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Abstract—We consider reversible nonconservative perturbations of the conservative cubic
Hénon maps H±

3 : x̄ = y, ȳ = −x+M1 +M2y ± y3 and study their influence on the 1:3 res-

onance, i. e., bifurcations of fixed points with eigenvalues e±i2π/3. It follows from [1] that this
resonance is degenerate for M1 = 0,M2 = −1 when the corresponding fixed point is elliptic.
We show that bifurcations of this point under reversible perturbations give rise to four 3-
periodic orbits, two of them are symmetric and conservative (saddles in the case of map H+

3

and elliptic orbits in the case of map H−
3 ), the other two orbits are nonsymmetric and they

compose symmetric couples of dissipative orbits (attracting and repelling orbits in the case of

map H+
3 and saddles with the Jacobians less than 1 and greater than 1 in the case of map H−

3 ).
We show that these local symmetry-breaking bifurcations can lead to mixed dynamics due to
accompanying global reversible bifurcations of symmetric nontransversal homo- and heteroclinic
cycles. We also generalize the results of [1] to the case of the p : q resonances with odd q and

show that all of them are also degenerate for the maps H±
3 with M1 = 0.
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1. INTRODUCTION

In the present paper we study how reversible nonconservative perturbations affect the 1:3
resonance, i.e., bifurcations of fixed points with eigenvalues e±i2π/3, in conservative cubic Hénon
maps of the form

H±
3 : (x, y) → (x̄, ȳ) : x̄ = y, ȳ = −x+M1 +M2y ± y3, (1.1)

where x and y are coordinates, and M1 and M2 are parameters. This problem has become very
interesting due to the recent discovery of mixed dynamics [2, 3], a third, new type of dynamical
chaos.

Recall that mixed dynamics is such type of chaotic behavior of orbits for which chaotic attractors
and repellers intersect but do not coincide [3]. This type of chaos is a complement to other two
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well-known types of chaotic behavior for systems with compact phase space: the dissipative chaos,
when an attractor is separated from a repeller, and the conservative (e.g., Hamiltonian) chaos for
which the whole phase space is the attractor and repeller simultaneously. Note that mixed dynamics
often appear in applications: the nonholonomic models of the Celtic stone and the Chaplygin top
were the first systems where it was purposefully found [4, 5], now many systems are known which
exhibit mixed dynamics, see, e. g., [6–17]. In all these studies two sides of the mixed dynamics
phenomenon are taken into account: first, to detect it, i. e., to show numerically or experimentally
that attractors and repellers visually intersect, and, second, to prove mathematically that they
indeed have nonempty intersection, using known criteria of mixed dynamics [18–21]. As far as we
know, both these approaches were combined only in a couple of papers, see, e. g., [6, 22, 23]. The
second approach (to prove) is much more delicate than the first one, it requires involving various
theoretical aspects of mixed dynamics such as criteria for the existence of absolute Newhouse

regions1) [18–21, 24] and the structure of bifurcation scenarios leading to the appearance of mixed
dynamics, see, e. g., [6, 10, 22]. In the present paper, we apply both these approaches when studying
local and global bifurcations associated with the 1:3 resonance under reversible perturbations of
the cubic Hénon maps.

It is also important to note that the cubic Hénon maps (1.1) are interesting not only in their
own right, as the simplest nonlinear maps demonstrating complicated dynamics, but also as normal
forms of first-return maps near cubic homoclinic tangencies in area-preserving diffeomorphisms [26].
Note that the different signs ± before the cubic term y3 correspond to two different types of
cubic homoclinic tangencies, see [26–28] for more details. In the case of reversible maps, it is
well known that the appearance of such symmetric homoclinic tangencies is a codimension one
bifurcation phenomenon which, in turn, implies the existence of Newhouse domains in which
homoclinic tangencies, including symmetric cubic homoclinic tangencies, are dense [21]. Then their
bifurcations leading to the emergence of symmetric pairs of nonconservative periodic orbits provide
a criterion of reversible mixed dynamics [20]. Namely, in the corresponding absolute Newhouse
domains, reversible maps with infinitely many periodic sinks (stable or attracting orbits), sources
(completely unstable or repelling orbits), saddles with the Jacobian greater than 1, and saddles with
the Jacobian less than 1, as well as symmetric elliptic periodic orbits and conservative saddles, are
dense.

It is widely known that the strong 1:1, 1:2, 1:3 and 1:4 resonances, i. e., bifurcations of fixed

points (periodic orbits) with eigenvalues e±2πi/q, q = 1, 2, 3, 4, respectively, are very important for
dynamics. In the conservative setting, the nondegenerate 1:1 resonance is related to a parabolic
(elliptic-hyperbolic) bifurcation of fixed (periodic) points that implies the appearance of a pair of
saddle and elliptic orbits. In turn, the nondegenerate 1:2 resonance is connected with a conservative
period-doubling bifurcation. The 1:3 and 1:4 resonances are most difficult, their theory was outlined
by V. Arnold in [29], where, in particular, a case of the degenerate 1:4 resonance (the so-called
“Arnold degeneracy”) was considered, see also [30]. As is well known, the complex local normal
form of an area-preserving map near a fixed point with eigenvalues ±i (1:4 resonance) is written
as z̄ = i(z+A|z|2z+B(z∗)3) +O(|z|5), where A and B are real coefficients. The Arnold degeneracy
corresponds to the case |A| = |B|. It is very interesting that recently, in [26, 31], a new type of
degenerate resonance 1 : 4 has been found. It corresponds to the case B = 0. This degeneracy is very
interesting since its two-parameter unfolding includes symmetry-breaking (pitchfork) bifurcations
of 4-periodic orbits.

Note that a class of degenerate p : q resonances accompanied by symmetry-breaking bifurcations
of q-periodic points was described in [32]. The 1:4 resonance fits well into this class [26], while the 1:3
degenerated resonances have certain peculiarities, which were not considered in [32]. In this paper
we deal with this problem. We note, in particular, that degenerated resonances, including the 1:3
resonance, appear in maps (1.1) at M1 = 0. In this case, maps (1.1) possess the central symmetry
(x → −x, y → −y), which implies automatically that all p : q resonant fixed points O(0, 0) with odd

1)Recall that Newhouse regions are open (in C2-topology) regions in the space of dynamical systems where systems
with homoclinic tangencies are dense [25]. In absolute Newhouse regions systems with infinitely many hyperbolic
periodic orbits of all types (allowed by the dimension of the phase space) are dense.
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q � 3 are degenerate (this is a consequence of the fact that all coefficients vanish before monomials
zn(z∗)m with even m+ n in the corresponding normal forms), see Section 4.

