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Abstract. We consider an optimal linear-quadratic control problem for a control system where
the matrices corresponding to the state in the controlled process equation and the cost functional are
absolutely integrable over an infinite time interval. The integral quadratic performance index includes
two mutually inversely proportional time-weighting functions. It is shown that a well-known linear
stable feedback law turns out to be optimal with respect to criteria from the class of the extended
long-run averages. The results are applied to studying a control system under time-varying dynamic
scaling of its parameters.
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1. Introduction. We consider the problem of a stochastic linear-quadratic reg-
ulator over an infinite time-horizon with mutually inverse accounting for the costs
in the objective functional. Let us introduce the control system under consider-
ation. Assume that, on a complete probability space {Ω,F ,P}, we are given an
n-dimensional stochastic process Xt, t ⩾ 0, described by the equation

(1) dXt = AtXt dt+BtUt dt+Gt dwt, X0 = x,

where the initial state x is nonrandom; wt, t ⩾ 0, is a d-dimensional standard Wiener
process; Ut, t ⩾ 0, is an admissible control, or a k-dimensional stochastic process
adapted to the filtration {Ft}t⩾0, Ft = σ{ws, s ⩽ t}, such that (1) has a solution
(here, σ( · ) is the sign of the σ-algebra); At, Bt are bounded matrices of corres-
ponding dimensions, and the matrix At is absolutely integrable at infinity; Gt is the
diffusion matrix where the assumptions on its entries are specified below (we also
note that both constant and time-varying Gt are allowed, and the case ∥Gt∥ → ∞ or
∥Gt∥ → 0 as t → ∞ is also possible). Here and in what follows, it is assumed thatR∞
0

∥Gt∥2 dt > 0, where ∥ · ∥ is the Euclidean matrix norm. We denote by U the set
of admissible controls.

Linear stochastic differential equations with a state matrix absolutely integrable
at infinity (i.e., if there is an At such that

R∞
0

∥At∥ dt < ∞) have numerous applica-
tions, for example, in physics, in particular, for the description of anomalous diffu-
sion [1], [2], [3], [4], in problems of statistic modeling [5], etc. Scalar cases with At =
exp{−rt}, At ∼ tα and constant Gt = G were addressed in [1], [2], and a time-changed
Brownian motion, i.e., with At = 0, Gt ∼ tγ , was studied in [3], [4]. Here and in what
follows, the symbol ∼ is used to indicate the asymptotic equivalence (up to a constant)
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of two scalar nonnegative functions, i.e., ft ∼ gt if 0 < limt→∞(ft/gt) < ∞. Con-
trolled external inputs and the equality At = 0 lead to known models of a controlled
Brownian motion (see, for example, [6], [7]). The presence of a control naturally sug-
gests the question of assessing the performance of different control laws. For linear
systems, a common approach involves the so-called integral quadratic objective func-
tional over the planning horizon [0, T ]. This functional includes two types of costs.
More precisely, here one considers the costs appearing due to the deviation of the
process from the target value (for example, the zero value), and the costs associated
with control. In addition, adjustment of losses related to different times is also pos-
sible. For example, one applies the discounting procedure (reduction) or, the other
way around, the increment procedure by multiplying the corresponding quantities by
functions of time. The dynamics of such factors shows the importance of various
types of costs for the agent. Previous studies were concerned with situations of the
same adjustment for the two types of costs (see [8]), or a time-varying multiplier
was assigned to one kind of loss, while the remaining cost had a constant weighting
(for the deterministic case, see [9] and also [10]). In the present paper, we study the
case of inversely proportional adjustment functions under the priority of control costs.
For each T > 0, as the objective functional we consider the random variable (r.v.)

(2) JT (U) =

Z T

0

�
1

βt
X ′

tQXt + βtU
′
tRUt

�
dt,

where U ∈ U is an admissible control on [0, T ]; Q ⩾ 0 and R > 0 are symmetric
matrices ( ′ denotes transpose; the notation A ⩾ B (A > B) for matrices means,
respectively, that the difference A − B is nonnegative or positive definite); βt > 0,
t ⩾ 0, is the function setting the priority of various types of costs at time t. Moreover,
the function βt increases sufficiently fast. More precisely, the parameters of the control
system (1), (2) satisfy the following assumption.

Assumption AB. The matrix At in the state equation (1) is such thatR∞
0

∥At∥ dt < ∞. The function βt in the objective functional (2) satisfies the condi-

tions βt > 0, t ⩾ 0, βt → ∞ as t → ∞ and
R∞
0

(1/βt) dt < ∞.

An example of a deterministic scalar system with functions At, 1/βt ∼ 1/t2,
was considered in [11, Example 3.11, p. 43]. We are interested in the existence of
an optimal stochastic control (1) using (2) in the case T → ∞. Since the objective
functional (2) involves both unbounded in time (βtR) and singular ((1/βt)Q) matrices
of costs, and because the diffusion matrix Gt is time-varying, the control system
under consideration, for T → ∞, does not belong to the standard type of stochastic
linear regulators (see, for example, [12, Chap. 3]). Earlier (see, for example, [10]),
for problems involving linear-quadratic regulators under nonstandard assumptions on
the system parameters, it was proposed that one should use criteria for generalized
adjusted long-run averages of the form

(3) lim sup
T→∞

EJT (U)R T

0
pt∥Gt∥2 dt

→ inf
U∈U

and lim sup
T→∞

JT (U)R T

0
pt∥Gt∥2 dt

→ inf
U∈U

with probability 1, where pt is the adjustment function that depends on the specifics
of the control system and is obtained via estimation of the solution to the Riccati
equation. In the case under study, we consider pt =

