
opinion as the original deterministic dynamics on average.

II. PRELIMINARIES AND NOTATION

Henceforth we denote matrices with capital letters A =
(aij), using lower case letters for their scalar entries and for
vectors. Given a square matrix A = (aij)

n
i,j=1, let diagA =

diag(a11, a22, . . . , ann) stand for its main diagonal and ρ(A)
be its spectral radius. The matrix is Schur stable if ρ(A) < 1.
The matrix A is row-stochastic if aij ≥ 0 and

∑n
j=1 aij =

1∀i. Given matrices A ∈ Rm×n, B ∈ Rp×q , the matrix

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB

...
. . .

...
am1B an2B . . . amnB

 ∈ Rmp×nq.

is called their Kronecker product [24]. A (directed) graph is
a pair G = (V, E), where V stands for the finite set of nodes
or vertices and E ⊆ V × V is the set of arcs or edges. We
say the node i is connected to the node j (written i 7→ j)
if (i, j) ∈ E ; a sequence i = i0 7→ i1 7→ . . . 7→ ir = i′ is
called a walk from i to i′. The graph is strongly connected
if a walk between any two distinct nodes exists.

III. THE FRIEDKIN-JOHNSEN MODEL AND ITS STABILITY

The FJ model [1] deals with a community of n social
actors (agents), whose interpersonal influences are deter-
mined by a row-stochastic matrix W = (wij) ∈ Rn×n. We
associate this matrix to a graph G = (V, E), where the set
of nodes V = {1, 2, . . . , n} is in one-to-one correspondence
with the agents and E ⊂ V × V consists of all such pairs
(i, j) that wij > 0. The diagonal entry wii is considered
as a measure of stubborness or closure of the ith agent to
interpersonal influence. If wii = 1 then wij = 0 ∀j ̸= i
which means that the agent is maximally stubborn and
completely ignores opinions of its neighbors. We call such
agents totally stubborn in the sense that they keep their
opinions unchanged: xi(k) = ui. Conversely, if wii = 0,
then the agent is completely open to interpersonal influence,
attaches no weight to its own opinions, and fully relies on
others’ opinions. In the case where wii ∈ (0; 1] we call the
agent stubborn in the sense that the prejudice ui is factored
into any iteration of its opinion. The entries λii = 1 − wii

of the diagonal matrix2 Λ = I − diagW may be treated as
agents’ susceptibilities to neighbors’ opinions.

2Here we follow the notation from [16].

Introducing the vector of scalar opinions on kth stage
x(k) = (x1(k), . . . , xn(k))

⊤, the FJ opinion dynamics is

x(k + 1) = ΛWx(k) + (I − Λ)u, u := x(0). (1)

The linear system (1) is stable if and only if ΛW is Schur
stable, in which case the opinion vector converges to 3

x′ := lim
k→∞

x(k) = (I − ΛW )−1(I − Λ)u. (2)

The steady opinions x′
j basically disagree, e.g. due to pres-

ence of several totally stubborn agents. Moreover, unlike the
DeGroot dynamics [2], consensus is usually not reached even
for irreducible and aperiodic matrix W . The stability of the
FJ model (1) may be reformulated in graph-theoretic terms.

Assumption 1: Any node of the graph G is connected by
a walk4 to at least one node r with wrr > 0. In other words,
any agent is influenced by at least one stubborn agent.

Assumption 1 holds e.g. if the graph is strongly connected.
The following result, extending Proposition 1 in [16], gives

necessary and sufficient condition for the FJ model stability.
Theorem 1: If W is row-stochastic and Λ = I−diagW ,

then ρ(ΛW ) < 1 if and only if Assumption 1 holds.
Proof: The sufficiency part was proved in [16]. To

prove necessity, suppose on the contrary that a node i exists
such that wrr = 0 whenever r = i or r is reachable from i by
a walk. Denoting the set of such r with R, one easily notices
that wjk = 0 whenever j ∈ R and k ̸∈ R (indeed, otherwise
an arc (j, k) would exist and hence k would belong to R).
Furthermore, as wjj = 0 ∀j, one has λjj = 1. Defining a
vector ξ ∈ Rn as ξj = 1 if j ∈ R and ξj = 0 otherwise, one
has ΛWξ = ξ and thus arrives at the contradiction.

Remark 1: Convergence of general dynamics (1), where
Λ may be an arbitrary diagonal matrix with 0 ≤ λii ≤ 1,
is addressed in the companion paper [25], where a general
condition for the Schur stability of a matrix ΛW is offered.