The strong resonances often appear in area-preserving maps. For example, in the conservative
(quadratic) Hénon map x̄ = y, ȳ = M − x− y2 the structure of the 1:4 resonance was studied in [33],
where it was shown that this resonance is degenerate (the Arnold case). In [33] it was also shown
that, in the conservative Hénon map, the 1:3 resonance is nondegenerate, and it mainly relates
to the rearrangement of symmetric 3-periodic saddle orbits. Besides, in particular, in [34] it was

demonstrated that the emergence of a fixed point with eigenvalues e±i2π/3 in the Hénon map implies
both local instability of the fixed point and global instability of the map, i.e., the fixed point
becomes a saddle with 6 separatrices (local effect) and almost all orbits close to the fixed point go
to infinity (global effect). However, this is not the case when the 1:3 resonance is degenerate. Here,
in general, the fixed point is surrounded by a garland (a chain of stability islands) which consists
of elliptic and saddle 3-periodic orbits and does not allow orbits to pass far away from the fixed
point. This local stability also implies global stability when the 1:3 resonance is near-degenerate.
Note that such a situation takes place in the conservative cubic Hénon maps (1.1), see Section 3
(Figs. 3 and 4). Here a degenerate 1:3 resonance appears at M1 = 0 and M2 = −1, otherwise it is
nondegenerate if M1 �= 0. We also note that all p : q resonances with odd q have the same nature:
they are degenerate for M1 = 0 and the corresponding value of M2, see Section 4 (Fig. 5 for the
1:5 and 1:7 resonances).

Our main goal is to study the near-degenerate 1:3 resonances in maps (1.1) and analyze how
they bifurcate under reversible nonconservative perturbations. It follows from [1] that, for M1 = 0
andM2 = −1, the 1:3 resonance is degenerate for the conservative cubic Hénon maps and 3-periodic
orbits undergo pitchfork bifurcations. We note that both maps H+

3 and H−
3 are conservative and

reversible with respect to the involution h : (x, y) → (y, x), i. e., by definition the maps H±
3 and the

inverse maps (H±
3 )−1 are conjugate by means of the involution h (the relation (H±

3 )−1 = h ◦H±
3 ◦ h

holds). In the general case, reversible maps can also have dissipative orbits that always exist in
pairs: stable and completely unstable periodic orbits, two saddle periodic orbits with the Jacobian
greater than 1 and less than 1, etc. Such orbits are symmetric to each other with respect to an
involution. We call them a symmetric couple of orbits. When a map is reversible and conservative,
symmetric couples of orbits are also conservative, however, under general reversible perturbations,
these pairs become dissipative.

The genericity of perturbations means that they, first of all, should destroy the conservativity.
Following the paper [35], we construct (analytically), in Section 2, such reversibility preserving
perturbations for Hénon-like conservative maps, and apply them for the cubic Hénon maps (1.1),
see formula (2.4). In Section 3, for the unperturbed map (1.1) we study in detail bifurcations of
the conservative 1:3 resonance and mention the associated degeneracies and pitchfork bifurcations
of 3-periodic orbits. Then, in Sections 5 and 6, we illustrate the bifurcation diagrams for the near-
degenerate 1:3 resonance in the perturbed maps and focus on pitchfork bifurcations of 3-periodic
orbits which lead to the dissipative dynamics. Namely, we demonstrate that for perturbations
of H+

3 a supercritical pitchfork bifurcation takes place with the elliptic 3-periodic orbit, which
leads to the emergence of nonsymmetric attracting and repelling 3-periodic orbits, see Section 5 for
more details. For the perturbed map H−

3 a subcritical pitchfork bifurcation takes place with the
saddle 3-periodic orbit, which leads to the emergence of a symmetric couple of 3-periodic dissipative
saddles, see Section 6. Finally, in Section 7, we provide numerical evidence of the existence of mixed
dynamics in the reversible nonconservative perturbation of H−

3 and discuss possible emergence of

mixed dynamics for map H+
3 .

2. CONSTRUCTION OF REVERSIBLE NONCONSERVATIVE PERTURBATIONS

In the present paper we consider two-dimensional reversible diffeomorphisms. Recall that a
diffeomorphism f is reversible if it is conjugate to its inverse map f−1 by means of an involution h,
i.e., the following relation is true: f−1 = h ◦ f ◦ h, where h2 = Id. The property of reversibility
of f implies the strong symmetry of the set of orbits. An orbit that intersects the set Fix(R) =
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{x : R(x) = x} or the set Fix(Rf) is called symmetric. Any symmetric periodic orbit of a two-
dimensional reversible orientable map has eigenvalues λ and λ−1. Then it is a symmetric saddle if
0 < λ < 1 and a symmetric elliptic point if λ = eiϕ, ϕ �= 0, π.

As for nonsymmetric orbits, typically they are not conservative, and for any nonsymmetric orbit
there exists an orbit, symmetric to it, with “opposite” dynamical properties. This means that, if
a periodic orbit has eigenvalues λ1 and λ2, then the orbit symmetric to it has eigenvalues λ−1

1

and λ−1
2 . Nonsymmetric orbits compose a symmetric pair of orbits.

In reversible systems nonsymmetric orbits can appear via saddle-node bifurcations or due to
symmetry-breaking bifurcations. Typical (codimension one) local bifurcations are supercritical and
subcritical pitchfork bifurcations [36]. As a result of a supercritical bifurcation, a symmetric elliptic
periodic orbit becomes a saddle and in its neighborhood a symmetric couple “sink-source” appears,
see Figs. 1a, 1b. Under a subcritical bifurcation, the saddle periodic orbit becomes elliptic and
there appears a symmetric pair of saddle periodic orbits, one with the Jacobian J < 1 and the
other with the Jacobian J > 1, see Figs. 1c, 1d.2) It is important to note that local symmetry-
breaking bifurcations can be considered as an indicator of mixed dynamics in systems where the
difference between the intersecting attractor and repeller is invisible in standard numerics, for
instance, as in the nonholonomic model of a rubber disk on the plane [17].

Fig. 1. Two types of reversible pitchfork bifurcation: (a)→(b) supercritical pitchfork bifurcation at which an
elliptic orbit (in plot (a)) becomes a saddle orbit and a pair of stable and unstable orbits appears near the
saddle (in plot (b)); (c)→(d) subcritical pitchfork bifurcation at which a saddle orbit (in plot (c)) bifurcates
into an elliptic orbit surrounded by a couple of saddle orbits with the Jacobians J > 1 and J < 1 (in plot (d)).

Concerning global symmetry-breaking bifurcations, they are related to the appearance of
nontransversal intersections between invariant manifolds of either the same periodic saddle orbit
(homoclinic tangencies) or different saddles (heteroclinic tangencies). Under certain conditions
bifurcations of these tangencies lead to the emergence of symmetric pairs of sinks and sources, area-
expanding and area-contracting saddles as well as symmetric elliptic and saddle periodic orbits,
and, hence, to the reversible mixed dynamics. Some of such global symmetry-breaking bifurcations
were studied for nontransversal heteroclinic cycles of different types [18–21], see some examples of
such cycles in Fig. 2.

