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Abstract—We consider the problem of modeling anomalous diffusions with the Ornstein–
Uhlenbeck process with time-varying coefficients. An anomalous diffusion is defined as a process
whose mean-squared displacement non-linearly grows in time which is nonlinearly growing in
time. We classify diffusions into types (subdiffusion, normal diffusion, or superdiffusion) de-
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mean-squared displacement function.
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1. INTRODUCTION

The Ornstein–Uhlenbeck process is widely used in dynamic modeling problems under the in-
fluence of random factors (see, e.g., [1, 2]) and also plays an important role in optimal control
theory (in particular, it arises in the solution of the stochastic linear controller problem, see [3]).
At first, the process with this name (see [4]) was used to describe the velocity of a particle moving
in a random environment, which can be implemented in the form of a linear stochastic differential
equation:

dXt = −κ1Xtdt+ σdwt, X0 = x, (1)

where Xt, t � 0, is the velocity process; κ1, σ > 0 are constants reflecting respectively the rate of
convergence of Xt to its asymptotic average value EX∞ = 0 and the contribution of the random
component in the process dynamics; wt, t � 0, is the standard one-dimensional Wiener process;
x is the initial value of the velocity. One of the main characteristics in the study of such a model
is the displacement process YT =

∫ T
0 Xt dt, where T � 0 is the time of motion.

In what follows we will need a modified definition of asymptotic equivalence of two functions.

Definition 1. Functions ft and gt are called asymptotically equivalent with respect to the order
of their changes, denoted ft ∼ gt, if

lim
t→∞

ft
gt

= c > 0, where c is some constant.
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An important feature of (1) is that the mean-squared displacement DT equal to EY 2
T has order T

(DT ∼ T ), i.e., it is close to the displacement Y
(w)
T defined by the Wiener process Y

(w)
T = wT , where

also E[Y
(w)
T ]2 = T . Such processes are known as normal diffusions [2]. Advantages of the displace-

ment model YT =
∫ T
0 Xt dt compared to Y

(w)
T = wT include the existence of derivative with respect

to time: dYt = Xtdt, which is known to be lacking for Y
(w)
t (trajectories wt with probability one

are not differentiable [5]). At the same time, processes where DT �∼ T have been known for a long
time; they should be called anomalous diffusions (see surveys in [6, 7]). A fundamental property of
an anomalous diffusion is a nonlinear change in time of the corresponding mean-squared displace-
ment. As we have noted above, the linear case corresponds to the standard Ornstein–Uhlenbeck
process (1) and to the Wiener process wt if as the model of the particle’s position one takes the
Brownian motion itself. For anomalous diffusions one often assumes a functional dependence of
the mean-squared displacement DT on time T , which has a power law: DT = Tα (α > 0). Here
researchers distinguish subdiffusion (0 < α < 1) and superdiffusion when α > 1, also considering
“superslow diffusions” with DT ∼ lnT and other slowly growing functions, see, e.g., [7]. In the
present work, to define an anomalous diffusion we propose to consider a nonstationary Ornstein–
Uhlenbeck process Xt, t � 0, with time-varying coefficients (in Eq. (1) the constants (−κ1), σ are
replaced with piecewise continuous functions of time at, σt). Precise requirements on the coefficients
will be shown below; so far we emphasize that these functions can be both unbounded for t → ∞
and can tend to zero. In special cases, modeling of anomalous diffusions with this kind of a process
was done in [6, 8] for power law type functions.

The purpose of this work is to classify diffusions into types (subdiffusion, normal diffusion,
superdiffusion) based on known parameters of the underlying process Xt and solutions to the
inverse problem of finding coefficients Xt for modeling a given mean-squared displacement DT . We
note that by the definition of displacement YT =