IV. A MULTIDIMENSIONAL EXTENSION

In this section, we propose an extension of the FJ model,
dealing with vector opinions x1(k), . . . , xn(k) ∈ Rm. The
elements of each vector xi(k) = (x1

i (k), . . . , x
m
i (k)) stand

for the attitudes of the ith agent to m different topics,
which we call issues. In the simplest situation where agents
communicate on m completely unrelated topics, it is natural
to assume that the particular issues xj

1(k), x
j
2(k), . . . , x

j
n(k)

satisfy the FJ model (1) for any j = 1, . . . ,m, that is

xi(k+1) = λii

n∑
j=1

wijxj(k)+(1−λii)ui, ui := xi(0). (3)

However, if these topics are related to each other, one may
expect dependencies between corresponding issues. Con-
sider, for instance, a group of people discussing two topics,

3The convergence to the equilibrium (2) may also take place if the system
(1) is neutrally stable, i.e. ρ(ΛW ) = 1, being however non-robust to
numerical errors. Necessary and sufficient conditions for (2) are beyond
the scope of this paper and will be addressed in its extended version [25].

4By definition, if wii > 0 then G has a self-loop (i, i), so that a walk
from i to itself exists; that is, any stubborn agent is influenced by itself.

3476



namely, fish in general and salmon. Salmon is nested in fish.
If someone dislikes fish, then he/she will dislike salmon. If
the influence process changes individuals’ attitudes toward
fish, say promoting fish as a healthy part of a diet, then the
door is opened for influences on salmon as a part of this
diet. If, on the other hand, the influence process changes
individuals’ attitudes against fish, say warning that fish are
now contaminated by toxic chemicals, then the door is closed
for influences on salmon as part of this diet.

In order to take the dependencies between different issues
into account, we modify dynamics (3) as follows

xi(k+1) = λii

n∑
j=1

wijyj(k)+(1−λii)ui, yj(k) := Cxj(k),

(4)
and ui = xi(0) is a prejudice of the ith agent. Here C is
a row-stochastic matrix of multi-issues dependence structure
(hereinafter called the MiDS matrix) and we will refer to
yj(k) as the impact of the jth opinion on the kth stage. For
C = In the model (4) coincides with (3), and the impact
is just an opinion vector. In general, its components are
“mixed” issues, i.e. convex combinations (weighted sums)
of attitudes of the jth agent on several topics.

To clarify the roles of the MiDS matrix and impacts,
consider for the moment a network with star-shape topology
where all the agents follow one totally stubborn leader, i.e.
there exists j ∈ {1, 2, . . . , n} such that wij = 1∀i and hence
xi(k + 1) = yj(k) = Cuj . The opinion changes in this
system are movements of the opinions of the followers to-
ward the initial opinions of the leader, and these movements
are strictly based on the direct influences of the leader. The
entries of the MiDS matrix govern the relative contributions
of each of the leader’s opinions on multiple issues to the
formation of followers’ opinions on each issue. In general,
since ypi (k+ 1) =

∑m
q=1 cpqx

q
i (k), the weight cpq measures

the effect of the qth issue of the opinion to the pth issue of
impact. In our example, cpq is a contribution of the qth issue
of the leader’s opinion to the pth issue of the follower’s one.

Introducing stack vectors of opinions x(k) =
(x1(k)

⊤, . . . , xn(k)
⊤)⊤ and prejudices u = (u⊤

1 , . . . , u
⊤
n )

⊤,
the dynamics (4) may be rewritten as

x(k + 1) = (ΛW )⊗ C x(k) + (In − Λ)⊗ Im u. (5)

Two natural questions, addressed below, are concerned
with the stability of model (5) and identification of the
MiDS matrix C, given information on W and opinions.
Measurement models for W are discussed in [1], [15], [26].

A. Convergence and the steady opinions

Stability of the system (5) reduces to the question when
the matrix A = ΛW ⊗ C is Schur stable, i.e. ρ(A) <
1. To answer it, we recall that the eigenvalues of A are
products λiµj , where λ1, . . . , λn are eigenvalues of ΛW and
µ1, . . . , µm are those of C [24, Theorem 13.12]; therefore,
ρ(A) = ρ(ΛW )ρ(C). This yields the following.

Theorem 2: The system (5), where Λ = I − diagW and
C is row-stochastic, is stable if and only if Assumption 1

holds. If this holds, then for any prejudice u = x(0) a limit
exists

x′
C := lim

k→∞
x(k) = (Inm− (ΛW )⊗C)−1((In−Λ)⊗ Im)u.