In order to study such bifurcations in reversible maps, one needs, first of all, to construct smooth
reversible perturbations that destroy their conservativity. Following the ideas of [35], we construct
such perturbations for conservative generalized Hénon maps of the form

H : x̄ = y, ȳ = −x+ P (y), (2.1)

where P (y) is a smooth (in particular, analytical or polynomial) function of y and parameters. In
particular, they include the cubic conservative Hénon maps for P (y) = M1 +M2y ± y3.

2)Supercritical and subcritical pitchfork bifurcations are also typical (codimension one) local bifurcations in the
conservative reversible case. Due to the supercritical pitchfork bifurcation a symmetric elliptic periodic orbit
becomes a saddle orbit and a symmetric pair of elliptic periodic orbits is born in its neighborhood. Due to the
subcritical pitchfork bifurcation a symmetric saddle periodic orbit becomes an elliptic one and a symmetric pair
of conservative saddle (with the Jacobian J = 1) periodic orbits is born in its neighborhood.
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Fig. 2. Examples of nontransversal heteroclinic cycles of planar diffeomorphisms: (a) the heteroclinic cycle
studied in [18]; (b) the nontransversal heteroclinic cycle with a quadratic tangency from [19]; (c) the
nontransversal heteroclinic cycle with a cubic tangency from [21].

Our approach to get reversible nonconservative perturbations consists in writing the perturba-
tions in the form

H̃(ε) : x̄+ εϕ(ȳ, x̄) = y + εϕ(x, y), ȳ = −x+ P
(
y + εϕ(x, y)

)
, (2.2)

where ε is a small parameter and ϕ is a smooth function which gives a nonconservative perturbation.
This perturbation can be obtained by applying the so-called Quispel-Roberts method [37], see
also [35, 38]. This method uses two facts: (i) any two-dimensional reversible map f can be presented
as a composition of two involutions, f = ζ1 ◦ ζ2, and a perturbed map is obtained by perturbing

one of the involutions, f̃ = ζ1 ◦ ζ̃2; (ii) if ζ is an involution of map f and map T is a diffeomorphism,

then ζ̃ = T−1 ◦ ζ ◦ T is also an involution of map f . Indeed, H = h ◦ h2, where h : (x, y) → (y, x)

and h2 : (x, y) → (−x+ P (y), y) are involutions. Thus, H̃ = h ◦ h̃2 is obtained by perturbing the

second involution h̃2 = h̃2 = T−1 ◦ h2 ◦ T with a near-identity map T : x̄ = x, ȳ = y + εϕ(x, y).

Lemma 1. The diffeomorphism H̃(ε), defined in (2.2), is reversible with respect to the involu-
tion h : (x, y) → (y, x).

Proof. The proof is similar to the one done in [20], see also [35]. Indeed, to prove the reversibility

of H̃(ε), we have to show that H̃(ε)−1 = h ◦ H̃(ε) ◦ h.
First, we write the inverse map H̃(ε)−1 swapping the bar and no-bar variables x̄ ↔ x, ȳ ↔ y:

H̃(ε)−1 : x̄ = −y + P
(
x+ εϕ(y, x)

)
, ȳ + εϕ(x̄, ȳ) = x+ εϕ(y, x). (2.3)

Second, the composition H̃(ε) ◦ h is obtained by interchanging the variables x → y, y → x in H̃(ε)
according to the involution h

H̃(ε) ◦ h : x̄+ εϕ(ȳ, x̄) = x+ εϕ(y, x), ȳ = −y + P (x+ εϕ(y, x)).

Then we apply h onto H̃(ε) ◦ h swapping the bar variables x̄ → ȳ, ȳ → x̄ and get h ◦ H̃(ε) ◦ h which

coincides with H̃(ε)−1 in (2.3). �

For ε = 0, map (2.2) coincides with the conservative map (2.1). We consider P (y) = M1 +M2y±
y3 and the concrete perturbation ϕ(x, y) = xy:

H̃±
3 (ε) : x̄+ εx̄ȳ = y + εxy, ȳ = −x+M1 +M2(y + εxy)± (y + εxy)3. (2.4)

Since we choose a perturbation linear in the first variable x, the equations in (2.4) can be solved

for x̄ and ȳ. Thus, the maps H̃±
3 can be written in the explicit form. The Jacobian of the maps

equals

J =
1 + εx

1 + εȳ
,
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which is different from 1 when ε �= 0. We analyze numerically bifurcations of the 1:3 resonance in

perturbed cubic conservative Hénon maps H̃±
3 (ε) for ε �= 0 and construct the corresponding bifur-

cation diagrams in Sections 5 and 6, paying special attention to the appearance of nonsymmetric
periodic orbits under reversible pitchfork bifurcations.

Remark 1. Maps (2.4) are not diffeomorphisms in the whole plane R2. However, these maps are
diffeomorphisms in a sufficiently large part of it: Dε : |x| < ε−1, |y| < ε−1. Therefore, the question
of the properties of reversible dynamics in map (2.4) at small ε is quite interesting.

We also note that for small ε the dynamics of the perturbed maps (2.4) and the initial cubic
maps (1.1) are concentrated in a certain neighborhood of the origin of the phase plane, and we are
not interested in what happens outside this neighborhood.

3. 1:3 RESONANCE FOR THE UNPERTURBED MAPS H±
3

In the general nonconservative setting, the analysis of the 1:3 resonance was done by Arnold [29],
see also [30, 39]. For the study of the 1:3 resonance in conservative maps we refer the reader
to [34, 40]. Recall that one can study the structure of such bifurcations by writing the local normal
form expressed in complex coordinates z = x+ iy and z∗ = x− iy:

z̄ = ei2π/3(z + a02(z
∗)2 + a21z

2z∗) +O(|z|4), (3.1)

where the coefficient a02 is purely imaginary since map (3.1) is reversible with respect to the
involution h : z → z∗. In this case the 1:3 resonance is degenerate when a02 = 0.

Let d = ±1 be the coefficient before the cubic term in (1.1), thus, d = 1 corresponds to H+
3

and d = −1 stands for H−
3 . Then, for the parameters M1 and M2 on the 1:3 resonance curve

ld1:3 : M
2
1 =

d

27
(1 +M2)(2M2 − 7)2, (3.2)

map Hd
3 has the fixed point with eigenvalues e±i2π/3 which is P

(1)
1:3 =

√
−d(1 +M2)/3 (1, 1) in the

branch M1 > 0 and P
(2)
1:3 = −

√
−d(1 +M2)/3 (1, 1) in the branch M1 < 0. Note that the curve l−1:3

has a self-intersection point at (M1,M2) = (0, 7/2) where map H−
3 has two fixed points P

(1)
1:3 =(√

3/2,
√

3/2
)
and P

(2)
1:3 =

(
−
√
3/2,−

√
3/2

)
with eigenvalues e±i2π/3 simultaneously.

The coefficients of the normal form (3.1) are as follows:

a02 = −2i
√

−d(1 +M2), for M1 > 0,

a02 = 2i
√

−d(1 +M2), for M1 < 0,

a21 = −4d(1 +M2) + 4
√
3dM2i.

