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Abstract—We consider the problem of stochastic linear regulator over an infinite time horizon
with superexponentially stable matrix in the equation of state dynamics. The form of the
optimal control based on the criterion taking into account the information about the parameters
of disturbances and the matrix stability rate was determined. The results obtained were used to
analyze the model of a system with extremely impatient agents where the objective functional
includes discounting by the asymptotically unbounded rate.
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1. INTRODUCTION

The optimal control of linear systems over an an infinite time horizon and achievement of
asymptotic stability of the chosen strategies are classified with the problems of significant theoretical
and practical value. It is usually assumed at that that the coefficients of the state dynamics
equation are bounded time functions (see, for example, [1, p. 267]). At the same time, there are
situations where this condition is not satisfied. For example, for the systems obtained as the result
of linearizing [2, p. 101; 3, p. 124] or when considering models of certain random processes in various
fields such as physical [4, 5] and cognitive [6] this property may be missed. In the aforementioned
cases, the state dynamics is characterized by the strongly stable—as compared with a certain
exponential type of stability—deterministic component, but at that the disturbances whose impact
is measured by the norm of the diffusion matrix play a significant role. As will be discussed in
what follows, such systems also arise at analysis of the models with extremely discounting. Now,
we proceed to describing a control system which is the subject matter of the present paper.

Let an n-dimensional stochastic process Xt, t � 0, obeying the equation

dXt = AtXtdt+BtUtdt+Gtdwt, X0 = x, (1)

where the initial state x is nonrandom, wt, t � 0, is the d-dimensional standard Wiener process,
Ut, t� 0, is the admissible or k-dimensional stochastic process adapted to the filtration {Ft}t�0,
Ft = σ{ws, s � t} such that Eq. (1) has solution; At, Bt, Gt, t � 0, are time-varying matrices of
dimensions under which (1) makes sense, be defined on a complete probability space {Ω,F ,P}. At
that,

∫∞
0 ‖Gt‖2 dt > 0, the matrix Bt is bounded, the matrix At is such that ‖At‖ → ∞, t → ∞

(‖ · ‖ is the Euclidean matrix norm) and has superexponential stability property (the exact defini-
tion will be given in what follows). The set of admissible controls is denoted by U . Introduce the
following definition.
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Definition 1. The matrix At is called superexponentially stable with the rate δt (or δt-super-
exponentially stable) if there exists a function δt > 0, t � 0, δt → ∞, t → ∞ such that

lim sup
t→∞

(‖At‖/δt) < ∞; ‖Φ(t, s)‖ � κ exp

⎧
⎨

⎩
−

t∫

s

δv dv

⎫
⎬

⎭
, s � t,

for a constant κ > 0, at that Φ(t, s) is a fundamental matrix corresponding to At.

We recall that the fundamental matrix Φ(t, s) is the solution of the problem

∂Φ(t, s)

∂t
= AtΦ(t, s), Φ(s, s) = I.

For each T > 0, the random variable

JT (U) =

T∫

0

(X ′
tQtXt + U ′

tRtUt) dt (2)

is defined as an objective functional. Here, U ∈ U is the admissible control on the interval [0, T ];
Qt � 0, Rt � ρI, t � 0 are bounded symmetric matrices with ′ for transposition, ρ > 0 is some
constant, A � B means for matrices that the difference A−B is positive semidefinite, and I is the
identity matrix).

Assumption A. The matrix At is superexponentially stable with the rate δt, at that δt is a
nondecreasing differentiable function, t � 0.

We are interested in a formulation of the problem of optimal control for (1) and (2) when T → ∞.
In the general case, the control U∗ ∈ U is called average optimal over an infinite time horizon with
respect to the criterion K if it is the solution of the problem

lim sup
T→∞

EKT (U) → inf
U∈U

, (3)

where EKT (U) is the expectation of some functional KT (U) depending on the admissible con-
trol U ∈ U and length of the planning horizon T . In the theory of stochastic control, there ex-
ists a criterion of the long-run average with EKT (U) = EJT (U)/T . A criterion with EKT (U) =
EJT (U)/

∫ T
0 ‖Gt‖2 dt, the extended long-run average, see [7], also was introduced for the linear

stochastic systems with bounded coefficients. In the present paper, the normalization
∫ T
0 ‖Gt‖2 dt

will be modified in order to take into account the properties of (1) and (2) under Assumption A.
At that, the solution of U∗ is determined based on the approach using the notion of optimal stable
feedback control law with subsequent detailed description in Section 2.