R∞
t

(1/βs) ds. The existing criteria
for long-run average and pathwise ergodics for systems with constant parameters, i.e.,
with the normalization T , are obtained from (3) with Gt ≡ G ̸= 0, pt ≡ 1.
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30 E. S. PALAMARCHUK

The purpose of the present paper is to study optimal control problems of the
form (3) for system (1), (2) under the above assumptions. The paper is organized as
follows. In section 2, we provide the stable control law U∗ in the form of a state linear
feedback involving the solution to the Riccati equation. In section 3, we establish
the optimality of a designed feedback law over an infinite time-horizon. Section 4
is devoted to application of our results to the analysis of the control system with
dynamical scaling of its parameters. In section 5, we formulate the main conclusions
of the paper and indicate directions for further research.

2. Design of the stable control law. As mentioned above, derivation of the
form of a stable control law U∗ and optimality criteria over an infinite time-horizon
is related to the study of the Riccati equation. The corresponding result is as follows.

Lemma 1. Let Assumption AB hold. Then there exists a function Πt, t ⩾ 0,
with values in the set of nonnegative definite symmetric matrices, which satisfy the
differential Riccati equation

(4) Π̇t +ΠtAt +A′
tΠt −ΠtBt(βtR)−1B′

tΠt +
1

βt
Q = 0

and are such that lim supt→∞{∥Πt∥/pt} < ∞, where pt =
R∞
t

(1/βt) dt (the dot is used
to denote the time derivative). If, in addition Q > 0, then lim inft→∞{∥Πt∥/pt} > 0.

Proof. The existence and other properties of a solution of (4) are established by
making T → ∞ in the matrix functions ΠT

t . Moreover, the functions ΠT
t are related

to deterministic optimal control problems under finite T . Consider an arbitrary initial
time t0 ⩾ 0, the dynamics

dxt = Atxt dt+Btut dt,

and the objective functional

Jt0,T (u) =

Z T

t0

�
1

βt
x′
tQxt + βtu

′
tRut

�
dt;

the initial state xt0 is also given. It is well known (see, for example, [12, Theorem 3.4])
that the problem

Jt0,T (u) → min

has a solution
u∗T
t = −(βtR)−1B′

tΠ
T
t x

∗T
t ,

where ΠT
t satisfies (4) with boundary condition ΠT

T = 0, and, moreover, Jt0,T (u
∗T ) =

x′
t0Π

T
t0xt0 (here the superscript T denotes solutions with finite T ). In view of Assump-

tion AB, an application of a competing control law u
(0)
t ≡ 0 gives the estimate

Jt0,T (u
0) ⩽ c

Z ∞

t0

1

βt
dt ∥xt0∥2.

Here and in what follows, c is some positive constant such that its exact value has no
importance and can be different in different contexts. Hence,

x′
t0Π

T
t0xt0 ⩽ c

Z ∞

t0

1

βt
dt ∥xt0∥2 and ∥ΠT

t ∥ ⩽ c

Z ∞

t

1

βs
ds, t ⩾ 0.
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Next, standard arguments (see [12, section 3.4.2]) easily show that limT→∞ ΠT
t = Πt,

where the function Πt has the same properties as ΠT
t and satisfies (4). In particular,

lim sup
t→∞

∥Πt∥
pt

< ∞

if pt =
R∞
t

(1/βt) dt. Moreover,

x′
t0Πt0xt0 =

Z ∞

t0

�
1

βt
(x∗

t )
′Qx∗

t + βt(u
∗
t )

′Ru∗
t

�
dt

with control u∗
t = −(βtR)−1B′

tΠtx
∗
t . Hence, by using the condition Q > 0, the esti-

mate
R∞
0

∥At − Bt(βtR)−1B′
tΠt∥ dt < ∞ (absolute integrability), and the Lyapunov

estimate (see [13, section 4.6]) we obtain

(5) exp

�
−
Z t

t0

∥Av∥ dv
�
∥Xt0∥ ⩽ ∥Xt∥ ⩽ exp

�Z t

t0

∥Av∥ dv
�
∥Xt0∥, t0 ⩽ t,

for the solutionXt to the linear system dXt = AtXt dt with At = At−Bt(βtR)−1B′
tΠt

and Xt = x∗
t , we get the estimate

x′
t0Πt0xt0 ⩾ c

Z ∞

t0

1

βt
dt ∥xt0∥2,

which holds for some constant c > 0. Hence, lim inft→∞{∥Πt∥/pt} > 0. This proves
Lemma 1.

The next example illustrates Lemma 1.

Example 1. Consider the Riccati equation corresponding to the scalar control
system from [11, Example 3.11, p. 43]:

(6) Π̇t +
2Πt

(t+ 1)2
− Π2

t

(t+ 1)2
+

1

(t+ 1)2
= 0.

The solution of (6) has the form (see [11, Example 3.11, p. 43])

(7) Πt =
(1 +

√
2)(1− exp{−2

√
2/(t+ 1)})

1 + (1 +
√
2)2 exp{−2

√
2/(t+ 1)}

, t ⩾ 0,

and can be obtained as the limit (see the proof of Lemma 1) as T → ∞ of the
functions ΠT

t , where ΠT
t is a solution of (6) with the boundary condition ΠT

T = 0.
Indeed,

ΠT
t =

(1 +
√
2)(1− exp{2

√
2(t− T )/[(t+ 1)(T + 1)]})

1 + (1 +
√
2)2 exp{2

√
2(t− T )/[(t+ 1)(T + 1)]}

, 0 ⩽ t ⩽ T

(see [11, Example 3.11, p. 43]), and so limT→∞ ΠT
t = Πt. From (7) one can also

determine the bounds for Πt, t ⩾ 0, by using pt = 1/(t+ 1). As a result, we get

1 +
√
2

1 + (1 +
√
2)2

c1
t+ 1

⩽ Πt ⩽
1 +

√
2

1 + (1 +
√
2)2 exp{−2

√
2}

c2
t+ 1

,
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where c1, c2 > 0 are arbitrary constants satisfying

c1 ⩽ 1− exp{−2
√
2}, c2 ⩾ 2

√
2.