∫ T
0 Xt dt, in the study of anomalous diffusions

an important question is to examine YT , the integrated Ornstein–Uhlenbeck process (“integrated”
here is a term from probability and statistics used to denote integrals of Riemann type for random
processes). Analysis of an integrated process also is of independent importance since it is widely
used in practical applications (modeling cumulative volatility [9] and asset return [10], logarithm
of population size [11], power consumption [12], geology [13] and others). Often it is Yt which
is available for observation instead of Xt [12, 14], and estimation of the parameters of Xt by
known data on Yt is usually done under stationarity assumptions [12, 14] for process Xt, which
obviously does not hold in many situations (see, e.g., [15–17]). One possible way to construct YT

with DT = EY 2
T �∼ T is dynamic scaling [13] of the displacement corresponding to the standard

process (1), i.e., an external transformation that does not account for possible non-autonomous
dynamics of the equations on Xt. In this work we will show that in order to model a known mean-
squared displacement function DT it suffices that the process parameters obey a relation based on
Riccati equations known from filtering theory. The paper is organized as follows. In Section 2 we
formulate the basic assumptions on the coefficients of dynamics equations, give a formal definition
of anomalous diffusion, show a statement that lets one determine the diffusion type based on the
parameters of process Xt, and give examples. Section 3 is devoted to solving the problem of finding
parameters Xt in order to construct a given mean-squared displacement function and examples of
applying the resulting relations.

2. THE NOTION OF ANOMALOUS DIFFUSION AND FINDING ITS TYPE
BASED ON THE COEFFICIENTS OF THE GENERATING PROCESS

Suppose that on a complete probability space {Ω,F ,P} we have a scalar random process Xt,
t � 0, which is a Ornstein–Uhlenbeck process with time-varying coefficients defined by a non-
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autonomous linear stochastic differential equation

dXt = atXtdt+ σtdwt, X0 = x, (2)

where the initial state x is non-random; wt, t � 0, is the standard Wiener process; at, σt, t � 0,
are piecewise continuous functions of time. Note that for σt → 0, t → ∞, we have the case of
the so-called attenuating disturbances (see [18, 19] for applications in control theory); if, on the
other hand, σt → ∞, then disturbances grow with time (see, e.g., the cognitive model in [16] or a
description of the population dynamics in [20]), which certainly also influences the dynamics and
statistical characteristics of the process (2).

A solution of (2) is a process of the form

Xt = Φ(t, 0)x+

t∫

0

Φ(t, s)σsdws, (3)

where Φ(t, s) = exp
{∫ t

s av dv
}
.

Let us write down the main characteristics of the process (3); see, e.g., [21]:

expectation

EXt = Φ(t, 0)x,

second moment function

EX2
t = Φ2(t, 0)x2 +

t∫

0

Φ2(t, s)σ2
s ds, (4)

covariance function

E(XtXs) = Φ(χ, τ)EX2
τ , where χ = max(t, s), τ = min(t, s). (5)

We assume that function at, t � 0, guarantees stability with rate δt for solutions of the corre-
sponding deterministic equation. Namely, there exists a function δt > 0, t � 0, such that

(i) lim sup
t→∞

(|at|/δt) < ∞;

(ii) Φ(t, s) � κ exp

⎧
⎨

⎩
−

t∫

s

δv dv

⎫
⎬

⎭
, s � t,

for some constant κ > 0;

(iii)

t∫

0

δv dv → ∞, t → ∞.

Note that function δt can be naturally called the stability rate since according to (ii) this function
determines the rate of decrease for the upper bound for Φ(t, s). Next we comment on the introduced
conditions. Condition (i) means that the chosen stability rate δt cannot be improved for the class of

functions of the form δ
(1)
t = λδt (λ > 0 is a constant). For example, for an unbounded (for t → ∞)

at it is impossible to have optimal stability rate which is equal to a constant. Relation (ii) together
with (iii) yields a definition of asymptotic stability for the solutions of (2) when σt ≡ 0, see [22].
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Note that in case δt ≡ κ1 > 0 we get an exponential stability type; for δt → 0, t → ∞, the resulting
stability is weaker, subexponential, and for δt → ∞, on the contrary, we see superexponential
stability (the terminology arose in the analysis of nonlinear equations, see, e.g., [23]).