It is worthwhile to note that the study of (1) and (2) for T → ∞ is important also from the
view of analysis of systems with extremely discounting. Let in (1) At ≡ A, Bt ≡ B, and in (2) the
matrices Qt = ftQ, Rt = ftR, the discounting function ft > 0, ft → 0 monotonically decreasing, the
discount rate φt = −ḟt/ft → ∞, t → ∞. Appearance of the discount function with such asymptotic
characteristics is due to employment of various factors that impact the decision making process. For
example, as the result of reflecting the cognitive processes—nonlinear subjective time perception
[8, 9] by expanded time scale, inclusion of an additional source of uncertainty of the length of
perception horizon having probabilistic distribution with “light” tails, see [10, 11], as well as certain
phenomena of the behavioural economics related to fastly increasing impatience of the agents [12].
For the case of discounting by bounded rate φt, it was proposed in [13] to use the criterion of
long-run expected loss per unit of cumulated discount discount

lim sup
T→∞

EJT (U)
T∫

0
ft dt

(4)
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for the problem of determination of the optimal strategy, that is, when in (3) EKT (U) =
EJT (U)/

∫ T
0 ft dt. In the present paper we will show demonstrate that by change of the variables

the system with extremely discounting can be transformed into (1) and (2) and the corresponding
optimality criterion modifying (4) may be determined.

The goal of the present study consist in the design of the optimality criterion over an infinite time
horizon for the stochastic linear regulator under the assumption of superexponential stability of the
state matrix with subsequent determination of a minimizing strategy and analysis of systems with
extremely discounting. The present paper is structured as follows. Section 2 provides an approach
to the problem based on determination of the stable control law. Main results on existence of such
law and its optimality with respect to the criterion using the definition of the adjusted extended
long-run average are presented. Section 3 is devoted to studying efficiency of the new criterion
and examples. The results obtained are then used in Section 4 to consider the model of system
with extremely impatient agents. The basic findings are summarized in the conclusions where the
possible lines of further research are defined.

2. MAIN RESULTS

2.1. On the Stable Control Law for the Stochastic Linear Regulators

Turning to analysis of the control system under Assumption A, we should note that the notion
of superexponential stability arises naturally when studying the asymptotic stability of unbounded
matrices and allows one to characterize more precisely the possible order of decrease of the upper
estimate of the norm of the corresponding fundamental matrix. It is a stronger type of stability than
the well-known exponential stability. The term itself arose at analyzing the nonlinear equations
(see, for example, [14]). Exponential stability occurs if one assumes the rate δt ≡ κ1 > 0 (also
see Definition 1). At that, the limitations of the approach with determination of the value of
the constant κ1 for the case of the state matrix ‖At‖ → ∞, t → ∞, was noticed in [15]. We also
indicate that [16] considered the issues of nonexponential stabilization of the linear autonomous
deterministic system (At ≡ A, Bt ≡ B) by the choice of a control Ut = KtXt with an unboundedKt,
t → ∞, without reference to the problems of optimality.

Returning to the control in (1) and (2) when T → ∞, consider further an approach related
with determination of the stable law U∗ and review the previous results on its optimality with with
respect to of some criteria (see (3)), along with assumptions on the parameters of system (1) and (2).
It is well known [1, Theorem 3.5, p. 267] that in the deterministic case of (1) and (2) with bounded
coefficients and in the presence of some additional properties such as controllability, observability of
matrix pairs or exponential stability of At, there exists a so-called optimal stable feedback control
law U∗

t = −R−1
t B′

tΠtX
∗
t where the matrix Πt � 0, t � 0 satisfies the Riccati equation

Π̇t +ΠtAt +A′
tΠt −ΠtBtR

−1
t B′

tΠt +Qt = 0. (5)

As it was noticed in [1, p. 306], when Gt is bounded the strategy U∗ is optimal with respect to the
long-run average cost criterion in the problem

lim sup
T→∞

EJT (U)

T
→ inf

U∈U
. (6)