Further, we define the so-called stable optimal control law U∗. Here, the phrase
“stable optimal” means that U∗ is obtained by making T → ∞ in the optimal controls
U∗T that are obtained by solving the problems EJT (U) → infU∈U with finite T (see
[12, section 3.6.3]). As a result,

(8) U∗
t = −(βtR)−1B′

tΠtX
∗
t ,

where the matrix Πt satisfies the Riccati equation (4), and the process X∗
t , t ⩾ 0, is

given by the equation

(9) dX∗
t = (At −Bt(βtR)−1B′

tΠt)X
∗
t dt+Gt dwt, X∗

0 = x.

The next lemma summarizes the results of analysis of the process X∗
t , t ⩾ 0,

corresponding to the stable control law U∗.

Lemma 2. Let Assumption AB hold. Then, for the process X∗
t , t ⩾ 0, defined

by (9),

(10) 0 < lim inf
t→∞

E∥X∗
t ∥2R t

0
∥Gs∥2 ds

⩽ lim sup
t→∞

E∥X∗
t ∥2R t

0
∥Gs∥2 ds

< ∞.

If, in addition,

(11)

Z ∞

0

�
∥At∥+

1

βt

Z ∞

t

1

βs
ds

�sZ t

0

∥Gs∥2 ds dt < ∞,

then

(12) X∗
t − cWt → ζ∞, t → ∞,

where ζ∞ is a Gaussian r.v. and cWt =
R t

0
Gs dws. Moreover, convergence (12) holds

in the mean square and a.s.

Proof. It is easily checked that the processX∗
t , t ⩾ 0, is the solution of a stochastic

linear differential equation, and hence E∥X∗
t ∥2 = tr(Ct), where tr( · ) is the trace of the

matrix, and the covariance matrix Ct is as follows (see, for example, [14, section 4.2]):

Ct = Φ(t, 0)xx′Φ′(t, 0) +

Z t

0

Φ(t, s)GtG
′
tΦ

′(t, s) ds.

Moreover, Φ(t, s) is the fundamental matrix corresponding to the matrix A∗
t = At −

Bt(βtR)−1B′
tΠt, and from Assumption AB we have ∥Φ(t, s)∥ ⩽ c for all s ⩽ t. More

precisely, by virtue of the Lyapunov estimate (5) with At = A∗
t and with At = −(A∗

t )
′,

there exist constants c1, c2 > 0 such that, for every number 0 ⩽ µ ⩽ 1,

(13)

c1 exp

�
−
Z t

s

�
∥Av∥+

1

βv

Z ∞

v

1

βτ
dτ

�
dv

�
⩽ µ∥Φ(t, s)∥+ (1− µ)∥Φ(s, t)∥

⩽ c2 exp

�Z t

s

�
∥Av∥+

1

βv

Z ∞

v

1

βτ
dτ

�
dv

�
, s ⩽ t.
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For further analysis, we require some relations known for positive definite matrices.
For a square matrix M > 0 of size n × n, the estimate y′My ⩽ bcn∥M∥∥y∥2 gives
M ⩽ bcn∥M∥I (here I is the identity matrix, y is an arbitrary vector of appropriate
dimension, and bcn > 0 is some constant), and M−1 ⩾ (bcn∥M∥)−1I. Setting succes-
sively M = Φ(s, t)Φ′(s, t), M = Φ(t, s)Φ′(t, s) and using (13) with µ = 0, 1, we see
that, for any number 0 ⩽ eµ ⩽ 1, there exist constants ec1,ec2 > 0 such that

(14)

ec1 exp�−2

Z t

s

�
∥Av∥+

1

βv

Z ∞

v

1

βτ
dτ

�
dv

�
I

⩽ eµΦ′(t, s)Φ(t, s) + (1− eµ)Φ′(s, t)Φ(s, t)

⩽ ec2 exp�2

Z t

s

�
∥Av∥+

1

βv

Z ∞

v

1

βτ
dτ

�
dv

�
I, s ⩽ t.

Next,

E∥X∗
t ∥2 = tr(Ct) =

dX
j=1

Z t

0

(G(j)
s )′Φ′(t, s)Φ(t, s)G(j)

s ds+ x′Φ′(t, 0)Φ(t, 0)x,

where G
(j)
s is the jth column of the matrix Gs. Now an appeal to (14) with eµ = 1

gives the estimate

c1

�
∥x∥2 +

Z t

0

∥Gs∥2 ds
�

⩽ E∥X∗
t ∥2 ⩽ c2

�
∥x∥2 +

Z t

0

∥Gs∥2 ds
�
,

with some constants c1, c2 > 0, from which (10) follows. Using (9), we have the
following representation for the difference between the processes:

X∗
t −

Z t

0

Gs dws = x+

Z t

0

(As −Bs(βsR)−1B′
sΠs)X

∗
s ds.