It is easy to see that a02 and a21 do not vanish simultaneously. Moreover, a02 = 0 at M2 = −1,
therefore the 1:3 resonance is degenerate when M1 = 0,M2 = −1.

A detailed bifurcation analysis for the conservative cubic Hénon maps H±
3 was carried out

in [1, 26, 31]. In particular, bifurcations of 3-periodic orbits were studied in [1], and one of the
principal bifurcations were pitchfork bifurcations. For convenience, we display the corresponding
bifurcation diagrams for H+

3 and H−
3 and complement them with the related phase portraits in

Figs. 3 and 4, respectively.

Let us briefly describe these figures. Besides the 1:3 resonance curve ld1:3, defined in (3.2), the

further bifurcation curves are P d
1 , PDd

1 , P
d
3 and PF d

3 . The curves P d
1 and PDd

1 , which have the
equations

P d
1 : M2

1 =
4d

27
(2−M2)

3 ,

PDd
1 : M2

1 = −4d

27
(2 +M2) (4−M2)

2 ,
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Fig. 3. Bifurcation diagram for the conservative cubic Hénon map H+
3 . The bifurcations curves P+

1 , l+1:3,

and PD+
1 are the curves of a parabolic (pitchfork for M1 = 0) bifurcation, 1:3 resonance, and a period-doubling

bifurcation of fixed points, respectively. The curves P+
3 and PF+

3 are the curves of parabolic and pitchfork
bifurcations of 3-periodic orbits, respectively. For the fixed value of M2 = −1.25, the phase portraits are
presented for M1 = 0, 0.03, 0.83, 0.915, 0.98 and 1.2. ForM1 < 0 the phase portraits are reflected symmetrically
with respect to y = −x.

are the curves of fixed points with double eigenvalue (1, 1) and (−1,−1), respectively. The curve P d
1

corresponds to a parabolic bifurcation of a fixed point of map for M1 �= 0,M2 �= 2. As a result of
this bifurcation, crossing P d

1 laterally, there appear elliptic and saddle (hyperbolic) fixed points

for parameters below P+
1 in the case of map H+

3 and above P−
1 in the case of map H−

3 . When

passing through the point M1 = 0,M2 = 2 at P d
1 vertically (M1 = 0 being fixed) a subcritical and

supercritical conservative pitchfork bifurcation takes place for H+
3 and H−

3 , respectively. Namely, in

the case of H+
3 , under this bifurcation the saddle fixed point forM2 > 2 (above P+

1 ) becomes elliptic

and a pair of saddle fixed points appears around for M2 < 2. For map H−
3 , passing through the

point M1 = 0,M2 = 2 from bottom to top, an elliptic fixed point undergoes a supercritical pitchfork
bifurcation, it turns into a saddle fixed point and a pair of elliptic fixed points appears nearby. The
curve PDd

1 is related to a period-doubling bifurcation of a fixed point. At crossing PD+
1 , the elliptic

fixed point becomes a saddle and in its neighborhood there appears an elliptic 2-periodic orbit. The
curve PD−

1 corresponds to two different types of period-doubling bifurcation: the bottom part is
responsible for a subcritical period-doubling bifurcation of the saddle fixed point (which becomes

an elliptic fixed point surrounded by a saddle 2-periodic orbit), while at the upper part of PD−
1 an

elliptic fixed point undergoes a supercritical period-doubling bifurcation. See [26] for more details

on these bifurcations. The other curves P d
3 and PF d

3 are associated with parabolic and conservative
pitchfork bifurcations of 3-periodic orbits, respectively. They were discovered by [1] and they have
too cumbersome expressions to be presented, so we omit their equations.

We note that the point (M1,M2) = (0,−1), corresponding to the case a02 = 0, is the cusp point of

the curves PF+
3 and PF−

3 in both mapsH+
3 andH−

3 , respectively. This point also lies in P d
3 and ld1:3.

Getting inside the region bounded by the curve PF+
3 (PF−

3 ), the symmetric elliptic (saddle) 3-
periodic orbit becomes a saddle (elliptic) orbit and a pair of nonsymmetric elliptic (saddle) orbits of

the same period emerges for H+
3 (H−

3 ). It is worth mentioning that in the nonconservative reversible
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Fig. 4. Bifurcation diagram for the conservative cubic Hénon map H−
3 . The bifurcations curves P−

1 ,

l−1:3, and PD−
1 are the curves of parabolic (pitchfork for M1 = 0) bifurcation, 1:3 resonance, and period-

doubling bifurcation of fixed points, respectively. The curves P−
3 and PF−

3 are the curves of parabolic and
pitchfork bifurcations of 3-periodic orbits, respectively. The sequence of phase portraits in the horizontal
line M2 = −0.8 is displayed for M1 = 0, 0.025, 0.04, 0.742, 0.85, and 1.2. For M < 0 the phase portraits are
reflected symmetrically with respect to y = −x.

case, instead of nonsymmetric elliptic (saddle) orbits, a pair of stable and unstable orbits (saddles
with the Jacobians J > 1 and J < 1) emerges as a result of a reversible pitchfork bifurcation.

In Fig. 3 we present a sequence of phase portraits near the 1:3 resonance for a fixed M2 for H+
3 .

Let us give some details of the bifurcations which take place in the horizontal line M2 = −1.25.
For M1 on the right-hand side of the right branch of P+

3 (see the phase portrait 1© for M1 = 1.2),
there is an elliptic fixed point E1 which is born along with a saddle fixed point (the latter is not

presented in the phase portrait) after a parabolic bifurcation at P+
1 . At crossing P+

3 a parabolic
bifurcation of 3-periodic orbits occurs and close to the elliptic point E1 there appear 3-periodic
orbits E3 and S3 of elliptic and saddle type, respectively, on the right-hand side of P+

3 (see, for
example, the phase portrait 2© for M1 = 0.98). On the 1:3 resonance curve l1:3, the saddle 3-

periodic orbit S3 collides with the elliptic point E1 and they become the saddle fixed point P
(1)
1:3

with 6 separatrices (see the phase portrait 3© for M1 ≈ 0.915). After this bifurcation, the saddle 3-
periodic orbit S3 is reconstructed, and the homoclinic connections are transformed into heteroclinic
cycles (see the phase portrait 4© for M1 = 0.83). When passing through the left curve PF+

3 the

elliptic 3-periodic orbit E3 undergoes a supercritical pitchfork bifurcation: it becomes a saddle Ŝ3

and a pair of nonsymmetric elliptic 3-periodic orbits Ê1
3 and Ê2

3 appears nearby (see, for instance,

the phase portrait 5© for M1 = 0.03). Then the elliptic orbits Ê1
3 and Ê2

3 move away from Ŝ3 and

get closer to S3. At the same time, the separatrices of the interior saddle Ŝ3 increase until they
connect with the separatrices of the exterior saddle S3 (the phenomenon of splitting of separatrices
takes place). After some bifurcation related with homo/heteroclinic connections (phase portrait 6©
at M1 = 0) the saddle and elliptic 3-periodic orbits are rotated. Afterwards, by the symmetry in
the (M1,M2)-plane, for M1 > 0, the periodic orbits undergo an inverse pitchfork bifurcation (the

elliptic 3-periodic orbits Ê1
3 and Ê2

3 merge into the saddle orbit S3 which becomes elliptic E3)

at PF+
3 ; a 1:3 resonance bifurcation (the saddle 3-periodic orbit Ŝ3 is reconstructed after passing

through the saddle fixed point P
(2)
1:3 with 6 separatrices) takes place at l+1:3; an inverse parabolic
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bifurcation (the saddle and elliptic 3-periodic orbits E3 and Ŝ3 merge into the elliptic fixed point E1)

occurs at crossing P+
3 .