It was proposed in [7] to modify (6) taking into account the impact of disturbances, see [17]. More
precisely, the control U∗ also proved to be a solution of the problem when using a new average
optimality criterion over an an infinite time horizon, the extended long-run average when

lim sup
T→∞

EJT (U)
T∫

0
‖Gt‖2 dt

→ inf
U∈U

. (7)
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Consideration of (7) makes sense also in the system with ‖Gt‖ → ∞, t → ∞ if d(ln ‖Gt‖)
dt → 0, t → ∞,

see [18]. Under the conditions of Assumption A and with no restrictions on the diffusion matrix Gt,
the problem of constructing the optimality criterion in (1) and (2) involving the additional factor
of superexponential stability arises in an obvious manner. We emphasize that in such case this
strategy U∗, if any, is a natural candidate for being optimal because it has a form obtained taking
the limit (T → ∞) in the control laws determined as the solutions of the problem EJT (U) → inf

U∈U
for a finite T .

2.2. Main Results on the Stable Feedback Law

As was already mentioned, in the stochastic system (1) and (2) the form of the stable feedback
law U∗

t includes the matrix Πt satisfying the Riccati equation (5). The following lemma establishes
existence of the solution (5) and its properties.

Lemma. Let Assumption A be satisfied. Then, there exists an absolutely continuous func-
tion Πt, t � 0, with values in the set of positive semidefinite symmetric matrices satisfying the
Riccati equation (5) and such that the matrix At −BtR

−1
t B′

tΠt is δ̃t-superexponentially stable with
δ̃t = λδt, where δt is the stability rate of the matrix At and λ is a positive constant. The value
of λ < 1 if

∫ t
0(1/δv) dv → ∞, t → ∞, and λ = 1 for

∫∞
0 (1/δv) dv < ∞. Moreover, the relation

lim sup
t→∞

(‖Πt‖δt) < ∞ is valid as well.

The lemma and Theorem 1 are proved in the Appendix.

Along with the use of normalization in the optimality criteria design over an an infinite time
horizon as in (6) or (7), it is also possible to study the properties of the so-called average overtaking
optimality of the control laws.

Definition 2 [7]. The control U∗ ∈ U is called the average overtaking optimal if for any number
ε > 0 there exists T0 > 0 such that for an arbitrary admissible control U ∈ U the inequality holds

EJT (U
∗) < EJT (U) + ε for any T > T0. (8)

The following theorem establishes the average optimality of the stable feedback law U∗ over an
an infinite time horizon.

Theorem 1. Let Assumption A be satisfied. Then, the control law

U∗
t = −R−1

t B′
tΠtX

∗
t , (9)

where the process X∗
t , t � 0, is governed by the equation

dX∗
t = (At −BtR

−1
t B′

tΠt)X
∗
t dt+Gtdwt, X∗

0 = x, (10)

is the solution to the problem

lim sup
T→∞

EJT (U)
T∫

0
(‖Gt‖2/δt) dt

→ inf
U∈U

. (11)

At that, the matrix function Πt � 0, t � 0, satisfies the Riccati equation (5) and has properties
provided in the lemma. The value of the criterion on the optimal control

lim sup
T→∞

EJT (U
∗)

T∫

0
(‖Gt‖2/δt) dt

< ∞, (12)
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where δt is the stability rate of the matrix At. In addition if ‖Gt‖/δ2t → 0, t → ∞, then control U∗

is also average overtaking optimal over an infinite time horizon.

Remark. Let Assumption A be satisfied. Consider a deterministic control system (1) and (2),
that is, for Gt ≡ 0. Then, a a control law (9) U∗

t =−R−1
t B′

tΠtX
∗
t , where the trajectory X∗

t =Φ(t, 0)x
and Φ(t, s) is the fundamental matrix for the function At −BtR

−1
t B′

tΠt, is the solution to the
problem lim sup

T→∞
JT (U) → inf

U∈U
. The value lim sup

T→∞
JT (U

∗) = x′Π0x.

It is natural to call the criterion in (11) the adjusted extended long-run average cost criterion.
Adjustment is made towards the reduction of the denominator. If in the extended long-run average
of (7) the value E(Z ′

TZT ) was used, where ZT =
∫ T
0 Gtdwt is the vector of disturbances the system,

then in the present case it is taken that E(Ẑ ′
T ẐT ), ẐT =

∫ T
0 (Gt/

√
δt)dwt, that is, the cumulative

adjusted perturbations with the diffusion matrix Ĝt = Gt/
√
δt which are smaller (in the norm) than

the original ones in a proportion inverse to the stability rate δt.