Next, consider the Gaussian processes

cWt =

Z t

0

Gs dws and νt =

Z t

0

(As −Bs(βsR)−1B′
sΠs)X

∗
s ds.

For a process νt =
R t

0
ξs ds, there is a sufficient condition for the convergence νt → ν∞,

t → ∞, in the mean square and a.s. This condition reads as
R∞
0

p
E∥ξt∥2 dt < ∞

(see [15, section 5.4]). In our setting,

ξt = (At −Bt(βtR)−1B′
tΠt)X

∗
t ,

and so this requirement is satisfied by assumption (11) and in view of the above
estimates for the functions E∥X∗

t ∥2 and ∥Πt∥. Indeed,

E∥ξt∥2 ⩽ c

�
∥At∥+

1

βt

Z ∞

t

1

βs
ds

�2�
∥x∥2 +

Z t

0

∥Gs∥2 ds
�
.

This completes the proof of Lemma 2.

Next, we note that the solution of (9) has the form

(15) X∗
t = Φ(t, 0)x+

Z t

0

Φ(t, s)Gs dws,
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where Φ(t, s) is the fundamental matrix corresponding to the matrix A∗
t = At −

Bt(βtR)−1B′
tΠt. Recall that Φ(t, s) is defined as the solution of the problem

∂Φ(t, s)

∂t
= A∗

tΦ(t, s),
∂Φ(t, s)

∂s
= −Φ(t, s)A∗

s, Φ(t, t) = I,

where I is the identity matrix. Hence, by using the time-change in stochastic integrals
(see, for example, [16, section 8.5, Corollary 8.5.4]), we get the following representa-

tion for the ith component of the process X∗
t (we denote this component by X

(i)∗
t ,

i = 1, . . . , n):

(16) X
(i)∗
t =

nX
j=1

Φij(t, 0)x
(i) +

nX
j=1

Φij(t, 0) bw(j)
τjj(t)

;

here x(i) is the ith component of the vector x; Φij(t, 0) is an element of the matrix
Φ(t, 0), i, j = 1, . . . , n; and bw(j) is the new jth Wiener process with time-change τjj(t).
Note that τjj(t) is the jth diagonal element of the matrix

T (t) =

Z t

0

Φ(0, s)GsG
′
sΦ

′(0, s) ds.

From Assumption AB and inequalities (14) for eµ = 0, it follows that there exist
positive constants ec1 and ec2 such that

ec1 exp�−2

Z t

0

∥A∗
v∥ dv

�
I ⩽ Φ′(0, t)Φ(0, t) ⩽ ec2 exp�2

Z t

0

∥A∗
v∥ dv

�
I.

As a result, we have the estimate

bκ1

Z t

0

∥Gs∥2 ds ⩽ tr(T (t)) ⩽ bκ2

Z t

0

∥Gs∥2 ds,

where bκ1, bκ2 > 0 are some constants. Thus, each component of X∗
t can be writ-

ten as a linear combination (with bounded coefficients) of Wiener processes with
time-changes τjj(t) and components of the vector of initial conditions. The bound-

aries τjj(t) are defined via the function
R t

0
∥Gs∥2 ds, which is a sum of all time-changes

performed in the common disturbance process cWt =
R t

0
Gs dws. Regarding the prop-

erties of solution representations, here one can observe the difference from the case
of linear stochastic differential equations with stable matrices A∗

t , i.e., where Φ(t, s)

can be estimated as ∥Φ(t, s)∥ ⩽ κ0 exp
�
−
R t

s
δv dv

	
and

R t

0
δv dv → ∞, t → ∞, κ0

is a constant, and δt > 0 is the stability rate. In particular, for the standard Orn-
stein–Uhlenbeck process with A∗

t = −λI, Gt = G, λ > 0, the coefficients in (16) are
known to exponentially decay:

Φii(t, 0) = exp{−λt}

(here, Φij(t, 0) = 0, i ̸= j); simultaneously, the time-change grows exponentially:

τjj(t) = exp{2λt}
dX

i=1

G2
ji.
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3. Optimal control over an infinite time-horizon. In this section, we study
optimality of the stable control law U∗ over an infinite time-horizon. In cases where
the optimality criterion is based on the expected value of the objective functional (see
the first criterion in (3)), the average optimality is considered.

3.1. Average optimality.

Theorem 1. Let Assumption AB be met. Then the control law U∗, as defined
by (8), (9), is the solution of the problem

(17) lim sup
T→∞

EJT (U)R T

0
pt∥Gt∥2 dt

→ inf
U∈U

with pt =
R∞
t

(1/βs) ds and without restrictions on the diffusion matrix Gt. Moreover,

(18) lim sup
T→∞

EJT (U
∗)R T

0
pt∥Gt∥2 dt

< ∞.

Proof. By Assumption AB, Lemma 1 applies and there exists a stable optimal
control law U∗ defined by (8) and (9). We fix an arbitrary admissible control U ∈ U
and define the corresponding process Xt via (1). Setting xt = Xt−X∗

t , ut = Ut−U∗
t ,

we have the representation

JT (U
∗)− JT (U) = 2x′

TΠTX
∗
T −

Z T

0

�
1

βt
x′
tQxt + βtu

′
tRut

�
dt

− 2

Z T

0

x′
tΠtGt dwt.