In Fig. 4 one can observe the bifurcations which occur when the curves l−1:3, P
−
3 and PF−

3 are

crossed, in the case of map H−
3 . We consider the horizontal line M2 = −0.8. For M1 on the right-

hand side of P−
3 (see, for example, the phase portrait 1© for M1 = 1.2), there are an elliptic fixed

point E1 and a saddle 2-periodic orbit (the latter is absent in the figure) which appear after a

period-doubling bifurcation at PD−
1 . Decreasing M1 and passing through the curve P−

3 , elliptic
and saddle 3-periodic orbits E3 and S3 show up, surrounding the elliptic fixed point E1 (see,

for instance, the phase portrait 2© for M2 = 0.85). Further, for M1 in the curve l−1:3 the elliptic

point E1 and the saddle orbit S3 are transformed into the saddle point P
(1)
1:3 with 6 separatrices (see

the phase portrait 3© at M1 ≈ 0.74245), and after crossing L−
1:3 the saddle 3-periodic orbit S3 is

rotated, reconstructing the homoclinic configuration into the heteroclinic connections (see the phase

portrait 4© forM1 = 0.04). After that, when crossing the right branch of PF−
3 , the saddle 3-periodic

orbit S3 goes through a subcritical pitchfork bifurcation: the saddle orbit becomes elliptic Ê3 and

in its neighborhood there appear two nonsymmetric saddle 3-periodic orbits Ŝ1
3 and Ŝ2

3 (as in the

phase portrait 5© at M1 = 0.025). Varying further M1, the nonsymmetric saddle orbits Ŝ1
3 and Ŝ2

3

move away from the elliptic orbit Ê3 toward the other elliptic orbit E3 (see, for instance, the phase

portrait 6© for M1 = 0). For M1 < 0, the two saddle orbits Ŝ1
3 and Ŝ2

3 get closer to E3. These

three orbits undergo an inverse pitchfork bifurcation while crossing the left branch of PF−
3 : the two

saddle and elliptic 3-periodic orbits Ŝ1
3 , Ŝ

2
3 and Ê3 collide into the saddle 3-periodic orbit S3. When

the left branch of l−1:3 is crossed, the rotation of the saddle 3-periodic orbit S3 takes place. Finally,

for the parameters in the curve P−
3 the 3-periodic orbits Ê3 and S3 disappear and the elliptic fixed

point E1 remains.

Remark 2. The phase portraits in Figs. 3 and 4 for values of parameters (M1,M2) and (−M1,M2)
are centrally symmetric with respect to the origin x = y = 0. This is due to the fact that the
maps (1.1) are invariant under the change x → −x, y → −y,M1 → −M1. This also results in the
symmetries of the bifurcation curves in the (M1,M2) parameter plane with respect to M1 = 0.

Remark 3. In Figs. 3 and 4, the saddle separatrices are shown to coincide for simplicity, although
they are not expected to be exactly merged since the phenomenon of splitting of separatrices occurs
(see, for instance, [41, 42] and references therein for more details about this phenomenon).

4. ON THE DEGENERACY OF THE p : q RESONANCES
WITH ODD q > 3 IN H±

3 WITH M1 = 0

Let us consider the conservative cubic Hénon maps with M1 = 0. Due to Remark 2, there is
central symmetry in the phase portraits x → −x, y → −y. A normal form for the p : q resonance,
where p and q are mutually prime and q > 3 is odd, is as follows:

z̄ = ei2πp/q(z +Ω(|z|2)z∗ +A(z∗)q−1 +Bzq+1 + Cz(z∗)q).

The corresponding flow normal form in this case can be written as follows:

ż = iz +Ω(|z|2)z∗ +A(z∗)q−1 +Bzq+1 + Cz(z∗)q. (4.1)

It is conservative and reversible with respect to the involution (t, z) → (−t, z∗). Applying the
involution gives

−ż∗ = iz∗ +Ω(|z|2)z +A(z)q−1 +B(z∗)q+1 + Cz∗(z)q.

Further, let us consider the complex conjugate system

−ż = −iz +Ω∗(|z|2)z∗ +A∗(z∗)q−1 +B∗(z)q+1 + C∗z(z∗)q.
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Thus, the reversibility implies that Ω = −Ω∗, A = −A∗, B = −B∗, C = −C∗, i. e., all coefficients
in (4.1) should be purely imaginary. Therefore, Eq. (4.1) takes the form

ż = iz + iΩ(|z|2)z∗ + iA(z∗)q−1 + iBzq+1 + iCz(z∗)q, (4.2)

where all coefficients Ω, A,B,C are real. The conservativity condition means zero divergence, i.e.,

∂ż

∂z
+

∂ż∗

∂z∗
≡ 0.

As it follows from (4.2),

∂ż

∂z
= i+ iΩ′(z∗)2 + i(q + 1)Bzq + iC(z∗)q

and

∂ż∗

∂z∗
= −i− iΩ′(z)2 − i(q + 1)B(z∗)q − iC(z)q.

Thus, the conservativity condition is

C +B(q + 1) = 0.

The symmetry z → −z implies A = B = C = 0 since q is odd. Thus, the above condition is
automatically fulfilled, and the following result holds.

Lemma 2. For maps H±
3 with M1 = 0, any p : q resonance at the fixed point O(0, 0), where q > 3

is odd, is at least triple degenerate.

In Fig. 5 we illustrate this result for both cubic Hénon maps H±
3 . In Figs. 5a, 5b we show

phase portraits near the degenerated 1:5 and 1:7 resonances for map H+
3 . These resonances

occur at M2 ≈ 0.575 and M2 ≈ 1.15, respectively. As a result, four periodic orbits emerge: a
pair of symmetric periodic saddles (colored in light and dark green, respectively) and a pair of
nonsymmetric periodic elliptic orbits (colored in grey and black, respectively). In Figs. 5c, 5d we

demonstrate phase portraits for map H−
3 . In contrast to the previous case, here periodic elliptic

orbits are symmetric, while periodic saddles are nonsymmetric. Here the 1:5 resonance occurs
at M2 ≈ 0.66 and the 1:7 resonance takes place at M2 ≈ 1.36.