Assuming that the initial position is zero, we define the displacement process

YT =

T∫

0

Xt dt, T � 0,

and find the mean-squared displacement

DT = E

⎛

⎝
T∫

0

Xt dt

⎞

⎠

2

. (6)

We transform (6), using a formula for the variance of Riemann type integrals of random processes
(see, e.g., [24])

DT =

T∫

0

T∫

0

E(XtXs) ds dt;

substituting (5), we get

DT =

T∫

0

t∫

0

Φ(t, s)EX2
s ds dt+

T∫

0

T∫

t

Φ(s, t)EX2
t ds dt. (7)

It is interesting to study the behavior of DT for T → ∞, so if for some nondecreasing func-
tion D̃T > 0 it holds that D̃T ∼ DT (see Definition 1), this asymptotically equivalent function will
also characterize the order of change in the mean-squared displacement DT . Note that due to (ii)
and inequality Φ(t, s) � κ0 exp{−

∫ t
s κ̄δv dv} (κ0, κ̄ are some positive constants) mean-squared dis-

placement DT can be estimated as

κ30D
(1)
T � DT � κ3D

(2)
T , (8)

where D
(1)
T and D

(2)
T are the mean-squared displacements defined based on (2) for the cases

at = −κ̄δt and at = −δt respectively. For these situations, we have also introduced separate nota-
tions for second moment functions (see (4)):

m
(1)
t = exp

⎧
⎨

⎩
−2

t∫

0

κ̄δv dv

⎫
⎬

⎭
x2 +

t∫

0

exp

⎧
⎨

⎩
−2

t∫

s

κ̄δv dv

⎫
⎬

⎭
σ2
s ds, (9)

m
(2)
t = exp

⎧
⎨

⎩
−2

t∫

0

δv dv

⎫
⎬

⎭
x2 +

t∫

0

exp

⎧
⎨

⎩
−2

t∫

s

δv dv

⎫
⎬

⎭
σ2
s ds. (10)

Integrating by parts, we transform representation (7) to the form

DT = 2

T∫

0

t∫

0

Φ(t, s)EX2
s ds dt. (11)

Next we formulate the definition of an anomalous diffusion.
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Definition 2. Let d1 = lim inf
t→∞ (DT /T ) and d2 = lim sup

t→∞
(DT /T ). If 0 < d1 � d2 < ∞ then the

diffusion is called normal, otherwise it is anomalous: for d2 = 0, a subdiffusion; for d1 = ∞, a
superdiffusion.

In the following statement we show conditions that let us classify diffusion (2) depending on the

characteristics of processes that define mean-squared displacements D
(1)
T and D

(2)
T .

Theorem 1. Let d(1) = lim inf
t→∞ (m

(1)
t /δt) and d(2) = lim sup

t→∞
(m

(2)
t /δt), where m

(1)
t and m

(2)
t have

been defined in (9) and (10). Then the following diffusion types are possible:

1) for 0 < d(1) � d(2) < ∞—normal diffusion;
2) for d(2) = 0—subdiffusion;
3) for d(1) = ∞—superdiffusion.

Proofs of Theorem 1 and the Theorem 2 shown below are given in the Appendix. Next we show
sample applications of Theorem 1 for classification of diffusions under various coefficients at and σt.

Example 1. Let us consider Eq. (2) for an important special case [8] of power functions

at = −δt, σt = δ
3/2
t , where δt = (1 + t)α−1 with power α > 0, and classify the resulting diffu-

sions. We use Theorem 1 for this purpose. First, EX2
t = m

(1)
t = m

(2)
t = exp

{
−2
∫ t
0 δv dv

}
x2 +

∫ t
0 exp

{
−2
∫ t
s δv dv

}
δ3s ds. Next we note that EX2

t ∼ δ2t with δ2t = (1 + t)2α−2 for α �= 0 and

EX2
t ∼ ln(t+ 1)/(t+ 1)2 for α = 0. We find d(1) = d(2) = lim

t→∞(EX2
t /δt) = lim

t→∞ δt if α �= 0 and

d(1) = d(2) = 0 in the case α = 0. Then by Theorem 1 we have that: the value 0 � α < 1 cor-
responds to a subdiffusion; α = 1, to normal diffusion; α > 1, to superdiffusion. Indeed, it is easy
to see (see also [8]) that the mean-squared displacement DT ∼ Tα (α > 0) or DT ∼ ln3 T (α = 0).