(6)
Proof: Since the matrix C is row-stochastic, one has

ρ(C) = 1 and hence ρ(ΛW ⊗ C) = ρ(ΛW ). The stability
criterion now follows from Theorem 1. The formula for the
limit opinion is immediate from (5).

Theorem 2 shows that introducing the interdependencies
among the issues does not change the stability condition,
provided that the MiDS matrix is row-stochastic. Moreover,
examining the proof one may note that the stability in fact
does not require C being stochastic and may take place
even for some Schur unstable matrices C, provided that
ρ(C) < 1

ρ(ΛW ) . However, an important property of the model
with row-stochastic MiDS matrix, we are confined to, is the
solution boundedness independently of the system stability:
for any i = 1, . . . , n, j = 1, . . . ,m one has M ≤ xj

i (k) ≤
M , where M = min

i,j
xj
i (0) and M = max

i,j
xj
i (0).

B. Design of the MiDS matrix

A key problem, related to the feasibility of research on
MiDS matrices, is whether they may be estimated based on
measures of agents’ opinions and their influence network.
Suppose that we know the matrix of social influences W
and hence the matrix of susceptibilities Λ = I − diagW ,
depending on the agents and the network topology. The
question is how to find the MiDS matrix C (assuming that
it exists). A typical experiment [1], during which the agents
communicate on one issue, starting at known initial opinions,
may be elaborated to include several issues. Let x̂′ be an esti-
mated final opinion vector. A natural idea is to find C (being
row-stochastic) in a way to minimize the distance (in some
norm) between x′

C , given by (6), and x̂′: ∥x̂′−x′
C∥ → min.

This problem is, however, not easy to solve since x′
C is non-

convex in C. To avoid non-convex optimization, we modify
the problem. Let ε = [Imn−ΛW ⊗C]x̂′− [(In−Λ)⊗Im]u.
It may be noticed that if x̂′ = x′

C , then ε = 0, so the idea is
to minimize the norm of ε subject to all row-stochastic C,
arriving thus at a convex optimization problem as follows:

∥ε∥ → min (7)
ε = [Imn − ΛW ⊗ C]x̂′ − [(In − Λ)⊗ Im]u (8)

m∑
j=1

cij = 1 ∀i, cij ≥ 0 ∀i, j. (9)

It should be noticed that even minimum (7) equals to zero,
the system of linear equations (8),(9) (where C is unknown)
is overdetermined unless n ≤ m− 1, having in total mn+
m = (n+ 1)m equations for m2 unknowns.

It may be noticed that for the case of Euclidean norm
∥ · ∥ = ∥ · ∥2 the optimization problem (7)-(9) is a convex
quadratic programming, whereas for l∞- and l1-norms it is
reducible to linear programming. The only feature hindering
the use of standard solvers is a non-standard form of the
equality constraint (8), employing unknown matrix C and
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the Kronecker product operation, whereas standard QP and
LP problems deal with constraints Aξ = b, where A is a
matrix, b is a known vector and ξ is a column vector of
unknowns. To rewrite constraints in this standard form, one
may use the following technical lemma.

Given a matrix M , its vectorization vecM is a column
vector obtained by stacking the columns of M on top of one
another [24], e.g. vec ( 1 0

2 1 ) = [1, 2, 0, 1]⊤.
Lemma 1: [24] For any three matrices A,B, C such that

the product ABC is defined, one has

vecABC = (C⊤ ⊗A) vecB. (10)

In particular, for A ∈ Rm×l and B ∈ Rl×n one obtains

vecAB = (In ⊗A) vecB = (B⊤ ⊗ Im) vecA. (11)

Let x̂′
i be the estimated final opinion of the ith agent and

the matrix X̂ = [x̂′
1, . . . , x̂

′
n] have these vectors as columns,

so that x̂′ = vecX . Applying (11) for A = C and B = X̂
entails that [In ⊗ C]x̂′ = [X̂⊤ ⊗ Im] vecC, thus [ΛW ⊗
C]x̂′ = [ΛW ⊗ Im][In ⊗ C]x̂′ = [ΛWX̂⊤ ⊗ Im] vecC.
Introducing a vector c = vecC, eq. (8) can be rewritten [25]
in the following vector form

ε+ [ΛWX̂⊤ ⊗ Im]c = x̂′ − [(In − Λ)⊗ Im]u, (12)

where the vector in the right-hand side is known and
ΛWX̂⊤ ⊗ Im is a known matrix.