5. ON THE 1:3 RESONANCE IN MAP H̃+
3 (ε)

In this section we describe symmetry-breaking bifurcations near the 1:3 resonance in H̃+
3 (ε) in

the form (2.4).

We apply reversible nonconservative perturbations to the conservative map H+
3 and study their

impact on the structure of the 1:3 resonance. We display the bifurcation diagram for the fixed
perturbation parameter ε = 0.05 in Fig. 6. In comparison to the unperturbed case, we can see
the slightly changed bifurcation curves l+1:3, P

+
3 and PF+

3 , related to the 1:3 resonance, a parabolic
bifurcation of the appearance of 3-periodic orbits and a reversible pitchfork bifurcation of 3-periodic
orbits, respectively. Unlike the conservative case, the bifurcation curves are not symmetric since
the invariance of the map with respect to the change M1 → −M1 (see also Remark 2) is not
conserved anymore when the perturbation is added. However, the symmetry in the phase portraits
with respect to the straight line y = x is preserved due to the reversibility. Also, the curve PF+

3
here is associated with the symmetry-breaking bifurcations which are nonconservative reversible
pitchforks.

Let us describe the sequence of bifurcations which occur for the fixed parameter M2 = −1.25
and the decreasing parameter M1 in Fig. 6. To the right of the curve P+

3 (see, for example, the

phase portrait 1© at M1 = 1.2), map H̃+
3 (ε) has an elliptic fixed point E1. When P+

3 is crossed,
there appear a symmetric elliptic 3-periodic orbit E3 and a symmetric saddle 3-periodic orbit S3

with homoclinic loops (see the phase portrait 2© for the parameter value M1 = 0.96). Then, on

approaching the curve l+1:3, the orbits S3 and E1 merge into a saddle fixed point with 6 separatrices
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Fig. 5. Phase portraits near the degenerated 1:5 (left column) and 1:7 (right column) resonances in the

conservative cubic Hénon maps H+
3 (top row) and H−

3 (bottom row).

(the phase portrait 3© at M1 ≈ 0.882737). After that the saddle splits into the elliptic point E1

and the saddle 3-periodic orbit S3, now S3 is rotated and forms heteroclinic connections (phase
portrait 4© for M1 = 0.15). Further, the elliptic 3-periodic orbit E3 undergoes a reversible pitchfork

bifurcation when crossing the right branch of the curve PF+
3 : the elliptic 3-periodic orbit E3 breaks

into saddle, stable and unstable 3-periodic orbits Ŝ3, Â3 and R̂3, respectively (phase portrait 5©
for M1 = 0.08). Note that under this bifurcation a pair of nonsymmetric 3-periodic orbits Â3

and R̂3 is born. The separatrices of each component of the new saddle Ŝ3 tend to the corresponding

components of the stable and unstable orbits Â3 and R̂3 at forward and backward iterations,
respectively, forming homoclinic loops, and all the three components are surrounded by invariant

curves in a similar way as in Fig. 1a. As M1 decreases, the stable and unstable orbits Â3 and R̂3

move away from each other. Moreover, one of the components of the stable (or unstable) 3-periodic
orbit gets away from the symmetry line y = x, while the other two components move closer to
each other and to the line y = x. At the same time, the separatrices of the inner saddles become
larger. At some instant (close to M1 = 0.055, see the phase portrait 6©), the separatrices of the

inner and exterior saddles Ŝ3 and S3 merge (not exactly due to splitting of separatrices) and
the transformation of homoclinic/heteroclinic connections takes place, after which all the involved
3-periodic orbits are rotated (as in the phase portrait 7© for M1 = 0.03). When the left branch

of PF+
3 is crossed, an inverse pitchfork bifurcation occurs: the saddle, stable and unstable 3-periodic

orbits S3, Â3 and R̂3 merge into an elliptic 3-periodic orbit E3 (phase portrait 8© at M1 = 0). The

remaining saddle 3-periodic orbit Ŝ3 and the elliptic point E1 collide on crossing the left branch
of l+1:3, there is a saddle point with 6 separatrices for the parameters in this curve (for a parameter
close to M1 = −0.95, see the phase portrait 9©). After the bifurcation, the 6-separatrix saddle splits
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Fig. 6. Bifurcation diagram for the reversible nonconservative map H̃+
3 (ε) for ε = 0.05 near the 1:3 resonance.

The bifurcations curve l+1:3 is the curve of the 1:3 resonance of fixed points, while the curves P+
3 and PF+

3

are related to parabolic and reversible pitchforks (nonconservative symmetry-breaking) bifurcations of 3-
periodic orbits, respectively. For the fixed value of M2 = −1.25, the phase portraits are given for M1 =
−1.2,−1.05,−.0.95, 0, 0.003, 0.055, 0.08, 0.15, 0.8827, 0.96, and 1.2. Green, grey, red and blue stand for saddle,
elliptic, stable (sinks) and unstable (sources) fixed points and periodic orbits, respectively.

into saddle and elliptic 3-periodic orbits Ŝ3 and E3 on the left-hand side of l+1:3, now Ŝ3 is rotated
by π/3 and the heteroclinic cycles change into homoclinic loops (phase portrait 10© for M1 = −1.05).

Finally, we transit the curve P+
3 and the 3-periodic orbits Ŝ3 and E3 disappear (phase portrait 11©

for M1 = −1.2).

Thus, during transition into the domain lying below the curve PF+
3 , there appears a symmetric

pair of nonsymmetric stable and completely unstable 3-periodic orbits. This fact is relevant for
detecting mixed dynamics in maps with symmetric cubic homoclinic tangencies whose truncated

first return map is H̃+
3 (ε). Thus, there are Newhouse domains where maps with infinitely many

attracting, repelling, saddle and elliptic periodic orbits are dense [18, 19, 21, 43].

6. ON THE 1:3 RESONANCE IN MAP H̃−
3 (ε)

In this section we study how the 1:3 resonance evolves under the perturbation in the case of

map H̃−
3 (ε). The corresponding bifurcation diagram is illustrated in Fig. 7. Unlike the unperturbed

case in Fig. 4, the 1:3 resonance curve l−1:3 as well as the curves P−
3 and PF−

3 related to parabolic
and reversible pitchfork bifurcations of 3-periodic orbits, respectively, are nonsymmetric and slightly
moved, since the symmetry with respect to M1 = 0 (see also Remark 2) is not conserved anymore.

Also, PF−
3 corresponds to a nonconservative symmetry-breaking bifurcation, after which two

nonsymmetric saddle 3-periodic orbits appear, one of them with the Jacobian J > 1 and the other
with the Jacobian J < 1.

