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Abstract—The problem of finding the upper function for the squared norm of the solution of
a linear stochastic differential equation with a nonexponentially stable matrix is solved. A novel
characteristic of a nonconstant stability rate of the matrix is introduced. The determined upper
function generalizes the previously known logarithmic estimate and is expressed in closed form
in terms of the rate of matrix stability. Examples of determining the upper function for different
stability rates are provided.
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1. THE NOTION OF UPPER FUNCTION
AND PROBLEM FORMULATION

Suppose that on a complete probability space {Ω,F ,P}, an n-dimensional random process Xt,
t ≥ 0, described by the linear stochastic differential equation

dXt = AtXt dt+Gt dwt, X0 = x, (1)

is defined, where the initial state x is nonrandom; wt, t ≥ 0 is a d-dimensional standard Wiener
process; At, Gt, t ≥ 0, are such matrices of appropriate dimensions that there exists a solution of
Eq. (1). It is also assumed that

∞∫

0

‖Gt‖2 dt > 0

(‖ · ‖ is the matrix Euclidean norm).

In the present paper, we consider a situation where matrix At possesses a type of stability that
is more general than exponential stability. This type of stability is characterized by a rate δt > 0
that is rigorously formulated as follows.

Definition 1. A matrix At is called stable with a rate δt > 0 (or δt-stable) if the following
conditions are satisfied:

(i) lim supt→∞(‖At‖/δt) < ∞;

(ii) there exists a constant κ > 0 such that

‖Φ(t, s)‖ ≤ κ exp

{
−

t∫

s

δv dv

}
, s ≤ t,
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where Φ(t, s) is the Cauchy matrix of a deterministic linear differential equation with the coefficient
matrix At, i.e., a solution of the problem

∂Φ(t, s)

∂t
= AtΦ(t, s),

∂Φ(t, s)

∂s
= −Φ(t, s)As, Φ(s, s) = Φ(t, t) = I

(hereinafter I is the identity matrix);

(iii)
∫ t

0
δs ds → ∞ as t → ∞.

Let us comment the requirements introduced in Definition 1. Condition (i) means that the
stability rate of a given matrix At cannot be improved, as follows from the Lyapunov inequality
(see, for example, [1, p. 108])

‖Φ(t, s)‖ ≥ κ̂ exp

{
−

t∫

s

‖Av‖ dv
}
, s ≤ t,

where κ̂ > 0 is a constant.

Inequality (ii), together with relation (iii), implies the asymptotic stability of the solution of
a deterministic linear differential equation [2, p. 241]. Note that exponential stability corresponds
to the case of δt ≡ κ1 (κ1 > 0 is some constant). If δt → 0 as t → ∞, then we have weak subexpo-
nential stability, while if δt → ∞ as t → ∞ then the type of stability strengthens to the so-called
superexponential (see the work [3], devoted to the analysis of nonlinear differential equations, for
relevant terminology).

Note that Eq. (1) belongs to the class of equations that define an Ornstein–Uhlenbeck process
with time-varying parameters. Studying the asymptotic behavior of solutions of Eq. (1) is motivated
by the wide usage of these processes in various applications. In this case, of significance are
the nonexponential type of stability of matrix At and time-dependent elements of the diffusion
matrixGt (in particular, when modeling anomalous diffusions [4, 5] as well as in reliability theory [6],
climatology [7], finance [8, 9], and others). For instance, when investigating the dynamics of
material deformation, Liu et al. [10] considered a subexponentially stable matrix At ∼ −1/(t+ a)
and a diffusion coefficient ‖Gt‖2 ∼ k/(t + a) (a, k > 0 are constants). Hereinafter, the following is
assumed to hold true with regard to the coefficients in Eq. (1).

Assumption AG. A matrix At is stable with a rate δt, and the condition

lim sup
t→∞

(‖Gt‖2/δt) < ∞

is fulfilled for the diffusion matrix Gt.

In this work, the well-known approach that consists in constructing upper functions for random
processes is used when analyzing the asymptotic behavior of solutions of linear stochastic differential
equations. Let us provide the corresponding

Definition 2. A deterministic function ht > 0 is said to be the upper function of a scalar
process Yt, t ≥ 0 if with the probability of 1, for a certain constant c > 0 the following relation is
true:

lim sup
t→∞

Yt

ht

< c < ∞. (2)

The upper function makes it possible to estimate the order of variation of a random process
over time. Indeed, relation (2) means that there exist a constant c0 > 0 and almost surely (a.s.)
a finite time moment t0 such that with the probability of 1, the inequality Yt ≤ c0ht is fulfilled
for any t > t0. For example, it follows from the law of the iterated logarithm for a Wiener process
(see [11, p. 91]) that the function ht =

√
t ln ln t (with Yt = ‖wt‖). Having the form of function ht

known, one can define a sufficient normalization gt > 0 that, when applied, leads to the inequality
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lim sup
t→∞

(Yt/gt) ≤ 0 a.s., t → ∞. It is clear that in this case, gt is any positive function for which we

have the relation lim sup
t→∞

(ht/gt) = 0. If ht → 0 then lim sup
t→∞

Yt ≤ 0 with probability 1.