V. A RANDOMIZED GOSSIP-BASED MODEL

A restriction of the model (5), inherited from the original
Friedkin-Johnsen model, is synchronous communication. On
each step the actors simultaneously communicate to all of
their neighbors that is improbable in a large-scale social
network. A more realistic is gossip-based communication,
assuming that only one pair of agents interact during each
step. A randomized version of the Friedkin-Johnsen model,
based on the idea of gossiping, was proposed in [16], [17].

The idea of the model from [16], [17] is as follows. Each
actor starts with some initial opinion ui = xi(0). On each
step an arc is randomly sampled with the uniform distribution
from the graph G = (V, E), corresponding to the matrix of
social influences W . If this arc is (i, j), then the ith agent
meets the jth one and updates its opinion in accordance with

xi(k + 1) = hi ((1− γij)xi(k) + γijxj(k)) + (1− hi)ui.
(13)

Hence, the new opinion of the agent is a weighted average of
its previous opinion, the prejudice and the neighbor’s previ-
ous opinion. The opinions of other agents remain unchanged

xl(k + 1) = xl(k) ∀l ̸= i. (14)

It was shown in [16], [17] that under proper choice of the
coefficients hi and γij , the expectation Ex(k) converges to
the same steady value x′ as the Friedkin-Johnsen model and,
moreover, the process is ergodic in both mean-square [16]
and almost sure [17] sense. In other words, both probabilistic
averages (expectations) and time averages (referred to as the
Cesàro or Polyak averages) of the random opinions converge

to the final opinion in the FJ model. It should be noticed
that opinions themselves are not convergent (see numerical
simulations below) but oscillate around their expected values.
In this section we discuss the extensions of these scheme to
the case of multidimensional opinions.

We consider a modification of the aforementioned algo-
rithm (13),(14) as follows. An arc e ∈ E is uniformly
randomly distributed; if an arc e = (i, j) is sampled, the
ith agent updates its opinion in accordance with

xi(k+1) = (1−γ1
ij −γ2

ij)xi(k)+γ1
ijCxj(k)+γ2

ijui. (15)

Here γ1
ij , γ

2
ij ≥ 0 and γ1

ij + γ2
ij ≤ 1, hence during each

interaction the agent’s opinion is averaged with its own
prejudice and the neighbor’s impact (see Section IV). The
other agents do not change their opinions, i.e. (14) holds.

The following theorem shows that under Assumption 1,
which guarantees stability of the deterministic multidimen-
sional model (6), and proper choice of Γ1,Γ2 the model
(15),(14) mimics the limit behavior of the deterministic
model (5) in the aforementioned sense.

Theorem 3: Let Assumption 1 hold, C be row-stochastic,
Γ1 = ΛW and Γ2 = (I − Λ)W with Λ = I − diagW .
Then the limit x∗ = limk→∞ Ex(k) exists and equals to
the steady-state opinion (6) of the FJ model (1): x∗ = x′

C .
Moreover, the random process x(k) is almost sure ergodic
and mean-square ergodic: x̄(k) → x∗ with probability 1 and
E∥x̄(k)− x∗∥22 −−−−→

k→∞
0, where

x̄(k) :=
1

k + 1

k∑
l=0

x(l). (16)

Proof: The proof is just outlined here due to space
limitation, see [25] for the missing details and calculations.
As for the scalar opinion case in [16], system (15),(14)
shapes into

x(k + 1) = A(k)x(k) +B(k)u, (17)

where A(k), B(k) are independent identically distributed
(i.i.d.) random matrices. If arc (i, j) is sampled, then A(k) =
A(i,j) and B(k) = B(i,j), where by definition

A(i,j) =
(
Imn − (γ1

ij + γ2
ij)eie

⊤
i ⊗ Im + γ1

ijeie
⊤
j ⊗ C

)
,

B(i,j) = γ2
ijeie

⊤
i ⊗ Im.

Taking into account that EA(k) = |E|−1
∑

(i,j)∈E A
(i,j) and

EB(k) = |E|−1
∑

(i,j)∈E B
(i,j), one finally arrives at

EA(k) = Imn − 1

|E|
[Inm − ΛW ⊗ C] ,

EB(k) =
1

|E|
(I − Λ)⊗ Im.

(18)

Denoting α := |E|−1 ∈ (0; 1], one has

EA(k) = (1−α)I+αΛW ⊗C,EB(k)u = α(I−Λ)⊗Imu.