Let us give details on the bifurcations taking place in the bifurcation diagrams in Fig. 7. We
choose the horizontal line M2 = −0.8. We start with the parameters on the right-hand side of P−

3
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Fig. 7. Bifurcation diagram for the reversible nonconservative map H̃−
3 (ε) for ε = 0.05 near the 1:3

resonance. The bifurcations curve l−1:3 is related to bifurcations of the 1:3 resonance of fixed points, while the

curves P−
3 and PF−

3 correspond to parabolic and reversible pitchfork (nonconservative symmetry-breaking)
bifurcations of 3-periodic orbits, respectively. For the fixed value of M2 = −0.8, the phase portraits are given
for M1 = −1.3,−0.8,−0.72,−0.4,−0.065,−0.005,−0.025, 0.5, 0.7494, 0.9 and 1.23. The green and grey points
stand for saddle and elliptic orbits, respectively.

(see, for instance, the phase portrait 1© for M1 = 1.23), where map H̃−
3 (ε) has an elliptic fixed

point E1. The point E1 undergoes a parabolic bifurcation when crossing P−
3 and there appear

3-periodic orbits S3 and E3 of saddle and elliptic type close to E1 for the parameters on the left-

hand side of P−
3 (phase portrait 2© for M1 = 0.9). Note that the three components of the saddle

orbit S3 have homoclinic loops. On the 1:3 resonance curve l−1:3 (at M1 ≈ 0.74943), the saddle
3-periodic orbit S3 and the elliptic point E1 merge into a saddle fixed point with 6 separatrices

(see the phase portrait 3©) which for the parameters on the left-hand side of l−1:3 breaks into

saddle and elliptic 3-periodic orbits S3 and E3 again, but on the left-hand side of l−1:3 the orbit S3

is rotated by π/3 and the homoclinic loops of S3 are reorganized into heteroclinic connections
(see, for example, the phase portrait 4© at M1 = 0.5). When crossing the right branch of the

curve PF−
3 , the saddle orbit S3 undergoes the subcritical pitchfork bifurcation. As a result, the

saddle orbit is converted into an elliptic 3-periodic orbit Ê3 and two saddle 3-periodic orbits Ŝ1
3

and Ŝ2
3 show up nearby (see the phase portrait 5© for M1 = −0.025). Moreover, the Jacobian in Ŝ1

3

is greater than 1 and the Jacobian in Ŝ2
3 is less than 1. As the parameter M1 decreases, the saddle

orbits Ŝ1
3 and Ŝ2

3 move away from each other toward the elliptic orbit E3 (phase portraits 6© and 7©
forM1 = −0.05 andM1 = −0.065). In the left branch of PF−

3 , an inverse pitchfork bifurcation takes

place: the orbit E3 merges along with Ŝ1
3 and Ŝ2

3 into a saddle 3-periodic orbit S3 (phase portrait 8©
for M1 = −0.4). Afterwards, the reconstruction of S3 happens on the 1:3 resonance curve l−1:3 (phase
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portrait 9© and 10© for M1 = −0.72 and M1 = −0.8). Finally, the 3-periodic orbits Ê3 and S3

disappear on crossing P−
3 (phase portrait 11©) for M1 = −1.3).

Note that in the domain above the curve PF−
3 there emerges a symmetric pair of nonsymmetric

saddle 3-periodic orbits whose Jacobians are greater and less than 1. This configuration also implies
the existence of mixed dynamics in maps with cubic homoclinic tangencies whose truncated first

return map is H̃−
3 (ε). Also in H̃−

3 (ε) itself we show numerically the existence of mixed dynamics

for the parameters from the domain inside PF−
3 since heteroclinic connections between two saddle

orbits, one with the Jacobian J > 1 and the other with the Jacobian J < 1, leads to the presence
of nontransversal heteroclinic cycles [19]. See Section 7 for more details.

Fig. 8. Phase portrait and the zoomed fragment for map H̃−
3 (ε) in (2.4) for M1 = −0.364, M2 = −0.5

and ε = 0.3. For convenience, the phase portrait is rotated by π/4. In this representation, the horizontal
axis becomes Fix(h). The chaotic dynamics (in the gray region) seems conservative (the phase portrait is

self-symmetric with respect to the horizontal axis). The orbits Ŝ1
3 and Ŝ2

3 are the pair of nonconservative

saddle 3-periodic orbits with the Jacobians J(Ŝ1
3) = 0.995 < 1 and J(Ŝ2

3) = 1.005 > 1.

7. NUMERICAL EVIDENCE OF MIXED DYNAMICS IN THE PERTURBED MAP H̃−
3 (ε)

In this section we provide numerical evidence of the existence of mixed dynamics in the perturbed

map H̃−
3 (ε) in (2.4) for which in Section 6 we show the existence of a pair of saddle 3-periodic

orbits Ŝ1
3 and Ŝ2

3 with the Jacobians J < 1 and J > 1, respectively. Recall that these orbits appear
due to a subcritical reversible pitchfork bifurcation of the symmetric saddle 3-periodic orbit S3. For
better visibility, we take a quite large value of perturbation, ε = 0.3. In Fig. 8 we show the phase

portraits of H̃−
3 (ε) for M1 = −0.364 and M2 = −0.5. The orbits Ŝ1

3 with J < 1, Ŝ2
3 with J > 1

and symmetric elliptic orbits are marked by blue, red and black bold points, respectively. For
convenience, we rotate the phase portraits by π/4, then the horizontal axis corresponds to Fix(h).

From Fig. 8 it is clearly seen that the phase portrait is self-symmetric with respect to the
horizontal axis, which means that the attractor of the system seems coincident with the repeller.
Moreover, we are not able to find periodic sinks and sources nor even nonsymmetric orbits (except

for points Ŝ1
3 and Ŝ2

3) which would confirm mixed dynamics in H̃−
3 (ε).3)

However, we find a nontransversal heteroclinic cycle [19] which connects Ŝ1
3 and Ŝ2

3 . As it
was shown in [19], bifurcations of such cycles lead to reversible mixed dynamics. A schematic

3)Everywhere in numerical experiments, we use double-precision numbers. The use of multiple-precision packages
for the detection of periodic sinks and sources with extremely small absorbing domains seems to be a challenging,
but important problem for future studies.
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representation of this cycle is shown in Fig. 9a. The numerically obtained cycle is presented in

Fig. 9b. From this figure, one can see that the stable and unstable manifolds of Ŝ1
3 and Ŝ2

3 have

both transversal (see also the zoomed region near Ŝ2
3 in Fig. 9c) and nontransversal (see the zoomed

fragment in Fig. 9b) intersections. Thus, we can state that the chaotic dynamics presented in the
gray zone in Fig. 8 is mixed.

Fig. 9. (a) A schematic representation of the nontransversal heteroclinic cycle. (b), (c) Nontransversal

heteroclinic cycle connecting saddles Ŝ1
3 and Ŝ2

3 in map H̃−
3 (ε) at M1 = −0.364, M2 = −0.5 and ε = 0.3.

A pair of manifolds W s
1 and W u

1 intersects transversally, while the other pair W s
2 and W u

2 has a quadratic
tangency.