The goal of the present paper is to establish the upper function for process Yt = ‖Xt‖2. It is
known that ht = ln t in the case of an exponentially stable matrix At and a bounded diffusion
matrix Gt (see [12]); under the same assumptions, the form of the upper function was refined
in [13] with dependence on Gt taken into account. In that case, it was additionally required that
the upper function ht be nondecreasing, in view of it being used in the problem of a stochastic
linear regulator over an infinite time interval.

In this work, the upper function of a more general logarithmic form is obtained, with information
on the stability rate and the diffusion matrix elements taken into account. Along with estimating
the quadratic forms of Ornstein–Uhlenbeck type processes, which have financial [14], biological [15],
and physical [16] applications, upper function is used when studying integral quadratic functionals.
To be precise, it makes it possible to estimate the deviation of the functionals from their mean
values. Results derived in this area refer to the case of an exponentially stable matrix At and concern
assertions about sufficient normalizations with applications to control theory [17, 18]. In Section 2,
the main result on the form of the upper function is provided. In Section 3, the established result
is discussed and examples of determining the upper function for different stability rates are given.

2. MAIN RESULT

Equation (1) has a solution

Xt = Φ(t, s)x+

t∫

0

Φ(t, s)Gs dws,

where Φ(t, s) is the Cauchy matrix of a deterministic linear differential equation with the coefficient
matrix At. It is known that the main characteristics of process Xt can be expressed in terms of
matrix Φ(t, s). For example (see [19, p. 100]), for the mean value we have relation EXt = Φ(t, 0)x,
while matrix Ct = E(XtX

′
t) has the form

Ct = Φ(t, 0)xx′Φ′(t, 0) +

t∫

0

Φ(t, s)GsG
′
sΦ

′(t, s) ds (3)

(prime denotes transposition). Relation (3) and Assumption AG imply the boundedness of the
second moments of the components of vector Xt, t ≥ 0, i.e.,

E‖Xt‖2 = tr (Ct) ≤ κ0

( t∫

0

exp

{
− 2

t∫

s

δv dv

}
‖Gs‖2 ds+ exp

{
− 2

t∫

0

δv dv

}
‖x‖2

)
(4)

for a certain constant κ0 > 0; this leads to the boundedness of matrix Ct, too (tr (·) is the matrix
trace).

In what follows, we will need an expression similar to the right-hand side of inequality (4) at
x = 0 to describe the upper function of process Yt = ‖Xt‖2. Under Assumption AG, let us define
a bounded function dt for some positive constant γ < 1/2 with the relation

dt =

t∫

0

exp

{
− 2γ

t∫

s

δv dv

}
‖Gs‖2 ds. (5)

The following is the main result of the present paper.
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Theorem 1. Let Assumption AG hold true. Then the upper function ht for process Yt = ‖Xt‖2
has the form

ht = dt ln

( t∫

0

δv dv

)

if function dt exp{2γ
∫ t

0
δv dv} → ∞, t → ∞, and the form

ht = exp

{
− 2αγ

t∫

0

δv dv

}
, (6)

if function dt exp{2γ
∫ t

0
δv dv} is bounded. The constants 0 < α < 1, 0 < γ < 1/2, with dt being

defined by relation Eq. (5).

Proof. The theorem is proved in two steps. First, we consider a process X̂t, t ≥ 0, with

a dynamics equation of the form (1) for At = −δ̂tI and zero initial state x = 0. An upper function ĥt

is determined for process ‖X̂t‖2 (δ̂t is a certain stability rate, lim sup
t→∞

(δ̂t/δt) < ∞). Then it is shown

that the difference process Xt − X̂t can also be estimated using function ĥt with an appropriate
choice of δ̂t.