Using the elementary inequality 2ab ⩽ a2/ec+ ecb2, which holds for arbitrary numbers
a and b and a constant ec ̸= 0, and employing the estimate ∥Πt∥ ⩽ cpt for Πt (see
Lemma 1), we get, for some c1, c2 > 0, the relation

(19) JT (U
∗)− JT (U) ⩽ c1p

2
T ∥X∗

T ∥2 − c2

Z T

0

1

βt
∥xt∥2 dt− 2

Z T

0

x′
tΠtGt dwt;

here, we also use the inequality

∥xT ∥2 +
Z T

0

1

βt
∥xt∥2 dt ⩽ c0

Z T

0

�
1

βt
x′
tQxt + βtu

′
tRut

�
dt,

which holds for some constant c0 and can be derived from the dynamics dxt =
(Atxt +Btut) dt, x0 = 0. Indeed, xt =

R t

0
Φ(t, s)Bsus ds, where the fundamental

matrix Φ(t, s) corresponds to At, and Φ(t, s) ⩽ c, s ⩽ t. As a result,

∥xt∥ ⩽ c

Z t

0

1√
βs

p
βs ∥

√
Rus∥ ds,

and hence, by applying the Cauchy–Bunyakovskĭı–Schwarz inequality and using the
condition

R∞
0

(1/βt) dt < ∞, we get ∥xt∥2 ⩽ c
R t

0
βsu

′
sRus ds. The required estimate

follows by integrating the resulting inequality multiplied by 1/βt. We also note that
pt → 0, t → ∞. Since pt is nonincreasing, an appeal to (10) produces the estimate
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pTE∥X∗
T ∥2 ⩽ c

R T

0
pt∥Gt∥2 dt. Using this estimate, taking the expectation in (19),

applying the normalization
R T

0
pt∥Gt∥2 dt, and making T → ∞, we find that

lim sup
T→∞

EJT (U
∗)R T

0
pt∥Gt∥2 dt

⩽ lim sup
T→∞

EJT (U)R T

0
pt∥Gt∥2 dt

.

Thus, U∗ is a solution to problem (17). Employing the Itô formula, we obtain

JT (U
∗) = x′Π0x− (X∗

T )
′ΠTX

∗
T +

Z T

0

tr(G′
tΠtGt) dt

+ 2

Z T

0

(X∗
t )

′ΠtGt dwt.(20)

Now (18) follows easily from representation (20) and the above estimate for the
dynamics of E∥X∗

T ∥2. Theorem 1 is proved.

Remark 1. For the deterministic (Gt ≡ 0) control system (1), (2), the control
law U∗ (8), (9) is the solution of the problem lim supT→∞ JT (U) → infU∈U under
Assumption AB. Moreover, lim supT→∞ JT (U

∗) = x′Π0x.

It is worth pointing out that when dealing with control systems involving a process
of the form (1) and an increasing planning horizon, it is usually assumed that various
conditions on ∥Gt∥ are met (see, for example, [17]). Hence, the average optimality
property of the stable control law (see Theorem 1) over an infinite time-horizon under
an arbitrary diffusion matrix Gt occurs quite rarely for stochastic linear regulators
(for an earlier example, see [18]). In [18], the corresponding result was implied by the
assumption on superexponential stability of the state matrix in the process dynamics
and bounded matrices in the cost functional. However, in our setting, such specifics
in optimality are related to absolute integrability at infinity of the matrices At in (1)
and (1/βt)Q in (2).

3.2. Pathwise optimality and examples. Probabilistically, a stronger opti-
mality property is the so-called pathwise optimality (stochastic optimality, optimality
a.s.— these terms were introduced and used, in particular, in [19] and [20]). In this
case, the corresponding control law optimizes, with probability 1, the criterion that
properly includes the objective functional itself, rather than its expected value (see
the criterion in the right-hand side of (3)).

In the study of the pathwise optimality of the control U∗, we require an additional
assumption about the relationships between the diffusion coefficients and the cost
multiplier from the objective functional.

Assumption G. The following relations hold for pt =
R∞
t

(1/βs) ds and the diffu-
sion matrix Gt:

(1)
R T

0
pt∥Gt∥2 dt → ∞, T → ∞;

(2) lim supt→∞{βt∥Gt∥2p2t} < ∞.

Theorem 2. Let Assumptions AB and G be met. Then the control law U∗, as
defined by (8), (9), is the solution of the problem

(21) lim sup
T→∞

JT (U)R T

0
pt∥Gt∥2 dt

→ inf
U∈U

with probability 1,
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where pt =
R∞
t

(1/βs) ds. Moreover,

(22) lim sup
T→∞

JT (U
∗)R T

0
pt∥Gt∥2 dt

= lim sup
T→∞

EJT (U
∗)R T

0
pt∥Gt∥2 dt

= lim sup
T→∞

R T

0
tr(G′

tΠtGt) dtR T

0
pt∥Gt∥2 dt

,

where the matrix Πt satisfies the Riccati equation (4) and has the properties from
Lemma 1 (tr( · ) is the trace of the matrix ).

Proof. By setting

LT = c1p
2
T ∥X∗

T ∥2, RT = −c2

Z T

0

1

βt
∥xt∥2 dt− 2

Z T

0

x′
tΠtGt dwt,

we transform (19) into the inequality

(23) JT (U
∗) ⩽ JT (U) + LT +RT .

