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Abstract—This paper considers the design problem of a stochastic linear-quadratic controller over an
infinite time-horizon with dynamic scaling of the coefficients in the state equation and the cost crite-
rion. Dynamic scaling means multiplying the coefficients by a positive time-varying function. The
optimality criteria used are extensions of the long-term average cost and pathwise long-term average
cost. The integral of the scaling function is applied to normalize the performance indices. It is shown
that, the optimal control law is time-invariant and can be obtained through a steady-state optimal
strategy known for the autonomous system.
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INTRODUCTION

Linear controlled systems with the state vector subjected to additive disturbances are widely used in
modeling dynamics in various applications, particularly mechanics and motion control; for example, see
[1–5]. Note the significant contribution of Russian researchers in the development of this area, starting
with the works by A.M. Letov [6–8]. Also, see the survey paper [9] written by V.A. Yakubovich for the sto-
chastic case and the results presented in the monographs [4, 5, 10, 11]. Long-term optimization problems
often involve the assumption that the parameters of the corresponding models are constant over time [12–
14]. As a consequence, it is possible to use the known methods of optimal control theory developed for
the case of autonomous equations and stationary processes [9]. At the same time, such a problem state-
ment neglects several features of system specifics and decision-making. Among them, we mention the
asynchronous nature of the time scales of the processes and their observations [15, 16] as well as the pres-
ence of subjective time [17]. For the linear state dynamics model considered below, this assumption leads
to the scaling of parameters. The scaling is dynamic in the sense that the scaling functions depend on the
time variable. Dynamic scaling of the coefficients becomes necessary when passing from the internal
(subjective) time to the real (physical) time of the control system functioning. The control strategy is cho-
sen to stabilize the system in the long run, and the cost criterion has an integral quadratic form. Long-term
optimization in such problems is based on constructing the steady-state controller [18, Section 3.4] and
determining an appropriate optimality over an infinite time-horizon. It is well-known that the stable con-
trol law has a linear feedback form corresponding to the limiting optimal strategies obtained for a finite
horizon. In the case of constant parameters, the form of the stable feedback law contains the solution of
the algebraic Riccati equation, which is an obvious advantage in its implementation. We will demonstrate
below that the time invariance of the optimal strategy can also arise for time-varying coefficients. The
main aim of this research is to study the design problem of a stochastic linear controller with the dynamic
scaling of the coefficients. The remainder of the paper is organized as follows. Section 1 describes the con-
trol system under consideration and provides a rigorous statement of the problem. Section 2 contains the
optimal control results for the system with scaling and necessary background on optimal stochastic linear
controller design with constant coefficients. Section 3 gives an example of a scalar control system, includ-
ing a thorough analysis of the key assumptions on the parameters. Section 4 is devoted to a possible appli-
cation to dynamic stabilization in macroeconomics. The main outcomes of this paper and some lines of
further research are presented in the Conclusions section.
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1. CONTROL SYSTEM DESCRIPTION AND PROBLEM STATEMENT

Consider a complete probability space , and let Xt, , be the given n-dimensional stochastic
process on this space described by the equation

(1.1)

with the following notations: x is a nonrandom initial state; Wt, , is the d-dimensional standard Wie-
ner process; Ut, , is an admissible control or a k-dimensional stochastic process adapted to the filtra-
tion , , where  denotes the -algebra, such that Eq. (1.1) has a solution; and A,
B, and G are constant matrices of compatible dimensions, and . The set of all admissible controls
will be denoted by . The set  contains the state-feedback control (the control in a closed loop system),
which depends on the values . (In this case, Ut is measurable with respect to .) In
Eq. (1.1),  is a scaling function. The additive noises  are scaled using the term  since 
has the mean-square order of , i.e., , where  denotes the expectation operator.

An equation of the form (1.1) was previously considered in various applications with the partial scaling
of the coefficients. For example, a deterministic version of (1.1) with the only variable matrix  arose
when solving the stabilization problem for a class of nonlinear nonholonomic systems [19], in which the
function  is a characteristic of stability. The dynamics of system (1.1) with A = 0 and  were studied
in the context of cognitive processes [20]; in this case,  determines the impact of an external impulse,
also affecting the diffusion coefficient. In the papers [21–23], a class of dynamic processes of form (1.1)
with the power-type scaling function  was introduced for the econometric modeling of signal transmis-
sion and dynamics of several economic variables.

For each T > 0, as the cost criterion, we choose the random variable

(1.2)

where  is an admissible control on a finite horizon  (see the definition of all admissible controls
and the set  for system (1.1));  and  are symmetric matrices;  denotes the transpose opera-
tor; for matrices A and B, the expression  means that their difference is positive semidefinite. If the
function  in (1.2) is monotone, it can be treated as a discounting function. Positive discounting
arises for a decreasing function , whereas negative discounting for an increasing function ; for details,
see [24]. This terminology can be explained by the well-known formula  of the discounting
rate , where  denotes the time derivative of a function.

