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Abstract— In this paper we consider infinite-time linear
quadratic Gaussian control problems for non-autonomous sys-
tems with possibly unbounded coefficients of their inhomoge-
neous components. It is shown that under standard stabiliz-
ability and detectability conditions, along with assumptions on
inhomogeneous term growth, there exists an optimal control
law. This control law of well-known feedback form appears
to be optimal with respect to proposed extended criteria. The
applied criteria expand the notions of long-run average and
pathwise long-run average, commonly used for ergodic control.
We also investigate the discounted tracking problems, where
the cost incorporates a discount function penalizing deviations
from reference trajectories.

I. INTRODUCTION

The linear system theory has been recognized one of
the most intensively studied fields with a wide range of
applications. Stochastic control problems posed over an
infinite-time horizon are of particular interest involving,
along with investigation of basic system properties such as
stabilizability, controllability etc., some specific issues. As
the commonly used long-run average cost does not always
conform, the first important task which seems to arise is the
choice of optimization criterion. Being in a stochastic setting
means that we may also like to consider pathwise control
problems, e.g., pathwise ergodic control, developed mainly
for time-invariant systems [1]–[3]. However, in economic
applications time-invariance could not be perfectly adopted,
at least if we include non-exponential discounting in the
model. Again, long-run macroeconomic policy evaluation,
assuming integral quadratic performance index, requires the
use of target states [4], [5], as well as possibly unbounded
reference trajectories that vary in time [6], [7] (for financial
and insurance applications see [8], [9]). This paper deals
with infinite-time linear quadratic Gaussian control for non-
autonomous systems having inhomogeneous part both in the
state equation and cost. In contrast to the standard LQG
setting, we permit unbounded growth of inhomogeneous
components as time goes to infinity. For such a class of
control systems the long-run average cost becomes irrelevant,
not providing finite values even on stable feedback laws.
Therefore, one of the main contributions of this work consists
in development of an extended criterion within the study
of average optimality. The average optimality concept, e.g.,
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in Markov Decision Processes, see [10], emphasizes that
the problem of seeking an optimal control relies on some
criterion associated with expected costs. The essential feature
of infinite-time LQG control is that the form of an average
optimal strategy should be derived as a limit of solutions
obtained on bounded time intervals. This implies the con-
sideration of the stable linear feedback law, which we prove
to be optimal. In stochastic environment optimality on the
average may not represent the best potential long-term per-
formance characteristic of a control. Instead, one might wish
to consider a criterion based on sample paths of stochastic
processes. It is calculated pathwise, and, in general, defines a
random variable (e.g., pathwise long-run average or pathwise
ergodic costs, see [2], [3]). Here we propose an extended
pathwise criterion for inhomogeneous systems. Another con-
tribution of our research is that the optimal feedback is also
shown to possess the pathwise optimality property under
conditions on criterion denominator. The case of discounted
tracking problem is also considered, when the cost contains
asymptotically singular matrices and possibly unbounded
reference trajectories. The work is organized as follows. In
Section 2 we introduce the linear inhomogeneous control
system together with basic assumptions which guarantee the
existence of optimal feedback law. Section 3 presents our
main results regarding the optimality of the feedback with
respect to extended criteria. Section 4 is devoted to the
discounted control problems. The last section concludes.

II. PROBLEM FORMULATION

Let Xt, t ≥ 0, be an Rn–valued process defined on a
complete probability space {Ω,F ,P} by

dXt = AtXtdt+BtUtdt+mtdt+Gtdwt , X0 = x , (1)

where x is a non-random vector; At, Bt, Gt, t ≥ 0,
are bounded (non-random) time-varying matrices of appro-
priate dimensions; wt, t ≥ 0 is a d-dimensional standard
Wiener process; Ut, t ≥ 0, is an admissible control, i.e. an
Ft = σ{ws, s ≤ t}–adapted k-dimensional process such that
there exists a solution to (1). Let us denote by U the set of
admissible controls. The quadratic cost over the planning
horizon [0, T ] is given by

JT (U) =
∫ T

0

(X ′
tQtXt +U ′

tRtUt +2q′tXt +2r′tUt) dt, (2)

where U ∈ U is an admissible control on [0, T ], Qt ≥ 0,
Rt ≥ ρI, t ≥ 0, are bounded symmetric time-varying ma-
trices. Here ′ denotes the matrix transpose, ρ > 0 is a
constant, we write A ≥ B if the difference A−B is positive



semidefinite, I is an identity matrix. We allow the vector
functions mt, rt, qt describing inhomogeneous terms to
be unbounded as t →∞. More specifically, we adopt the
following assumption:

Assumption 1. Let Lt = ‖mt‖2 + ‖qt‖2 + ‖rt‖2 with
‖ · ‖ stated for the Euclidean matrix norm. Then

lim
t→∞

Lt

t∫
0

Ls ds

= 0 .

By Assumption 1 possible extreme growth of inhomo-
geneous part is avoided. We also need to assume that
the standard requirements concerning system properties are
satisfied.

Assumption 2. (At, Bt) is stabilizable and (At,
√

Qt) is
detectable (for the definitions of these properties refer to,
e.g., [11]).