By condition (2) of Assumption G, the process RT as T → ∞ can be written as

RT = MT − ec2⟨MT ⟩,

where MT = −2
R T

0
x′
tΠtGt dwt is a martingale with quadratic variation ⟨MT ⟩ =R T

0
∥x′

tΠtGt∥2 dt, and ec2 > 0 is some constant. Hence, according to one well-known
result (see, for example, [20, Lemma A.1]),

lim sup
T→∞

(gTRT ) ⩽ 0

for any deterministic monotone function gT > 0 satisfying gT → ∞, T → ∞. By

condition (1) of Assumption G, one can take gT =
(R T

0
pt∥Gt∥2 dt

�−1
. Next, let us

analyze the asymptotic behavior of the process LT as T → ∞. We have

X∗
T = Φ(T, 0)

Z T

0

Φ(0, t)Gt dwt,

where Φ(t, s) is the fundamental matrix corresponding to the matrix A∗
t =

At −Bt(βtR)−1B′
tΠt, and since

c1 ⩽ ∥Φ(t, s)∥ ⩽ c2 for s ⩽ t,

where c1, c2 > 0 are some constants (see (13)), by applying the law of the iterated
logarithm for a Wiener process, we have the estimate

LT ⩽ cpT

Z T

0

pt∥Gt∥2 dt ln ln
�Z T

0

pt∥Gt∥2 dt
�

a.s. for T > t0(ω).

Hence, in view of condition (2) of Assumption G, the normalized process satisfies the
inequality

LT

�Z T

0

pt∥Gt∥2 dt
�−1

⩽ cpT ln ln ln
1

pT
→ 0, T → ∞.
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Taking into account the above and using normalization (23), we have, in the limit
as T → ∞,

lim sup
T→∞

JT (U
∗)R T

0
pt∥Gt∥2 dt

⩽ lim sup
T→∞

JT (U)R T

0
pt∥Gt∥2 dt

with probability 1.

This relation shows that U∗ is a solution of problem (21). Next, from condition (2) of
Assumption G, it follows that pTE∥X∗

T ∥2 ⩽ c, T → ∞. Now an appeal to (20) shows
that the optimal value of the criterion in (17) is

lim sup
T→∞

EJT (U
∗)R T

0
pt∥Gt∥2 dt

= lim sup
T→∞

R T

0
tr(G′

tΠtGt) dtR T

0
pt∥Gt∥2 dt

.

Using (20) and setting

ZT =

Z T

0

(X∗
t )

′ΠtGt dwt, ΓT =

Z T

0

pt∥Gt∥2 dt,

we get the estimate

EZ2
T ⩽ c

Z T

0

p2tE∥X∗
t ∥2∥Gt∥2 dt ⩽ cΓT

with some constant c > 0. Now using Lemma 1 from [21], we have the convergence

ZT

ΓT
→ 0 a.s. as T → ∞.

The term eLT = (X∗
T )

′ΠTX
∗
T is estimated as follows:

∥eLT ∥ ⩽ c∥ eXT ∥2,

where the process eXt =
√
p
T
X∗

T satisfies the equation

d eXt = eAt
eXt dt+ eGt dwt

with the matrices eAt = At − Bt(βtR)−1B′
tΠt + (1/2)(ṗt/pt), eGt =

√
pt Gt. Setting

δt = −(1/2)(ṗt/pt), we note thatZ t

0

δv dv ∼ −
Z t

0

ṗv
pv

dv = ln
p0
pt

.

So, the matrix eAt is stable with rate δt = −(1/2)(ṗt/pt), because the correspond-

ing fundamental matrix can be estimated as ∥eΦ(t, s)∥ ⩽ κ0 exp
�
−
R t

s
δv dv

	
, s ⩽ t

(κ0 > 0 is some constant) and
R t

0
δv dv → ∞, t → ∞. Moreover, for the diffusion

matrix, we have ∥ eGt∥2 = pt∥Gt∥2 ⩽ c(−ṗt/pt) by condition (2) of Assumption G,
and so E∥ eXT ∥2 ⩽ ec (ec > 0 is some constant). For processes with these properties
(the stability of the matrix in the dynamic equation and boundedness of the second
moment), we have

∥ eXT ∥2R T

0
∥ eGt∥2 dt → 0

a.s. as T → ∞.
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The corresponding result for the constant δt was proved in [21]; for δt → 0, t → ∞, the
required result was established in [10]; the case δt → ∞ is dealt with as in [10], [21].
The above convergence implies that

∥eLT ∥R T

0
pt∥Gt∥2 dt → 0

a.s. as T → ∞.

In view of the above, for the terms in (20), we have

lim sup
T→∞

JT (U
∗)R T

0
pt∥Gt∥2 dt

= lim sup
T→∞

R T

0
tr(G′

tΠtGt) dtR T

0
pt∥Gt∥2 dt

= lim sup
T→∞

EJT (U
∗)R T

0
pt∥Gt∥2 dt

.

Theorem 2 is proved.

Note that from condition (2) of Assumption G and assertion (22) of Theorem 2
one can make a conclusion about the largest possible growth of EJT (U

∗) and JT (U
∗)

as T → ∞. The upper boundary for both functionals can be described in terms ofbc ln(1/pT ), where pt =
R∞
t

(1/βs) ds and bc > 0 is some constant. Next, with the
aim of finding the admissible order of growth of the diffusion matrix Gt we consider,
under Assumption G, examples of various functions βt that govern the dynamics of
the multipliers in (2). In the examples that follow, c denotes some constant.

Example 2. The power-law family of factors βt ∼ tα, α > 1. In this case, cri-
teria (17) and (21) are adjusted with the help of the function pt ∼ t1−α. Hence
∥Gt∥2 ⩽ ctα−2. For α > 2, increasing perturbations ∥Gt∥ → ∞, t → ∞, can be
included. For α = 2, condition (2) of Assumption G is met only for bounded diffusion
matrices Gt. If 1 < α < 2, then it proves possible to consider only decaying pertur-
bations ∥Gt∥ → 0, t → ∞. The objective functionals are of logarithmic order, i.e.,
EJT (U

∗), JT (U
∗) ∼ lnT .