Let us write a solution X̂t of the equation

dX̂t = −δ̂tX̂t dt+Gt dwt, X̂0 = 0, (7)

component by component; for the component X̂
(i)
t (i = 1, . . . , n) we obtain

X̂
(i)
t = exp

{
−

t∫

0

δ̂v dv

} d∑
j=1

t∫

0

exp

{ s∫

0

δ̂v dv

}
G

(ij)
t dw

(j)
t = exp

{
−

t∫

0

δ̂v dv

}
M(i)

t , (8)

where w
(j)
t are the components of the Wiener process wt in Eq. (7); G

(ij)
t are the elements of the

diffusion matrix Gt; the martingale M(i)
t is defined by the relation

M(i)
t =

d∑
j=1

t∫

0

exp

{ s∫

0

δ̂v dv

}
G

(ij)
t dw

(j)
t

and has the quadratic characteristic

〈M(i)
t 〉 =

t∫

0

exp

{ s∫

0

2δ̂v dv

}( d∑
j=1

(G(ij)
s )2

)
ds,

that allows one to derive a representation for the components of Eq. (8) with change of time as

X̂
(i)
t = exp

{
−

t∫

0

δ̂v dv

}
ŵ

(i)

〈M(i)
t 〉

, (9)

where ŵ
(i)
t , t ≥ 0, is a new Wiener process.
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Thus, if 〈M(i)
∞ 〉 < ∞ then, by virtue of condition (iii) in Definition 1, the relationship (X̂

(i)
t )2 → 0

holds true a.s. as t → ∞. To be precise (see relation (9)), we have the asymptotic estimate

(X̂
(i)
t )2 ≤ c exp

{
−

t∫

0

2αδ̂v dv

}
(10)

for a certain constant 0 < α < 1. Hereinafter, c stands for a positive constant, with its particular
value being of no significance and varying from formula to formula. If the quadratic characteristic

increases without limit, i.e., 〈M(i)
t 〉 → ∞, then for the Wiener process ŵ(i) with the changed time,

the law of the iterated logarithm is valid, i.e., the upper function ĥ
(i)
t of process (ŵ

(i)

〈M(i)
t 〉

)2 can then

be defined in the form
ĥ
(i)
t = 〈M(i)

t 〉 ln ln〈M(i)
t 〉.

Let
∑n

i=1〈M
(i)
t 〉 → ∞, t → ∞. As the norm ‖Gt‖2 satisfies Assumption AG, we have ln〈M(i)

t 〉 ≤
c
∫ t

0
δ̂v dv and function ĥt = d̂t ln(

∫ t

0
δv dv) is the upper function of process ‖X̂t‖2, with the bounded

function d̂t defined by relation (5) with γδt replaced by δ̂t. If
∑n

i=1〈M(i)
∞ 〉 < ∞, then, according to

inequality (10) we define function ĥt by the relation ĥt = exp{−
∫ t

0
2αδ̂v dv}.

Further, let us consider the difference process Zt = Xt − X̂t; the equation for its dynamics
does not contain explicitly any perturbations

dZt = AtZtdt+ (At + δ̂tI)X̂tdt, Z0 = x.

Let us write the solution of this linear inhomogeneous differential equation

Zt = Φ(t, 0)x +

t∫

0

Φ(t, s)(As + δ̂sI)X̂s ds.

Using the definition of δt-stability, we estimate ‖Zt‖ and perform normalization using the previously

derived function ĥt as

‖Zt‖2

ĥt

≤ c‖x‖2

ĥt

exp

{
−

t∫

0

2δv dv

}
+

c

ĥt

t∫

0

δs exp

{
−

t∫

s

δv dv

}
‖X̂s‖2 ds. (11)

The first term in inequality (11) asymptotically tends to zero, while the second term admits the
estimate (see the notion of upper function)

1

ĥt

t∫

0

δs exp

{
−

t∫

s

δv dv

}
‖X̂s‖2 ds ≤

1

ĥt

exp

{
−

t∫

0

δv dv

}
ξt0+

c

ĥt

t∫

t0

δsĥs exp

{
−

t∫

s

δv dv

}
ds, (12)

where t0 is a.s. finite time moment, ξt0 is a random variable that has the form

ξt0 =

t0∫

0

δs exp

{ s∫

0

δv dv

}
‖X̂s‖2 ds.

Let us set δ̂t = γδt with a constant 0 < γ < 1/2. Then, taking the form of ĥt into account, we obtain

(1/ĥt)×exp{−
∫ t

0
δv dv} → 0 as t → ∞. The above refinement entails the boundedness of the second
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term in the right-hand side of inequality (12). Indeed, let ĥt = dt ln(
∫ t

0
δv dv). The logarithmic

function being nondecreasing leads to the estimate

1

ĥt

t∫

t0

δsĥs exp

{
−

t∫

s

δv dv

}
ds ≤ 1

dt

t∫

t0

δsds exp

{
−

t∫

s

δv dv

}
ds, (13)

while calculating the integral in the right-hand side by parts yields the inequality

(1− 2γ)

t∫

t0

δsds exp

{
−

t∫

s

δv dv

}
ds ≤ dt,

which demonstrates the boundedness of the right-hand side in the estimate (13). In case ĥt =

exp{−2
∫ t

0
αγδv dv} (0 < α < 1), a similar conclusion is reached by straightforward integration of

the second term in inequality (12).