For the analysis of (1.1) and (1.2) in the scaling situation, if the function  is monotone and ,
then for , we have the inflation of the coefficients (the growth of their absolute values), and the case

 as  is similar to “hyperinflation.” The situation  means no scaling and the constant
values of all coefficients over time, corresponding to an autonomous control system. If , then the
parameters are deflated; in the limiting case  as  the matrices therefore become singular.

The main results of this paper will be obtained under the following assumptions.

Assumption . For  the scaling function  is integrable and

This assumption means that scaling will preserve the asymptotically unbounded growth of the total
variance of the cumulative disturbances affecting the system as . Indeed, defining
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and

we obtain  as , where  denotes the matrix norm.

Assumption . The pair of matrices (A, B) is stabilizable, and the pair of matrices  is detectable.

The stabilizability of the pair (A, B) (the detectability of the pair ) means the existence of a
matrix K (a matrix L, respectively) for which the matrix  ( , respectively) is exponentially
stable; see [25, pp. 167–168]. It is known that [18, Theorem 3.7, p. 275], under Assumption , there exists

the so-called optimal stable feedback  of the form , where the matrix  is the

solution of the algebraic Riccati equation . In the autonomous control
system ( ), the strategy U* is the solution of the infinite-horizon optimal control problem with the
criterion of the long-run average cost, e.g., see [25, Theorem 5.4.3, p. 169]:

(1.3)

In addition,  acts as the optimal strategy when using a stronger probabilistic criterion of the pathwise
average (pathwise ergodic) cost [26] in the problem

(1.4)

As was shown in [27], these criteria properly account for the effect of uncertainty on control perfor-
mance only for system (1.1) and (1.2) with bounded coefficients and a nonsingular diffusion matrix. In the
case of dynamically scaled parameters, to compare control strategies as T → ∞, we will employ the con-
cepts of the extended long-term average cost and the extended stochastic (pathwise) long-run average cost
introduced in [28] for time-varying : according to these concepts, value T in formulas (1.3) and (1.4) is
replaced with the normalization

In (1.1), the diffusion matrix is . The aim of this paper is to find the optimal control U* for
the problems

As is shown below, the form of the optimal control U* turns out time-invariant when passing from the
autonomous control system to the one with dynamic scaling.

2. TIME INVARIANCE OF OPTIMAL CONTROL IN SYSTEM WITH DYNAMIC SCALING

As mentioned earlier, when analyzing the infinite-horizon optimal control problem for the system with
dynamic scaling (1.1) and (1.2), an important role is played by the case  (the constant coefficients).
For this case, the corresponding results are known and will be presented in this section as well. When
describing the elements of such an autonomous control system, we will introduce special notations to
avoid any confusion in the subsequent time change procedure. The system’s state  is described
by the equation

(2.1)

= α
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The cost criterion on  has the form

(2.2)

The optimal stable feedback  for system (2.1) and (2.2) is determined as

(2.3)

where a symmetric matrix  is the unique nonnegative definite solution of the algebraic Riccati equation

(2.4)

and the process  representing the optimal path, satisfies the equation

(2.5)

The main results on the optimality of  are known; see [25, Theorem 5.4.3, p. 169; 26, Theorem 2;
18, Theorem 3.7, p. 275]. They are brought together in the theorem below.

Theorem 1. Let Assumption  hold. Then the control law  given by (2.3)–(2.5) is the solution of the
problems

The optimal values of both criteria coincide:

where  denotes the matrix trace (the sum of all diagonal elements of a matrix). Moreover, the matrix
 is exponentially stable.

In addition to the optimality characteristics of , it is important to estimate the behavior of the pro-

cess sample paths  given by (2.5). The lemma below is based on [24, Theorem 2; 29, Lemma A.2].

Lemma 1. Let the hypotheses of Theorem 1 hold. Then the paths of the process , (2.5) have the
following properties:

(1) For , , where  are some constants [24].
(2) There exists a nonrandom constant  such that the inequality

is satisfied with probability 1 [29].
A well-known general method to eliminate the time inhomogeneity of linear nonstationary systems is

the change of variables [30, 31]. In the case under consideration, this technique turns out to be inapplica-
ble due to the presence of control in the dynamics equation and the related quadratic cost criterion (1.2).
However, using the time change

we can transform the control system with dynamic scaling (1.1) and (1.2) into the autonomous system (2.1)
and (2.2).
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Lemma 2. Let

(2.6)

Then the control systems (1.1), (1.2) and (2.1), (2.2) are related by

where .