Example 3. The family of exponentials of power-law functions for the multipliers
βt ∼ exp{γtq}, γ, q > 0. In this case,

pt ∼ t1−q exp{−γtq} and ∥Gt∥2 ⩽ ct2q−2 exp{γtq}.

Moreover,
(a) if the factor is subexponential, i.e., q ∈ (0, 1), then the order of maximum

admissible perturbations is t2−2q times smaller than that of the factor;
(b) if the factor is exponential, i.e., q = 1, then the order of maximum admissible

perturbations is the same as that of the factor;
(c) if the factor is superexponential, i.e., q > 1, then the order of maximum

admissible perturbations is t2q−2 times higher.
The dynamics of the objective functionals as T → ∞ turns out to be T q. It is

clear that a necessary requirement for condition (1) in Assumption G to hold is the
presence of increasing perturbations. More precisely, ∥Gt∥2 ∼ ϕt exp{γtq} with the

function ϕt > 0 such that
R T

0
t1−qϕt dt → ∞, T → ∞; moreover, it is also required

that the inequality ∥ϕt∥ ⩽ t−(2−2q) is satisfied.

Example 4. The family of doubly exponential functions for the multipliers βt ∼
exp{γ exp (rt)}, γ, r > 0. In this case,

pt ∼ exp(−rt) exp{−γ exp(rt)}
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and
∥Gt∥2 ⩽ c exp(2rt) exp{γ exp (rt)}.

The maximal disturbances are allowed to exceed the multiplier (β) by no more than
exp{2rt} times. The objective functionals on the optimal control grow exponentially
(like exp{rT}) at infinity. Condition (1) of Assumption G is met if

∥Gt∥2 ∼ ϕt exp
�
γ exp{rt}

	
,

where Z T

0

exp{−rt}ϕt dt → ∞, T → ∞,

and simultaneously, ∥ϕt∥ ⩽ exp{2rt}.
Remark 2. The structure of the objective functional (2) involving an asymptot-

ically singular matrix (1/βt)Q and an unbounded matrix βtR, t → ∞, leads to the
task of comparing the performance of the optimal law U∗

t thus obtained (see (8), (9))

and the law U
(0)
t ≡ 0, meaning that there is no control. In order to find JT (U

(0)),
we use below a representation from [22], according to which

JT (U
(0)) = x′P0x− (X

(0)
T )′PTX

(0)
T +

Z T

0

tr(G′
tPtGt) dt

+ 2

Z T

0

(X
(0)
t )′PtGt dwt,

where X
(0)
t = Φ(t, 0)x +

R t

0
Φ(t, s)Gsdws, Φ(t, s) is the fundamental matrix corres-

ponding to the matrix At, and the matrix

Pt =

Z ∞

t

Φ
′
(s, t)β−1

s QΦ(s, t) ds

exists by Assumption AB. We also note that the solution of the Riccati equation (4)
can be written as

(24) Πt = Pt −
Z ∞

t

Φ
′
(s, t)β−1

s ΠsBR−1B′ΠsΦ(s, t) ds

and that Πt ⩽ Pt, t ⩾ 0. Estimating the integrand in (24) via Lemma 1, we get that
∥Pt−Πt∥ ⩽ cpp

3
t , where cp > 0 is some constant and pt =

R∞
t

(1/βv) dv. Now, arguing
as in the proof of (20) in Theorems 1 and 2, we conclude that for

ΓT =

Z T

0

pt∥Gt∥2 dt → ∞, T → ∞,

we have

lim sup
T→∞

JT (U
(0))

ΓT
= lim sup

T→∞

EJT (U
(0))

ΓT
= J∗ a.s.,

where J∗ = lim supT→∞{JT (U∗)/ΓT } = lim supT→∞{EJT (U
∗)/ΓT }. So, from the

point of view of the optimality criteria in problems (3), the control U
(0)
t ≡ 0 gives

the same result as the optimal law U∗. This happens because the normalization ΓT

offsets the deviation between JT (U
(0)) and JT (U

∗) as T → ∞, inasmuch as ΓT → ∞.
Certainly, this effect is not observed for Γ∞ < ∞ or in the deterministic problem.
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In regard to the convergence of U∗
t to U

(0)
t ≡ 0 as t → ∞, one can easily derive

from (8), (15), and Lemma 2 that, for kt = p2t/β
2
t and Γt =

R t

0
∥Gt∥2 dt, the con-

dition ktΓt → 0, t → ∞, implies the convergence U∗
t → 0 in the mean square.

If kt(Γt ln ln Γt) → 0, then U∗
t → 0 a.s. as t → ∞. In particular, the condition (2) of

Assumption G guarantees the above convergence with probability 1.