3. STUDY ON THE EFFICIENCY OF THE LONG-RUN AVERAGES AND EXAMPLES

Now we demonstrate that a a given criterion of the extended long-run average, see (7), in the case
of the control system (1) and (2) is inefficient because its structure ignores the superexponential
stability feature of the matrix At.

Definition 3 [17]. Let U∗ be a stable feedback control law that is average optimal over an
infinite time horizon with respect to the criterion K in the system (1) and (2). Then, call the
criterion K

(a) efficient if 0 < lim sup
T→∞

EKT (U
∗) < ∞ for lim sup

T→∞
EJT (U

∗) > 0;

(b) inefficient if there exists a set UE ⊆ U such that lim sup
T→∞

EKT (U
∗) = lim sup

T→∞
EKT (U

ε) = 0 for

any U ε ∈ UE .

Assume that
∫ T
0 ‖Gt‖2 dt → ∞, T → ∞ (if

∫∞
0 ‖Gt‖2 dt < ∞, then the value of EJT (U

∗) is a
finite number for T → ∞, and the differences in normalizations (7) or (11) are of no importance).
Then it follows from the representation

EJT (U
∗) = x′Π0x− E[(X∗

T )
′ΠTX

∗
T ] +

T∫

0

tr (G′
tΠtGt) dt

(here, tr(·) is the trace of the matrix, see, for example, [17]) that lim sup
T→∞

(
EJT (U

∗)/
∫ T
0 ‖Gt‖2dt

)
= 0.

Take the set UE =
{
U

(0)
t

}
where U

(0)
t ≡ 0. Determine the matrix Pt =

∫∞
t Φ′(s, t)QsΦ(s, t)ds and

notice that ‖Pt‖� c̃
δt
, t � 0 (c̃ > 0 is a constant, see the proof of lemma), here Φ(t, s) is obtained

for the superexponentially stable matrix At. Find the expression

EJT (U
(0)) =

T∫

0

E
[
(X

(0)
t )′QtX

(0)
t

]
dt = x′P0x− E

[
(X

(0)
T )′PTX

(0)
T

]
+

T∫

0

tr(G′
tPtGt) dt.

At that, the process X
(0)
t , t � 0 obeys Eq. (1). Obviously, δ−1

t E‖X(0)
T ‖2/ ∫ T

0 ‖Gt‖2 dt → 0, T → ∞.

Therefore, lim sup
T→∞

(
EJT (U

(0))/
∫ T
0 ‖Gt‖2 dt

)
= 0, and according to Definition 3 the extended long-

run average is inefficient. As follows from the aforementioned representation for EJT (U
∗), under

some additional assumptions the suggested criterion of the adjusted extended long-run average will
be efficient with respect to the exponential stability feature of the state matrix. First, it is required
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that the rest of the parameters of the standard deterministic system provide the lower bound
Πt � (α/δt)I, t � 0 (α > 0 is some constant). In particular, this requirement is satisfied if in the
objective functional Qt � qI under some constant q > 0, and for the stability rate δt the condition
δ̇t/δ

2
t → 0 is valid asymptotically for t → ∞. Secondly, the contribution of

∫ T
0 (‖Gt‖2/δt dt) (the

variance of the adjusted integrated perturbations) must overlap the ratio E‖X∗
T ‖2/δT (variance

of the process to a unit of stability rate). Stated differently, δ−1
T E‖X∗

T ‖2/
∫ T
0 (‖Gt‖2/δt) dt → 0,

T → ∞. In particular, we get the desired property if δ−2
T ‖GT ‖2/

∫ T
0 (‖Gt‖2/δt) dt → 0, T → ∞; for

example, for lim sup
t→∞

(‖Gt‖2/δt) < ∞.

The following examples consider special cases of the adjusted extended long-run average cost
criterion and verify whether the condition of Theorem 1 regarding the overtaking optimality is
satisfied. We note that by analysis of the ratio E‖X∗

T ‖2/δ3T (see the proof of Theorem 1) one
can elicit the order of variation of the upper estimate for the expected value of the deficiency
process ΔT = JT (U

∗)− JT (U), see [7]. If one succeeds in determining the function hT > 0 such
that EΔT (U) � hT , T > T0, for any U ∈ U , then hT is called the upper function (see [7]).