Thus, going back to Eq. (11), we have

lim sup
t→∞

‖Zt‖2

ĥt

< ∞.

Hence, the above-defined upper functions ĥt are upper functions for process ‖Xt‖2. This proves the
theorem.

3. DISCUSSING THE MAIN RESULT AND EXAMPLES

Note that given information only on the δt-stability of matrix At and the boundedness of the
norm of diffusion matrix Gt by the stability rate δt, the upper function can be immediately de-

termined in a logarithmic form as h
(0)
t = ln(

∫ t

0
δv dv). This produces the “roughest” and most

rapidly growing estimate, as it has been constructed not taking into account a particular change of
norm ‖Gt‖. In a similar fashion, under these conditions, we can find the exponential lower bound

h
(1)
t = exp{−β

∫ t

0
δv dv} for some constant 0 < β < 1 (see relation in (6)). Then, for any upper

function we have the relation c2h
(1)
t ≤ ht ≤ c1h

(0)
t with some positive constants c1 and c2.

Based on the established form of the upper function, we can make a number of conclusions about
possible conditions on parameters that guarantee with the probability of 1 that the process ‖Xt‖2
asymptotically tends to zero as well as on the choice of appropriate normalizations. For example,
if lim

t→∞
(‖Gt‖2/δt) = 0 then in the expression for function ht, the multiplier dt → 0 as t → ∞, and,

vice versa, if lim inf
t→∞

(‖Gt‖2/δt) > 0 then function dt is bounded away from zero. The condition

lim
t→∞

(
‖Gt‖2
δt

ln

( t∫

0

δv dv

))
= 0

is sufficient for ht → 0 as t → ∞; this can be easily verified using L’Hôpital’s rule. Let us formulate
the corresponding assertion.

Corollary. Let the conditions of Theorem 1 be satisfied and h
(0)
t = ln(

∫ t

0
δv dv). Then

(a) if (‖Gt‖2h(0)
t /δt) → 0, then ‖Xt‖2 → 0 a.s. as t → ∞;

(b) if (‖Gt‖2/δt) → 0, then (‖Xt‖2/h(0)
t ) → 0 a.s. as t → ∞;

(c) if lim inf
t→∞

(‖Gt‖2/δt) > 0, then ht = c0h
(0)
t (c0 > 0 is some constant).

Remark. The relation derived in statement (a) of Corollary can be used to analyze the special
case of a constant diffusion matrix Gt ≡ G; this case is important in applications (for example,
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for cognitive models [20] or statistical inference [21]). If the stability rate δt does not decrease, then

lim sup
t→∞

(dtδt) < ∞ and h
(2)
t = h

(0)
t /δt is also an upper function of process ‖Xt‖2, with h

(2)
t ∼ ht,

where function ht has been defined in Theorem 1, if (δ̇t/δt) → 0 as t → ∞.

Further, we consider some examples of constructing upper functions for different functions δt
that prescribe stability rate. In all the cases, we will assume that the conditions in Theorem 1 are
fulfilled as well as statement (c) of Corollary so as to separate the impact of the stability rate from
the dynamics of diffusion matrix when determining the upper function.

Examples:

1. Power-law family δt = a(1 + t)b, where constants a > 0, b ≥ −1, gives rise to the following
stability types: subexponential for −1 ≤ b < 0; exponential for b = 0; superexponential for b > 0.

As ht = c0h
(0)
t = c0 ln(

∫ t

0
δv dv), then for b > −1 for the upper function we have the equivalence

ht ∼ ln t for large t, i.e., in this case, the type of stability does not affect the growth order of the
upper function. For b = −1 we have a more slowly increasing function ht ∼ ln ln t.

2. Logarithmic family δt = a lnb(e + t), where constants a > 0, b �= 0, and e is the exponent, is
used to describe subexponential stability for b < 0 and superexponential stability for b > 0. We find
that in all the cases ht ∼ ln t.

3. Exponential family δt = a exp{tb}, where constants a, b > 0, corresponds to the superexpo-
nential type of stability and yields an upper function ht ∼ tb of a form that depends on the value
of b.
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