Also in this section we would like to note that the presence of mixed dynamics near elliptic
points of two-dimensional reversible maps plays an important role. As is well known, the phase
portrait near an elliptic point of a two-dimensional reversible diffeomorphism is organized in many
details as in the conservative case. There is also a continuum of KAM-curves surrounding the
elliptic point. The KAM-curves are separated by resonant zones [44]. However, the behavior in the
resonant zones for reversible maps differs greatly from the conservative ones, compare, for example,
Figs. 10a and 10b. In the conservative setting, ε-orbits can run away from any neighborhood of an
elliptic point, i.e., such a point is not stable under permanently acting perturbations (Lyapunov
instability by ε-orbits) [3], see Fig. 10a.

On the other hand, in the reversible nonconservative case, as it follows from [3, 32], it is typical
when in resonant zones periodic saddle points alternate with symmetric pairs of sinks and sources,
see Fig. 10b. In this case, it is possible when there exist intersecting absorbing domain BA and
repelling domain BR around an elliptic point such that forward as well as backward ε-orbits of
any point that belongs to the intersection BA ∩BR, cannot leave any neighborhood of this elliptic
point [3, 17]. These resonances are called impassable or isolated. We could not find such resonances in
the maps under consideration. However, we believe that by varying a perturbation and parameters
of the maps one can find them in numerical experiments. In future papers, we plan to study such
impassable resonances for the perturbed reversible nonconservative Hénon maps.

CONCLUSIONS

In the present paper we have obtained a series of new results devoted to the structure of the 1:3
resonance in the conservative cubic Hénon maps and their reversible perturbations. First, we have
proposed the method which gives reversible nonconservative perturbations of the conservative cubic
Hénon maps. We have proved that the resulting perturbed perturbations preserve reversibility.
Second, we have considered the conservative cubic Hénon maps H+

3 and H−
3 as examples and

studied the influence of reversible nonconservative perturbations on the structure of bifurcations
of the 1:3 resonance. We have provided a detailed analysis of these bifurcations in the perturbed
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Fig. 10. Different types of behavior in resonant zones of a symmetric elliptic point in the conservative (a) and
reversible (b) cases. Periodic elliptic orbits are marked by gray bold points, while periodic sinks and sources are
colored in blue and red, respectively. In plot (b) the absorbing domain BA of a sink orbit (bounded by the blue
dashed curves) intersects with the repelling domain of the source orbit (bounded by the red dashed curves).
Thus, ε-orbits of any point belonging to this intersection cannot leave the resonant zone, with either forward
or backward iterations (isolated resonance). This means that an elliptic point of a typical two-dimensional
reversible diffeomorphism is stable under permanently acting perturbations (Lyapunov stability by ε-orbits).

maps. We have focused on local symmetry-breaking bifurcations which have led to the appearance
of nonsymmetric orbits. These bifurcations are reversible pitchfork bifurcations of 3-periodic orbits,
and we have found the domains of parameters corresponding to nonsymmetric orbits. Moreover, for
perturbations of H+

3 , there appear nonsymmetric asymptotically stable and completely unstable

3-periodic orbits, while in perturbed H−
3 there emerge two nonsymmetric saddle 3-periodic orbits,

one with the Jacobian greater than 1 and the other with the Jacobian less than 1. The presence of
these nonsymmetric orbits leads to the existence of mixed dynamics in maps with cubic homoclinic
tangencies whose first return maps are H±

3 . Third, for the unperturbed conservative maps H+
3

and H−
3 with M1 = 0, we have demonstrated that all p : q resonances are degenerate when q > 3 is

odd. And finally, we have provided numerical evidence of mixed dynamics in perturbed H−
3 , since

a heteroclinic configuration between these nonsymmetric saddle orbits implies the emergence of
nontransversal heteroclinic cycles.

These results can be used for further study of mechanisms of the appearance of mixed dynamics
after a break-down of conservative dynamics. As pointed out in the Introduction, maps (1.1) are
related to the study of cubic homoclinic tangencies and the phenomenon of mixed dynamics,
the third (and the last) type of chaos. We have shown some global and local mechanisms of
its emergence. The global ones are connected with the presence of homoclinic and heteroclinic
cycles of different kinds, while one of the interesting local mechanisms is related to bifurcations of
resonances among which we highlight the 1:3 resonance. It is easy to associate the bifurcation
structure of cubic Hénon maps with the bifurcations which take place near cubic homoclinic
tangencies [26]. In the present paper we have proposed a local mechanism corresponding to the
occurrence of degenerate resonances in cubic Hénon maps. In the reversible context, symmetry-
breaking pitchfork bifurcations of 3-periodic orbits lead to the appearance of pairs of nonsymmetric
and nonconservative periodic orbits (periodic sinks and sources, periodic saddles with the Jacobians
greater and less than 1) near the degenerate 1:3 resonant point. In this regard, we think that it is of
great importance to consider the problem of local 1:3 resonance, especially the degeneracy a02 = 0
in (3.1), and the accompanying symmetry-breaking bifurcations in general reversible maps, since
degenerate resonances in reversible systems are the main local mechanism of the appearance of
mixed dynamics. It is also worth mentioning that the similar problem for the 1:4 resonance, the

structure of bifurcations associated with fixed points with eigenvalues e±π/2 = ±i and, consequently,

REGULAR AND CHAOTIC DYNAMICS Vol. 27 No. 2 2022



214 GONCHENKO et al.

4-periodic orbits, is of great interest as well. An exhaustive study of 1:4 resonance for (1.1) was
done in [26, 31], see also [45]. It was also established in these works that, for some (M1,M2), the
1:4 resonance can be degenerate and the 4-periodic orbits are subject to pitchfork bifurcations. The
study of reversible nonconservative perturbations for this case is planned in a forthcoming paper.
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Dynamics, Chaos, 2020, vol. 30, no. 1, 011105, 7 pp.

23. Chigarev, V., Kazakov, A., and Pikovsky, A., Kantorovich–Rubinstein –Wasserstein Distance be-
tween Overlapping Attractor and Repeller, Chaos, 2020, vol. 30, no. 7, 073114, 10 pp.

24. Turaev, D., Maps Close to Identity and Universal Maps in the Newhouse Domain, Comm. Math. Phys.,
2015, vol. 335, no. 3, pp. 1235–1277.

25. Newhouse, Sh. E., The Abundance of Wild Hyperbolic Sets and Nonsmooth Stable Sets for Diffeomor-

phisms, Inst. Hautes Études Sci. Publ. Math., 1979, No. 50, pp. 101–151.

26. Gonchenko, M., Gonchenko, S., and Ovsyannikov, I., Bifurcations of Cubic Homoclinic Tangencies
in Two-Dimensional Symplectic Maps, Math. Model. Nat. Phenom., 2017, vol. 12, no. 1, pp. 41–61.

27. Gonchenko, S.V., On a Two Parameter Family of Systems Close to a System with a Nontransversal
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