Example 1. Under increasing perturbations for which ‖Gt‖2 ∼ δt, the criterion in (11) takes the
form of the well-known long-run average cost criterion from (6). Since ‖Gt‖/δ2t =

√
δt/δ

2
t → 0,

t → ∞, the overtaking optimality takes place and hT ∼ 1/δ3T .

Example 2. The constant disturbances Gt ≡ G 
= 0 give rise to the normalization
∫ T
0 (1/δt) dt

in (11) and obvious overtaking optimality with hT ∼ 1/δ4T .

Example 3. If ‖Gt‖2 ∼ δ3t (the disturbance force grows faster than the rate of stability, see the
diffusion model in [4]), then normalization of the criterion

∫ T
0 δ2t dt is always increasing and, on

the contrary, hT = 1/δt decreases slower under overtaking optimality (condition of Theorem 1 is

satisfied because ‖Gt‖/δ2t = δ
3/2
t /δ2t → 0, t → ∞).

4. OPTIMAL CONTROL OF A SYSTEM WITH EXTREMELY IMPATIENT AGENTS

Let us assume that the system state is defined by a random process X̃t, t � 0 with dynamics

dX̃t = AX̃tdt+BŨtdt+ G̃tdwt, X̃0 = x, (13)

where A,B are constant matrices, the remaining characteristics (13) are defined similar to (1) with
replacement of G̃ts for Gt and the control Ũt by Ut.

The objective functional of the total loss is given by

J
(d)
T (Ũ) =

T∫

0

ft(X̃
′
tQX̃t + Ũ ′

tRŨt) dt, (14)

where Q � 0, R > 0 are constant matrices and ft is a discount function used by the agents to
estimate the losses at different point in time.

Assumption D. The discount function ft > 0, t � 0, f0 = 1, is twice differentiable, decreases
monotonically, and is logarithmically concave ((ln ft)

′′ < 0). The discount rate φt = −ḟt/ft is such
that φt → ∞, t → ∞.

The agents are extremely impatient because in time the discounting rate becomes unbounded.

Example 4. The Weibull discount function ft = exp (−rtq) (q > 1, r > 0), related to strongly
nonlinear time perception according to the Stevens’ power law with the expanded time scale
τt = tq [9], as well as to possible derivation in terms of the survival function with “fast” Weibull
distribution [8].
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Example 5. The discount function using a double exponent like ft = exp (−r(exp t)) (r > 0) and
considered in [12] with rapidly increasing rate φt = r exp(t) which characterizes the probabilistic
Gompertz distribution, see also [11].

The discount functions from Examples 4 and 5 were brought to light on the basis of empirical
analysis of the return of the long-term bonds, see [19, 20], and can be used to reflect the time
preferences of the subjects in decision-making, for example, in the actuarial models, which also was
noted in [19, 20]. At that, the origin of the unbounded rates was accounted for in [21] to the high
level of uncertainty, in particular, to the financial markets of the developing countries. Example 6
considers a control model in the field of insurance which is a special case of the control system
described in [22].

Example 6. Consider the process of dynamics of the excess of capital of an insurance company
in the presence of dividend payments and in the absence of the expected inflow of premiums. Then,
the scalar process of excess X̃t, t � 0 can be approximated using the equation, see [22],

dX̃t = aX̃tdt− Ũtdt+Gtdwt, X̃0 = x,

where the constant a > 0, wt, t � 0 is a one-dimensional Wiener process. The scalar process Ũt,
t � 0 representing the deviation of the rate of dividend payments from the nominal (desired, ob-
jective) deterministic trajectory plays the role of control. The total loss (“negative utility”) due
to the excess deviation from zero (priority of the company management) and the dividend pay-
ments from the desirable trajectory (priority of the shareholders) with regard for the weight coef-

ficients qt, pt > 0 also reflecting the agents preferences J
(d)
T (Ũ) =

∫ T
0 (qtX̃

2
t + ptŨ

2
t ) dt is considered

in [22] as the objective functional. If one assumes that the main impact here is attributed to the
time preferences and using the aforementioned approach on the intertemporal evaluation for the
actuarial models qt = qft (q > 0), pt = ft, we take the discount functions from Examples 4 or 5,
then we get a control system like (13) and (14).