In many cases, the statement of Theorem 1 readily enables us to classify the diffusion based on
analyzing the relations between parameters δt and σt.

Corollary. Consider the constants s1 = lim inf
t→∞ (σ2

t /δt), s2 = lim sup
t→∞

(σ2
t /δt). Then:

(a) for exponential stability type with δt ≡ κ1: 0 < s1 � s2 < ∞ is normal diffusion; s2 = 0—
subdiffusion; s1 = ∞—superdiffusion;

(b) for subexponential stability type with δt → 0, t → ∞: s1 > 0—superdiffusion;
(c) for superexponential stability type with δt → ∞, t → ∞: s2 < ∞—subdiffusion.

Example 2. Let σ2
t ∼ δt and suppose that σ2

t = k2δt, where k > 0 is a constant. In this case an
increment of process Xt defined by Eq. (2) is proportional (with a time-varying coefficient δt) to the

differential of the deviation of the displacement process Yt from the scaled Brownian motion Y
(W )
t ,

see [6], which is also used as the displacement model in case of an anomalous diffusion in [25].

Namely, dXt = δtdZt, where Zt = Y
(W )
t − Yt, for Yt =

∫ t
0 Xs ds, and Y

(W )
t =

∫ t
0 (k/

√
δt)dws. Note

that the faster δt increases, i.e., the larger is the stability rate in Eq. (2), the more stable (in

terms of the distribution) will the process Y
(W )
t be and the smaller will be its contribution to the

dynamics of Zt. Indeed, the quadratic variation is 〈Y (W )
t 〉 = E[Y

(W )
t ]2 =

∫ t
0 (k

2/δt) dt and for the

limiting value 〈Y (W )
∞ 〉 it will hold that Y

(W )
t → Y

(W )
∞ with probability one for t → ∞, see [26],

where Y
(W )
∞ is a Gaussian random variable. Under the assumptions of the corollary, we have

constants s1 = s2 > 0. Then it becomes obvious that for subexponential stability we have the
resulting superdiffusion, exponential stability type leads to normal diffusion; superexponential, to
subdiffusion.
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3. DIFFUSION PARAMETER DETERMINATION FOR A GIVEN FUNCTION
OF MEAN-SQUARED DISPLACEMENT

Suppose that we know the function DT , T � 0, and the problem is to find at = −δt and σt
for Eqs. (2) for which the corresponding displacement process would be asymptotically equivalent
to DT in mean squares. It turns out that this problem always has a solution under the natural
condition that the mean-squared displacement function increases monotonely.

Theorem 2. Let Dt be a three times differentiable function, and D′
t > 0, t � 0. Then there exists

a pair of functions (δt, σ
2
t ), where δt > 0 defines the stability rate and σ2

t > 0, related by

δ̇t +
3D′′

t

D′
t

δt + 2δ2t +
D′′′

t

D′
t

=
2σ2

t

D′
t

δ0 = δ̄, (12)

(δ̄ > 0 is an arbitrary initial condition), such that for the displacement process

D̃T = 2

T∫

0

exp

⎧
⎨

⎩
−

t∫

0

δv dv

⎫
⎬

⎭

t∫

0

exp

⎧
⎨

⎩

s∫

0

δv dv

⎫
⎬

⎭
m(2)

s ds dt, (13)

it holds that D̃T ∼ DT . Here the function m
(2)
t in (13) is defined by (10) with x = 0.

Remark 1. A known comparison theorem for solutions of Riccati equations (see [27, Theo-

rem 4.1]) implies that δt monotonically increases with respect to σ2
t . Let δ

(1)
t and δ2t be the solutions

of Eqs. (12) with the same initial condition δ̄ for different σ
(1)
t and σ

(2)
t . If

(
σ
(1)
t

)2
�
(
σ
(2)
t

)2
, t � 0,

then δ
(1)
t � δ

(2)
t , t � 0. Consider (12) for 2σ2

t −D′′′
t ≡ 0, then (12) becomes a Bernoulli equation

δ̇t +
3D′′

t

D′
t

δt + 2δ2t = 0, δ0 = δ̄

whose solution can be written down in a closed form:

δ̃t =
1

(D′
t)
3

[

1/δ̄ +
t∫

0
1/(D′

s)
3 ds

]. (14)

By the comparison theorem [27, Theorem 4.1] it follows that δt � δ̃t, where δt is the solution of (12)
for the case when 2σ2

t −D′′′
t � 0. For example, for DT = T we have the bound δt � 1/(δ̄−1 + t).