Proof of Lemma 2. Consider  given by (2.6). The integral representation corresponding to (2.1) has
the form

Changing the time variable , we define the differentials

For the stochastic integral, we apply the well-known result on the time change [32, Corollary 8.5.4,
p. 188]:

Hence,

As a result,

Comparing this equation with the dynamics equation (1.1) for Xt, we establish that  and
. Using these relations and (2.6), we transform the cost criterion (1.2) by an appropriate change of

the variables in the integrand as follows:

where . Thus, , and the proof of Lemma 2 is complete.

The relation obtained in Lemma 2 may clarify the origin of the control system with dynamic scaling.
If the original control system (2.1) and (2.2) is autonomous but only the process  with (2.6) is
directly accessible (e.g., due to the asynchronous time scales of the ongoing process and the observer that
implements the control) [16], then system (2.1) and (2.2) is controlled by changing (1.1) with the cost cri-
terion (1.2).

By Assumption ,

as T → ∞, and hence  in the autonomous system (2.1) and (2.2) with the time change (2.6). Then
Theorem 1 on the optimal control can be applied to the system with dynamic scaling.
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Under Assumption , we define the optimal stable feedback law

(2.7)

where the optimal  process  satisfies the equation

(2.8)

and the matrix  is the solution of the algebraic Riccati equation (2.4).
The next result follows from Lemma 2 and Theorem 1.
Theorem 2. Let Assumptions  and  hold. Then the control law U* given by (2.7) and (2.8) is optimal

with respect to extended long-run and pathwise long-run average cost criteria in the system with dynamic scal-
ing; i.e., it is the solution to the problems

(2.9)

(2.10)

The values of the criteria on the optimal control U* are

According to Theorem 2, the optimal control has a time-invariant form when considering optimization

problems in the system with dynamic scaling of the coefficients. Indeed, U* in the form 
is known as the optimal stable feedback law for an autonomous stochastic linear system over an infinite
time-horizon; see (2.3) and Theorem 1. At the same time, note the difference in the optimality criteria
used: dynamic scaling of the parameters by the function αt implies the extension of the long-term average

cost criteria (1.3) and (1.4) by applying the normalization ; see (2.9) and (2.10).

The remark below characterizes the stabilizing properties of the control U* and its optimality in the
deterministic system (1.1) and (1.2) with G = 0. The hypotheses of Theorem 1 are assumed to hold.

Remark 1. The matrix  in (2.7) is asymptotically stable with the rate δt = ,
where  is some constant. In other words, the fundamental matrix  corresponding to  has an
upper bound of the form

with some constant . This fact follows from the exponential stability of the matrix  =
 (Theorem 1) and the relations

which were derived in [30]. For the deterministic control system (1.1) and (1.2) the strategy U* is the solu-
tion to the problem  →  and  = .

The results below on the asymptotic behavior of the optimal process , in the mean-square sense and
almost surely, are based on Lemma 1 with an appropriate modification due to the time change.
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Remark 2. There exist constants  such that  for . This uniform bounded-
ness of the process in the mean-square sense is similar to the result obtained earlier for the optimal path
in the autonomous stochastic linear controller design [24].

Remark 3. There exists a nonrandom constant  such that

Such an upper bound is a generalization of the logarithmic upper function, which arises in the case
 when analyzing the asymptotic behavior of the squared norm of the optimal process path in the

autonomous system [29].
Among the important characteristics of the optimal control U* (2.6) and (2.7), note its relation to the

solutions of the optimization problems under a finite value T. It is known that [18, Theorem 3.9, p. 301],

the strategy  is optimal in the problem , the function  sat-

isfies the Riccati equation  +  with the terminal condi-

tion , and  is the corresponding process given by (1.1) with . (The index  means the solu-
tion for a finite value T.) Under the assumptions formulated above, there exists  where
the matrix  is the solution of the algebraic Riccati equation (2.4). Here, a key condition is

as  (Assumption A). This conclusion follows from an example of the scalar control problem pre-
sented in the next section.

3. EXAMPLE OF SCALAR CONTROL PROBLEM
AND ANALYSIS OF OPTIMALITY CONDITIONS

Consider the control system (1.1) and (1.2) in the scalar case:

(3.1)

(3.2)

As is easily observed, Assumption B holds in each of the three cases below: (1) a is any value, ,
and ; (2) , b = 0, and ; (3) , b = 0, and q = 0. Case (3) is trivial since it implies 
in (2.4). Therefore, this case will not be considered below. The algebraic Riccati equation (2.4) takes the

form  + q = 0. The solutions are  and  for
cases (1) and (2), respectively. The solutions of the differential Riccati equation

with the boundary condition  can be obtained using the time change (Lemma 2) and the results
for the constant-gain controller [33, p. 147]:
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(3.4)

From the expressions (3.3) and (3.4) it follows that  and  only if

Otherwise, when

the value  is not the solution of the algebraic Riccati equation, and the time invariance of the
control U* does not hold: there is no transition to the infinite-horizon autonomous stochastic linear con-
troller for the system with dynamic scaling.