4. Application to the problem of optimal control of a system with
dynamic scaling of parameters. Consider a controlled stochastic process eXt,
t ⩾ 0, with dynamics

(25) d eXt = αtA eXt dt+ αtB eUt dt+
√
αt Gdwt, X0 = x,

where A, B, G are constant matrices of appropriate dimensions, G ̸= 0, and the
admissible control eU ∈ U is defined in analogy with the case of (1). In (25), αt > 0 is
the scaling function. The objective functional has the form

(26) J
(α)
T (eU) =

Z T

0

αt( eX ′
tQ

eXt + eU ′
tR

eUt) dt

with matrices Q ⩾ 0, R > 0. Such a control system may appear, for example, if
the time scales of the underlying process and the subject implementing the control

law are not synchronous. It is assumed that
R∞
0

αt dt < ∞ (the case
R T

0
αt dt → ∞,

T → ∞, was considered in [23]). This leads to the optimal control problem for the
system (25), (26) as T → ∞. It can be easily seen that the change of variables

Xt = eXt, Ut = αt
eUt reduces system (25), (26) to the form (1), (2), where At = αtA,

Bt = B, Gt =
√
αt G, and βt = 1/αt. It is also clear that Assumption AB is met for

the system in new variables. Indeed,Z ∞

0

∥At∥ dt = ∥A∥
Z ∞

0

αt dt < ∞,

Z ∞

0

1

βt
dt =

Z ∞

0

αt dt < ∞,

and therefore we have the claim of Theorem 1 about a control law, which is optimal
in the mean over an infinite time-horizon. In the original variables, this control has
the form eU∗

t = −R−1B′Πt
eX∗
t ,

where the matrix Πt satisfies the Riccati equation

Π̇t + αtΠtA+ αtA
′Πt − αtΠtBR−1B′Πt + αtQ = 0,

and the process eX∗
t , t ⩾ 0, is given by the equation

d eX∗
t = αt(A−BR−1B′Πt) eX∗

t dt+
√
αt Gdwt, eX∗

0 = x.

In this case, the normalization of criterion (17) contains a function integrable at
infinity, i.e., Z ∞

0

pt∥Gt∥2 dt = ∥G∥2
Z ∞

0

αt

�Z ∞

t

αs ds

�
dt < ∞,

the control eU∗ is the solution of the problem

lim sup
T→∞

EJ
(α)
T (eU) → infeU∈U

,

and, moreover, J
(α)
T (eU∗) → J

(α)
∞ (eU∗) with probability 1.
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5. Conclusion. We consider above optimal control problems over an infinite
time-horizon of the linear system (1) under the assumption of absolute integrability
of the state matrix in the equation of the process and absolute integrability of the
multiplier 1/βt in the integral quadratic loss functional. The objective functional (2)
also includes the inversely proportional factor βt (i.e., an asymptotically unbounded
time function) found in control costs. Such specifics of the functional correspond
to the situation of prioritized losses due to control. We show that, under the above
assumptions, there exists a stable linear control law U∗ defined in terms of the solution
of the Riccati equation. This control law (8), (9), in the form of a linear state feed-
backX∗, is optimal over an infinite time-horizon with respect to the extended adjusted
long-run average criterion (see Theorem 1). The criterion involves normalization of the

expected value of the objective functional by using the integral
R T

0
pt∥Gt∥2 dt. This

normalization is the sum of the variances of the components of the vector
R T

0
ptGt dwt

of accumulated adjusted disturbances on the system over the planning horizon. The
adjustment is performed towards reduction of the disturbance variance with the help
of the function pt =

R∞
t

(1/βs) ds and of pt → 0, t → ∞. It is shown that the proper-
ties of the corresponding optimal process of X∗ are close to the characteristics of the

original disturbance process cWt =
R T

0
Gt dwt (see Lemma 2). We also put forward

conditions on the coefficients of the diffusion matrix Gt and the multiplier βt under
which the designed control law U∗ possesses stronger a.s. optimality property, i.e.,
U∗ is a solution of a problem with a pathwise extended adjusted long-run average
(see Theorem 2 and Assumption G). Moreover, we find a linear transformation that
reduces a control system with dynamic scaling (i.e., in the case when all matrices are
multiplied by a function of time) to the already studied system (1), (2), and deter-
mine an optimal control law. A topic for further research is the study of optimal
control problems (1) with reverse priority of costs, i.e., if (2) involves the matrices
βtQ and (1/βt)R.
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Québec, 12 (1988), pp. 101–119.

[7] J. Cai, M. Rosenbaum, and P. Tankov, Asymptotic lower bounds for optimal tracking: A lin-
ear programming approach, Ann. Appl. Probab., 27 (2017), pp. 2455–2514, https://doi.org/10.
1214/16-AAP1264.

[8] E. S. Palamarchuk, Stabilization of linear stochastic systems with a discount: Modeling and
estimation of the long-term effects from the application of optimal control strategies, Math.
Models Comput. Simul., 7 (2015), pp. 381–388, https://doi.org/10.1134/S2070048215040080.

[9] F. Man and H. Smith, Design of linear regulators optimal for time-multiplied performance
indices, IEEE Trans. Automat. Control, AC-14 (1969), pp. 527–529, https://doi.org/10.1109/
TAC.1969.1099250.

[10] E. S. Palamarchuk, Analysis of the asymptotic behavior of the solution to a linear stochastic
differential equation with subexponentially stable matrix and its application to a control problem,
Theory Probab. Appl., 62 (2018), pp. 522–533, https://doi.org/10.1137/S0040585X97T988794.

  

https://doi.org/10.1103/PhysRevE.85.051101
https://doi.org/10.1103/PhysRevE.61.R4675
https://doi.org/10.1039/C4CP02019G
https://doi.org/10.1103/PhysRevE.66.021114
https://doi.org/10.1002/cjs.11233
https://doi.org/10.1214/16-AAP1264
https://doi.org/10.1214/16-AAP1264
https://doi.org/10.1134/S2070048215040080
https://doi.org/10.1109/TAC.1969.1099250
https://doi.org/10.1109/TAC.1969.1099250
https://doi.org/10.1137/S0040585X97T988794


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMAL CONTROL FOR THE STOCHASTIC REGULATOR 43

[11] A. Locatelli, Optimal Control: An Introduction, Birkhäuser Verlag, Basel, 2001.
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