Passing to analysis of (13) and (14), one can readily see that in virtue of ftR → 0, t → ∞,
and At ≡ A the given control system does not belong to the considered above type of systems (1)
and (2). As it was said before (see Section 1), in the case of ft with bounded rate and con-
stant G̃t ≡ G a criterion of the long-run expected loss per unit of cumulated discount was pro-
posed to compare different strategies when T → ∞, see [13] (also including the case of constant
rate φt ≡ r > 0 which corresponds to the well-known exponential discounting function of form
ft = exp(−rt)). Such control system was examined by also including an equivalent system with a
standard objective functional and nonautonomous equation of state dynamics. Define new variables

Xt =
√
ftX̃t, Ut =

√
ftŨt (15)

and obtain

dXt = (A− (1/2)φtI)Xtdt+BUtdt+
√
ftG̃tdwt, X0 = x, (16)

JT (U) =

T∫

0

(X ′
tQXt + U ′

tRUt) dt, JT (U) = J
(d)
T (Ũ). (17)

We notice that in virtue of Assumption D the matrix At = A− (1/2)φtI is superexponentially
stable with rate δt = (1/2)φt. Then, (16) and (17) is a special case of (1) and (2) with Bt ≡ B,
Qt ≡ Q, Rt ≡ R , and Gt =

√
ftG̃t. According to Theorem 1, the control law U∗

t of form (9) is the
solution of problem (11). The inverse change of variables in (15) confirms validity of Theorem 2.
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Theorem 2. Let Assumption D be satisfied. Then, the control strategy

Ũ∗
t = −R−1B′ΠtX̃

∗
t ,

where the process X̃∗
t , t � 0, is given by the equation

dX̃∗
t = (A−BR−1B′Πt)X̃

∗
t dt+ G̃tdwt, X̃∗

0 = x,

is the solution to the problem

lim sup
T→∞

EJ
(d)
T (U)

T∫

0
(ft/φt)‖G̃t‖2 dt

→ inf
U∈U

. (18)

At that, the matrix function Πt � 0, t � 0, satisfies the Riccati equation (5) with At = A− (1/2)φt,
Bt ≡ B, Qt ≡ Q, Rt ≡ R and lim sup

t→∞
(‖Πt‖/φt) < ∞.

In virtue of Assumption D, the function gt = ft/φt decreases and, consequently, can be regarded
as a discount one. At that, gt < ft, t → ∞, that is, the denominator of the optimality criterion
in (18) represents a variance of the accumulated superdiscounted disturbances. Therefore, it is
natural to regard the limit of the ratio in (18) as a modification of the long-run expected loss per
unit of cumulated discount. If G̃t ≡ G̃ 
= 0, then

∫∞
0 (ft/φt) dt < ∞, and problem (18) takes form

similar to the one posed for rapidly decaying ft with bounded rate, for example, ft = exp(−rt),
r > 0, where normalization is not necessary.

5. CONCLUSIONS

The present paper considered the problem of stochastic linear regulator over an infinite time
horizon for the system with superexponentially stable matrix in the equation of state dynamics. It
was shown that the control law having the form of the linear feedback law and involving solution of
the Riccati equation minimizes the adjusted extended long-run average cost criterion. The derived
optimality criterion is defined on the basis of the upper limit (for T → ∞, T is the length of the
planning horizon) of the ratio of expectation of the quadratic objective functional to the integral
over the interval [0, T ] of the function (1/δt)‖Gt‖2 (square of the norm of the diffusion matrix Gt

divided by the rate of stability δt of the matrix At from the state equation). Interestingly, the result
of Theorem 1 on the form of the optimal control is valid without any assumptions on boundedness
of possible order of growth of the diffusion matrix Gt. This fact distinguishes significantly the
situation at hand from the previously considered cases of linear stochastic control systems with
bounded At. In [7] the optimality of the control law U∗ was established for ‖Gt‖ � ĉ (ĉ > 0 is a
constant) and in [18] the relation ‖Gt‖ → ∞, t → ∞, took place, but the rate of variation ‖Gt‖
was finite. Therefore, in the presence of superexponentially stability At in the state Eq. (1) the
power of disturbances does not affect the possibility derive the optimal control in (1) and (2) when
T → ∞. The proposed criterion of the adjusted extended long-run average containing not only the
information about the parameters of the diffusion matrix, but also the rate of stability of the state
matrix enabled one to analyze also the models with extremely impatient agents and has led to
modification of the a known performance index of the long-run expected loss per unit of cumulated
discount by adding an additional discounting multiplier. As the line of future research, we can
mention analysis of the problem of stochastic linear regulator with unbounded matrix At which
is not stable, for example, anti-stable, where the lower bound of the norm corresponding to the
fundamental matrix grows exponentially with the rate δt.
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APPENDIX