The resulting boundary (14) will correspond to the case of diffusion with coefficient σ̃2
t = D′′′

t /2 if
D′′′

t > 0, t � 0.

Remark 2. When finding δt and σ2
t in case of a normal diffusion (DT = T ) Eq. (12) takes the

form 2σ2
t = 2δ2t + δ̇t. Suppose that coefficients δt and σ2

t are known, and we want to find out which
diffusion type they generate. Let 2σ̃2

t = 2δ2t + δ̇t > 0. Then the condition from Theorem 1 can be
rewritten as lim

t→∞[EX2
t /δt] = lim

t→∞[σ2
t /(2δ

2
t + δ̇t)] = lim

t→∞[σ2
t /σ̃

2
t ], i.e., we compare the actual diffusion

coefficient σt and theoretical one σ̃t corresponding to regular diffusion for a fixed stability rate δt.

Example 3. As an example, consider determination of the stability rate δt for a constant co-
efficient σt ≡ σ > 0 for three types of diffusions with the following mean-squared displacement
functions: (a) DT = T ; (b) DT = (T + 1)2; (c) DT = ln(T + 1). We use Theorem 2 and in all cases
will assume that the initial value of stability rate δ0 = σ is the same. Then the following situations
hold:
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(a) for DT = T Eq. (12) becomes a Riccati equation with constant coefficients

δ̇t + 2δ2t = 2σ2

and for initial condition δ0 = σ it has a solution δt ≡ σ, t � 0, i.e., it defines the exponential stability
type;

(b) for DT = (T + 1)2 Eq. (12) takes the form

δ̇t +
3

t+ 1
δt + 2δ2t =

σ2

t+ 1
, δ0 = σ,

and has a solution δt > 0, t � 0, for σ > 0; based on our analysis of the dual problem for a linear

controller (see the proof of Theorem 2) we find that δt ∼ 1/
√
t+ 1 = δ

(0)
t , i.e., stability will be

subexponential, and the mean-squared displacement corresponding to δ
(0)
t is D

(0)
T ∼ (T + 1)2;

(c) if DT = ln(T + 1) then (12) becomes the following equation:

δ̇t − 3

t+ 1
δt + 2δ2t = 2σ2(t+ 1)− 2

t+ 1
, δ0 = σ,

with a positive solution δt > 0, t� 0, for σ > 1. Considering the dual problem for a linear controller,

we conclude that δt ∼
√
t+ 1 = δ

(0)
t is the superexponential stability type. It is easy to see that in

this case D
(0)
T ∼ ln(T + 1).

In conclusion we note that δt found in Example 3 and the corresponding constant diffusion
coefficients σ in the modeling of DT for cases (a)–(c) are in accordance with the conclusions made
in Corollary:

(a) σ2/δt = σ2/σ is constant, and δt = σ does indeed generate normal diffusion (DT = T );

(b) δt ∼ 1/
√
t+ 1 and σ2/δt → ∞, t → ∞, and we get superdiffusion (DT = (T + 1)2);

(c) δt ∼
√
t+ 1, σ2/δt → 0, t → ∞, then subdiffusion is obvious, and it does hold with

DT = ln(T + 1).