In view of this and and Schur stability of ΛW⊗C, Theorem 1
in [17] implies now the convergence Ex(k) → x∗ and almost
sure ergodicity. The mean-square ergodicity follows from the
dominant convergence theorem as x(k) are bounded.
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VI. NUMERICAL SIMULATIONS

In this section, we give a few numerical tests which con-
firm the convergence of the “synchronous” multidimensional
FJ model and its “lazy” gossip version. We consider a social
network of n = 4 actors, addressed in [1] and describe by
the matrix of interpersonal influences

W =


0.220 0.120 0.360 0.300
0.147 0.215 0.344 0.294
0 0 1 0

0.090 0.178 0.446 0.286

 .

One may easily notice that the third agent is totally stubborn,
whereas the remaining ones are “partially” stubborn (wii >
0), satisfying thus Assumption 1.

We assume that the agents discuss two topics, say the fish
(as a part of diet) in general and salmon, and hence their
opinions are two-dimensional xi(k) = (x1

i (k), x2
i (k))

⊤ ∈
R2. We choose the following initial conditions

u = x(0) = (25, 25, 25, 15, 75,−50, 85, 5)⊤ ∈ D. (19)

In other words, agents 1, 2 have modest positive liking for
fish and salmon; the third (totally stubborn) agent has a
strong liking for fish, but dislikes salmon; the agent 4 has a
strong liking for fish and a weak positive liking for salmon.

In our simulations we compared the opinion dynamics (5)
in the case of independent issues (Fig. 1) with more realistic
situation (Fig. 2) where issues are interdependent and

C =

[
0.8 0.2
0.3 0.7

]
. (20)

In all the figures, solid and dashed lines of the same color
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Fig. 1. Opinion dynamics (5) with independent issues

correspond to the same agent. One can see that introducing
the MiDS matrix C from (20), with its dominant main
diagonal, imposes a substantial drag in opinions of the
“open-minded” agents 1,2 and 4. Their attitudes toward fish
become more positive and those toward salmon become less
positive, compared to the initial values. However, in the case
of dependent issues their attitudes toward salmon do not
become negative as they did in the case of independence.
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Fig. 2. Opinion dynamics (5) with interrelated issues

In Figs. 3 and 4 we simulated the dynamics of the
Cesàro (Polyak) averages of the opinions under the gossip-
based protocol Theorem 3. One can see that these averages
converge to the same limits as in the model (5). This is not
the case for opinions themselves which oscillate (Fig. 5).
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Fig. 3. Gossip-based dynamics with C = I2, Cesàro averages
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Fig. 4. Gossip-based dynamics with C from (20), Cesàro averages

Finally, we illustrate the use of our identification procedure
for the MiDS matrix. Suppose that in the social network
just described and starting at the initial opinions (19) one
experimentally estimated the vector of steady opinions as

x̂′ = (35, 11, 35, 10, 75,−50, 53, 5)⊤.
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We choose the Euclidean norm of the residual in (7), getting
hence a QP problem as follows

∥ε∥22 → min (21)

subject to (12),
m∑
j=1

cij = 1 ∀i, cij ≥ 0 ∀i, j. (22)

Solving this problem, one gets the minimal residual ∥ε∥2 =
0.9322, which corresponds to the value of the MiDS matrix

C =

[
0.7562 0.2438
0.3032 0.6968

]
.

Using the formula (6), one can compute the vector of actual
steady opinion (under this choice of C)

x̃′
C = (35.316, 11.443, 35.092, 9.483, 75,−50, 52.386, 4.915)⊤.

VII. CONCLUSION

In this paper, we propose a novel model of opinion
dynamics in a social network with static topology. Our model
is en extension of the Friedkin-Johnsen model [1] to the
case where agents’ opinions are multidimensional, consisting
thus of several attitudes or beliefs, which are referred to
as the issues. Furthermore, these issues are interdependent,
which is natural if the agent are communicating on several
“logically” related topics. In the sociological literature, an
interdependent set of attitudes and beliefs on multiple issues
is referred to as an ideological or belief system [27]. A
specification of the interpersonal influence mechanisms and
networks that contribute to the formation of ideological-
belief systems has remained an open problem. Our model
is just an initial step and this direction. Its extensions, e.g.
by considering time- or state-dependent coupling matrix C,
and experimental verification using data from laboratory
experiments on small groups are subject of ongoing research.

We establish necessary and sufficient conditions for the
stability of our model, which guarantee also that opinions
converge to finite limit value, depending on the social in-
fluences between the agents and their prejudices. We also
address the problem of identification of the multi-issue
interdependence structure. Although our model requires the
agents to communicate synchronously, we show that the

same final opinions can be reached by use of the decen-
tralized and asynchronous gossip-based protocol.
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