Proof of Lemma. Consider (5) with the boundary condition ΠT
T = 0. As it is known from the

optimal control theory (see, for example, [1, Theorem 3.4, p. 253] that the solution ΠT
t , 0 � t � T ,

exists and is a symmetrical positive semidefinite definite matrix. Let 0 � t0 < T be a fixed time
instant. In the control system

dxt = (Atxt +Btut)dt, xt0 = x̄,

where x̄ is an arbitrary vector of the initial state with the objective functional

JT,t0 =

T∫

t0

(x′tQtxt + u′tRtut) dt,

the law of the form u∗Tt = −R−1
t B′

tΠ
T
t x

∗T
t is a solution of the problem JT,t0(u) → min and

JT,t0(u
∗T ) = x̄′ΠT

t0 x̄. Take a competing control u
(0)
t ≡ 0. In virtue of superexponential sta-

bility of the matrix At and boundedness of the matrix Qt, we may define the function Pt =∫∞
t Φ′(s, t)QsΦ(s, t) ds which is the solution to the equation Ṗt +A′

tPt + PtAt +Qt = 0 where
Φ(t, s) is the fundamental matrix for At and ‖Pt‖ � c

∫∞
t exp{− ∫ s

t δv dv} ds. Here and below c
denotes some positive constant whose particular importance is of no significance and can vary from
formula to formula. As a result of nondecreasing δt, we have the estimate ‖Pt‖ � cδt, t � 0. One

can readily show that JT,t0(u
(0)) = x̄′Pt0 x̄− x

(0)′
T PTx

(0)
T � c‖x̄‖2/δt0 , and optimality of control u∗Tt

provides ‖ΠT
t0‖ � c̄/δt0 (c̄ > 0 is some constant). Since the instant t0 was selected arbitrarily,

‖ΠT
t ‖ � c̄/δt, 0 � t � T . The further reasoning follows the logic of [1, Theorem 3.5, p. 267]. The

function ΠT
t does not decrease in T , is bounded and, consequently, has the limit lim

T→∞
ΠT

t = Πt

satisfying (5) and featuring the same properties as ΠT
t , at that lim sup

t→∞
(‖Πt‖δt) < ∞.

To prove superexponential stability of the matrix At −BtR
−1
t B′

tΠt, consider the linear system

dzt = (At −BtR
−1
t B′

tΠt)ztdt, zt0 = z̄,

where z̄ is an arbitrary vector of the initial state. The solution zt = Φ(t, t0)z̄ for the fundamental
matrix for Φ(t, s) is At −BtR

−1
t B′

tΠt. Also zt is representable as

zt = Φ̃(t, t0)z̄ +

t∫

t0

Φ̃(t, s)BsR
−1
s B′

sΠszs ds,

where Φ̃(t, s) corresponds to δt-superexponentially stable matrix At. Taking in consideration this
fact and the resulting relation ‖Πt‖ � c̄/δt, one can put down the estimate

‖zt‖ � κ exp

⎧
⎨

⎩
−

t∫

t0

δv dv

⎫
⎬

⎭
‖z̄‖+ c

t∫

t0

exp

⎧
⎨

⎩
−

t∫

s

δv dv

⎫
⎬

⎭
(‖zs‖/δs) ds
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and using it with the help of the Gronwall–Bellman inequality obtain that

‖zt‖ � κ̄ exp

⎧
⎨

⎩
−

t∫

t0

δv dv

⎫
⎬

⎭
exp

⎧
⎨

⎩
κ̄1

t∫

t0

(1/δv) dv

⎫
⎬

⎭
‖z̄‖

with some constants κ̄, κ̄1 > 0; whence it follows for
∫ t
0 (1/δv) dv → ∞, t → ∞, that the matrix

At −BtR
−1
t B′

tΠt is superexponentially stable with the rate δ̃t = λδt with some constant λ < 1 or
in the case of

∫∞
0 (1/δv) dv < ∞ we have the rate of stability δ̃t = δt, which proves the lemma.