4. ANALYSIS OF DYNAMIC MACROECONOMIC STABILIZATION PROBLEM
This section presents an example of a macroeconomic stabilization problem, which involves Theorem 2,

Remarks 2 and 3, and the illustrative example from Section 3. The basic model for this example was
described in [34], and the class of power-type functions  was determined in [23]. Note that the dynamic
macroeconomic stabilization problem is understood as maintaining the system’s path (the set of eco-
nomic variables) near the given level [35, Part III] on the entire planning horizon, taking into account the
associated control costs. Control is implemented by selecting some tools (also economic variables) and is
often formulated as a linear controller design problem over an infinite time-horizon [36, 37]. In this exam-
ple, unemployment rate management is considered. The emphasis is on the frictional and structural com-
ponents of unemployment. (The former is associated with a voluntary change of the place of work due to
relocation, etc., whereas the latter with the structural change of the economy in the areas of production
and consumption.) As a management tool, government expenditures on the so-called active policy on the
labor market are used (retraining, the infrastructure of employment centers, information support,
increasing the mobility of the population, etc.), in contrast to the passive policy of changing the minimum
wage and benefits on unemployment. Thus, we consider a scalar process of form (1.1) (also, see (3.1)).
Assume that the state Xt and control Ut describe the deviation of the corresponding economic variables
from their target levels:

(4.1)

where a constant  is the rate of convergence of the unemployment rate to the target natural level in
the long term without any control and exogenous shocks; a constant  characterizes the multiplicative
impact of government expenditures on unemployment dynamics;  is the degree of uncertainty; and,

 with . A model of the form (4.1) with  was previously considered in [34], and
the scaling function  was due to the operational (internal) time of the system’s evolution. The power-
type function  was used in [23] for the econometric modeling of unemployment (in particular, the esti-
mate p = 10 was obtained for the U.S. data). In the stabilization problem, the cost criterion has an integral
quadratic form (3.2) and describes the losses due to the deviation of the state and control variables from
their target values, taking into account the time preference and the priority of the costs. More precisely,

(4.2)

If  in (4.2), then the significance of the timing of losses decreases as , and the so-called
hyperbolic discounting occurs. (This term is widespread in economics and cognitive sciences [38].) In the
case p > 0, on the contrary, a higher weight is assigned to future costs. As is well known from control the-
ory, this feature enhances the stabilizing properties of the optimal strategy; see [39, Section 3.5] and [24].
Such criteria are called time-weighted integral quadratic cost criteria and are used in engineering applica-
tions [40, 41]. For p = 0, there is a neutral approach to the timing factor of losses, and the standard auton-
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omous control system arises accordingly. The constant  specifies the priority of two types of costs
(losses due to state deviations or control costs). According to Theorem 2 and the example from Section 3,
we obtain the optimal control , where

The optimal path has the dynamics

(4.3)

We denote . The gain  of the controller , where k(λ) =

–γβ–1 +  is increasing in λ. Thus, the more significant the stabilization of the eco-
nomic variable in the cost criterion the higher stability index (in terms of factor μ(λ) for (4.3)) that will be
provided by the corresponding optimal control strategy. According to Remark 2, the deviation of the
unemployment rate from its planned value will be maintained within fixed limits (in the mean-square
metric). The long-term fluctuations of the unemployment process (see Remark 3) can be dynamically
estimated by a logarithmic function of time if  and a double logarithmic function if 

CONCLUSIONS
In this paper, the time invariance of the solution of the control problem for the system with dynamic

scaling over an infinite time-horizon has been established; see Theorem 2. The form of control U* coin-
cides with the optimal strategy derived for the autonomous system. Also, the corresponding optimality cri-
teria under the control U* have the same values. The form of the criteria changes: the integrated scaling

function  is used as the normalization of the cost criteria instead of the horizon length T. Note that
such invariance in stochastic linear controller design problems with time-varying parameters may arise
under other assumptions. For example, see the paper [42], where a system with asymptotically constant
matrices     and  was considered under the assumption of suffi-
ciently fast convergence, or more precisely,

With this condition, the solution of the algebraic rather than differential Riccati equation was used to
construct the optimal strategy by the standard long-term average cost criterion. As an application, this
paper has considered a dynamic macroeconomic stabilization problem with the power-type scaling func-
tion. A possible line of further research is studying the case of the scaling function

A simple scalar example (see Section 3) indicates that under such an assumption, the time invariance
of the optimal control no longer holds, and other analysis methods based on the asymptotic representa-
tions of the solutions of the differential Riccati equations should be employed.
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