4. CONCLUSION

In this work we have considered the problem of modeling anomalous diffusions with the Ornstein–
Uhlenbeck process with time-varying coefficients. The statement of Theorem 1 on the classification
of diffusions lets us conclude that anomalous diffusions may result from a disproportional change in
the time variance of the process compared to the stability rate. The result formulated as a Riccati
equation (12), where two parameters δt and σt turn out to be connected by a single relation, matches
the remark made in [12] that it is impossible to independently determine the stability rate and
diffusion coefficient when observing the displacement process (the work [12] analyzed a standard
Ornstein–Uhlenbeck process (1)). At the same time, the relation shown in Theorem 2 between
stability rate and the diffusion coefficient corresponding to mean-squared displacement DT can
also be used to solve the problem when one of the parameters (2) is already known. More precisely,
if we fix δt or σ

2
t then the second parameter is defined by (12) provided that the resulting function

has given properties: σ2
t > 0 (for known δt) or δt > 0,

∫ t
0 δv dv → ∞, t → ∞ (for known σ2

t ).
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APPENDIX

Proof of Theorem 1. In case 1 function c1δt � m
(1)
t � c2δt and c1δt � m

(2)
t � c2δt, for some

constants c1, c2 > 0 at time t > t0 (t0 � 0). Then these relations and representation (11) yield the
bound

IT + c1

T∫

0

⎡

⎣1− exp

⎧
⎨

⎩
−

t∫

t0

δvdv

⎫
⎬

⎭

⎤

⎦ dt � D
(2)
t

� IT + c2

T∫

0

⎡

⎣1− exp

⎧
⎨

⎩
−

t∫

t0

δvdv

⎫
⎬

⎭

⎤

⎦ dt, T > t0,

where integral IT is defined as

IT =

t0∫

0

exp

⎧
⎨

⎩

s∫

0

δv dv

⎫
⎬

⎭
m(2)

s ds

T∫

0

exp

⎧
⎨

⎩
−

t∫

0

δv dv

⎫
⎬

⎭
dt.

Convergence
∫ T
0 exp

{
− ∫ t0 δv dv

}
dt/T → 0, T → ∞ follows from condition (iii), so 0 <

lim inf
T→∞

(D
(2)
T /T ) � lim sup

T→∞
(D

(2)
T /T ) < ∞. We can perform similar considerations for D

(1)
T as well,

showing that 0 < lim inf
T→∞

(D
(1)
T /T ) � lim sup

T→∞
(D

(1)
T /T ) < ∞. Due to inequality (8), we conclude

that DT corresponds to normal diffusion. In case 2 the function m
(2)
t < εδt for an arbitrarily

small number ε > 0 and t > t0(ε), so D
(2)
T < IT + εT , which means that (D

(2)
T /T ) → 0, T → ∞,

and we get subdiffusion. In case 3, on the contrary, we have the bound m
(1)
t � cκ̄δt for

an arbitrarily large c > 0 for t > t0(c). Then D
(1)
T � ĪT + cT − c

∫ T
0 exp

{
− ∫ tt0 κ̄δvdv

}
dt, where

ĪT =
∫ t0
0 exp {∫ s0 κ̄δvdv}m(2)

s ds
∫ T
0 exp

{
− ∫ t0 κ̄δvdv

}
dt, which leads to (D

(1)
T /T ) → ∞, T → ∞ and

characterizes superdiffusion. This concludes the proof of Theorem 1.

Proof of Theorem 2. Equation (12) is a Riccati equation arising in filtering theory [28]:

δ̇t = 2gtδt − b2t δ
2
t + qt, δ0 = δ̄, (A.1)

where gt = −3D′′
t

2D′
t

, b2t = 2, qt =
2σ2

t −D′′′
t

D′
t

.

It is known that Eq. (A.1) has a nonnegative solution δt given that δ̄ � 0, qt � 0, t � 0, and the
solution can be represented as (see [29])

δt = δ0 exp

⎧
⎨

⎩
2

t∫

0

(gv − b2vδv/2) dv

⎫
⎬

⎭
+

t∫

0

exp

⎧
⎨

⎩
2

t∫

s

(gv − b2vδv/2) dv

⎫
⎬

⎭
qs ds.