Proof of Theorem 1. Fix the control U ∈ U and its corresponding processXt in (1). By assuming
that xt = Xt −X∗

t and ut = Ut − U∗
t , we get the representation

JT (U
∗)− JT (U) = 2x′TΠTX

∗
T −

T∫

t0

(x′tQtxt + u′tRtut) dt− 2

T∫

0

x′tΠtGtdwt,

where the pair (xt, ut)t�T satisfies the equation

dxt = (Atxt +Btut)dt, x0 = 0, (A.1)

with the solution xT =
∫ t
0 Φ(T, t)Btut dt. At that, Φ(t, s) corresponds to At. By using the property

of superexponential stability of At and the Cauchy–Buniakowsky inequality one can estimate the
solution of (A.1) as

‖xT ‖2 � c exp

⎧
⎨

⎩
−2

T∫

0

δv dv

⎫
⎬

⎭

T∫

0

exp

⎧
⎨

⎩

t∫

0

δv dv

⎫
⎬

⎭
dt

T∫

0

exp

⎧
⎨

⎩

t∫

0

δv dv

⎫
⎬

⎭
‖ut‖2 dt.

The condition Rt � ρI, t � 0 enables one to write down the relation

‖xT ‖2 � c

T∫

0

exp

⎧
⎨

⎩
−

T∫

t

δv dv

⎫
⎬

⎭
dt

T∫

0

u′tRtut dt,

which with regard for nondecreasing δt provides the inequality

δT ‖xT ‖2 � c0

T∫

0

u′tRtut dt (A.2)

under certain constant c0 > 0. Using the elementary inequality 2ab � a2/c+ cb2 which is valid for
an arbitrary c > 0 for any numbers a, b and the relation ‖ΠT ‖ � c̄/δT (c̄ > 0 is some constant),
obtain with regard for (A.2) the estimate

EJT (U
∗) � EJT (U) + c1

E‖X∗
T ‖2

δ3T
, (A.3)

where c1 > 0 is some constant.

Solution of (10) is given as X∗
T = Φ(T, 0)x+

∫ T
0 Φ(T, t)Gtdwt where Φ(t, s) is defined for the

matrix At −BtR
−1
t B′

tΠt with the stability rate δ̃t = λδt (see Lemma). Then,

E‖X∗
T ‖2 � c

⎛

⎝exp

⎧
⎨

⎩
−2

T∫

0

δ̃v dv

⎫
⎬

⎭
‖x‖2 +

T∫

0

exp

⎧
⎨

⎩
−2

T∫

t

δ̃v dv

⎫
⎬

⎭
‖Gt‖2dt

⎞

⎠ .
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Considering the relation LT =
δ−1
T

E‖X∗
T ‖2

∫ T

0
(‖Gt‖2/δt)dt

one can readily establish its boundedness and, conse-

quently, LT/δ
2
T → 0, T → ∞. Therefore, by normalizing (A.3) with

∫ T
0 (‖Gt‖2/δt) dt we come at

the limit to the inequality

lim sup
T→∞

EJT (U
∗)

T∫

0
(‖Gt‖2/δt) dt

� lim sup
T→∞

EJT (U)
T∫

0
(‖Gt‖2/δt) dt

,

which gives U∗ as the solution of the problem (11). Then, with the use of the Ito formula (see
also [17]) we show that

EJT (U
∗) = x′Π0x− E[(X∗

T )
′ΠTX

∗
T ] +

T∫

0

tr(G′
tΠtGt) dt, (A.4)

whence it follows with regard for ‖ΠT ‖ � c̄/δT (c̄ > 0 is some constant) that (12). It also follows
from the resulting estimate for E‖X∗

T ‖2 that fulfillment of the condition ‖Gt‖/δ2t → 0, t → ∞, leads
to E‖X∗

T ‖2/δ3T → 0, T → ∞, and in this the overtaking optimality of the control U∗ takes place
owing to inequality (A.3) (see (8)), which proves Theorem 1.
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