Since D′
t > 0, δ0 > 0, and the sign of D′′′

t is not known in the general case, then, letting the
coefficient σ2

t > 0 to be such that 2σ2
t −D′′′

t > 0, t � 0, we get a function δt > 0, t � 0. Further
we need to show that σ2

t can be found in such a way that the δt derived from (12) defines the
stability rate, i.e., it holds that

∫ t
0 δv dv → ∞, t → ∞. To achieve this, we define a lower bound δt

by estimating function pt = 1/δt from above. It is easy to see that the equation on pt will also be
a Riccati equation:

ṗt = −2gtpt + b2t − qtp
2
t , p0 = 1/δ0 > 0.
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We construct a deterministic control problem (linear controller, see [28]) by passing to reverse time.
Let p̃t = p−t. Then function p̃t for t � 0 is a solution of a Riccati equation with boundary condition
at time moment T = 0:

˙̃pt − 2g−tp̃t + b2−t − q−tp̃
2
t = 0, p̃T = p0. (A.2)

The corresponding equation of control system state dynamics is

dxt = (−g−txt + ut)dt, xτ = 1,

where ut is the control function and τ < T is an arbitrary fixed moment of time. The objective
functional is

JT,τ (u) =

T∫

τ

(

b2−tx
2
t +

u2t
q−t

)

dt+ p0x
2
T , τ < T.

It is well known (see [3, 28]) that minu JT,τ (u) = JT,τ (u
∗) = p̃τ , where the control law is

u∗t = −q−tp̃tx
∗
t , and the function p̃t = p−t is a solution of (A.2). If we take a control u

(0)
t com-

peting with strategy u∗t , then for a suitably defined q−t in the objective functional we can find
an upper bound on p̃τ that ensures (iii) for stability rate δt. For example, the exponentially sta-

ble law u
(0)
t = (g−t − 1)x

(0)
t defines the trajectory x

(0)
t = exp{−(t− τ)}. The objective functional

value here is JT,τ (u) =
∫ T
τ exp {−2 (t− τ)} [b2−t + (g−t − 1)2/q−t

]
dt+ p0 exp {−2(T − τ)}. Since

b2−t = 2 then q−t can be chosen to be such that the coefficient (g−t − 1)2/q−t is bounded, e.g.,
q−t = 1 + (g−t − 1)2, t � 0. Then p̃τ = JT,τ (u

∗) � JT,τ (u
0) � c for some constant c > 0 and any

τ < T . Due to relation p̃τ = p−τ function pt � c, t > 0. Consequently, δt � 1/c and
∫ t
0 δv dv → ∞,

t → ∞, for σ2
t > 0 and (2σ2

t −D′′′
t )/D

′
t > (1− gt)

2, where gt = −3D′′
t /2D

′
t.

Thus, we have shown that there exist δt and σ2
t with the required properties. To prove that

D̃T ∼ DT with mean-squared displacement D̃T defined with (11) and parameters δt and σ2
t related

by (12), we rewrite (12) as

2σ2
t exp

⎧
⎨

⎩
2

t∫

0

δv dv

⎫
⎬

⎭
=
[
2δt
(
D′′

t +D′
tδt
)
+
(
D′′′

t +D′′
t δt+D′

tδ̇t
)]
exp

⎧
⎨

⎩
2

t∫

0

δv dv

⎫
⎬

⎭
.

Integrating the above relation twice with suitably chosen multipliers, we get that

2

T∫

0

exp

⎧
⎨

⎩
−

t∫

0

δv dv

⎫
⎬

⎭

t∫

0

exp

⎧
⎨

⎩

s∫

0

δv dv

⎫
⎬

⎭
m(2)

s ds dt = DT −D0 − IT ,

where m
(2)
t has been defined in (10) for x = 0,

IT =

T∫

0

exp

⎧
⎨

⎩
−

t∫

0

δv dv

⎫
⎬

⎭

⎡

⎣c1

t∫

0

exp

⎧
⎨

⎩
−

s∫

0

δv dv

⎫
⎬

⎭
ds+ c2

⎤

⎦ dt,

and constants c1 = δ0D
′
0+D′′

0 , c2 =D′
0. Due to (13) we get a representation D̃T =DT −D0− IT .

It is easy to see that now 0� lim
T→∞

(IT /D̃T )<∞, which implies that D̃T ∼ DT . This concludes the

proof of Theorem 2.
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