Assumption 2 implies, see, e.g., [12], that there exists a
bounded symmetric solution Πt ≥ 0, t ≥ 0, to the matrix
Riccati differential equation

Π̇t + ΠtAt + A′tΠt −ΠtBtR
−1
t B′

tΠt + Qt = 0 , (3)

such that the matrix At = At −BtR
−1
t B′

tΠt is exponen-
tially stable, i.e. the transition matrix Φ(t, s) corresponding
to At admits the upper bound

‖Φ(t, s)‖ ≤ κ1e
−κ2(t−s), s ≤ t ,

with some constants κ1, κ2 > 0.
Then we can define the so-called stable feedback control

law U∗ in the form

U∗
t = −R−1

t [rt + B′
t(ΠtX

∗
t + pt)] , (4)

where pt is the solution to

ṗt +A′tpt + Πt(mt −BtR
−1
t rt) + qt = 0 , (5)

and the process X∗
t , t ≥ 0, is governed by

dX∗
t = AtX

∗
t dt + µtdt + Gtdwt , X∗

0 = x . (6)

with µt = mt −BtR
−1
t (rt + B′

tpt) .
In the autonomous case of (1)–(2), the stable feedback U∗

happens to be optimal with respect to the long-run average
cost criterion [13]. Namely, U∗ solves

lim sup
T→∞

EJT (U)
T

→ inf
U∈U

.

The above criterion does not seem to be suitable for the inho-
mogeneous system, e.g., being unbounded when Lt → ∞ ,
t →∞, or taking zero value if ‖Gt‖2 + Lt → 0, t →∞.
Thus the long-run average, as well as its respective pathwise
(ergodic) modification, needs to be extended in order to cover
the inhomogeneous case. The control problem with pathwise
long-run average

lim sup
T→∞

JT (U)
T

→ inf
U∈U

almost surely (a.s.) (7)

also has U∗ as a solution if the linear control system is time-
invariant [14]. The notion pathwise comes from the fact that

lim sup
T→∞

(JT (U∗)/T ) ≤ lim sup
T→∞

(JT (U)/T )

holds P -almost surely. The probability measure P was
previously introduced to define the Wiener process wt on
{Ω,F ,P}, see (1). Here and in what follows we adopt the
notation a.s. (almost surely) to indicate a particular relation
valid with probability 1 when P is used (e.g. convergence
of stochastic processes).

It is worthwhile to mention previous studies [15], [16]
on pathwise LQG control with inhomogeneous terms. The
primary focus there was on the cost difference growth
as T →∞. The problem of tracking periodic function
under considerable restrictions on the set of admissible
controls (in particular, those providing bounded variance
of the state process) admitted a.s. overtaking optimal U∗,
i.e. JT (U)− JT (U∗) →∞, a.s., T →∞, see [15]. In the
case of (1)–(2) with bounded vector functions, it was
proven [16] that lim sup

T→∞
gT (JT (U∗)− JT (U)) ≤ 0 a.s. for

gT = o(1/ lnT ), meaning gT is infinitesimal compared with
1/ lnT as T →∞. In the next section we will investigate
not only the cost difference asymptotic behavior, but also the
cost JT (U∗) itself in order to establish appropriate average
and pathwise optimality criteria.

III. ON AVERAGE AND PATHWISE OPTIMALITY
OF THE STABLE FEEDBACK

In this section we consider infinite horizon control prob-
lems for (1)–(2).

The criterion used here has more general form than the
well-known long-run average, so we call it the extended long-
run average and have to solve

lim sup
T→∞

EJT (U)
T∫
0

(‖Gt‖2 + Lt) dt

→ inf
U∈U

. (8)

As it was pointed out in Section 2 regarding linear au-
tonomous systems, in fact we are to study an average
optimality over an infinite time-horizon of the feedback U∗.
Generally speaking, one may define the average optimality of
control as being established with respect to an index based on
expected values of the cost (e.g. the long-run average cost).
The problem for homogeneous case, Lt ≡ 0, was treated in
[17] with the impact of Gt included into the criterion.

Next we provide two useful lemmas concerning bounds
on pt and X∗

t in terms of Lt.
Lemma 1. Let Assumptions 1 and 2 be satisfied. Then

a)

t∫
0

‖ps‖2 ds ≤ cL

t∫
0

Ls ds for some constant cL > 0;

b)

lim
t→∞

‖pt‖2
t∫
0

Ls ds

= 0 .



Proof. Obviously,

pt =

∞∫
t

Φ′(s, t)[qs + Πs(ms −BsR
−1
s rs)] ds

is a solution to (5). Using the Cauchy-Schwarz inequality
and the exponential stability property of At , we obtain

Pt =

∞∫
t

e−κ2(s−t)Ls ds

and ‖pt‖2 ≤ cPt , for some constant c > 0. The integration
of the latter by parts gives a).

Applying Assumption 1, we may write for ε < κ2 and
t > t0(ε)

Lt < ε

t∫
0

Ls ds , Pt <
ε

κ2 − ε

t∫
0

Ls ds ,

which implies that Pt/
t∫
0

Ls ds → 0, t →∞ and, together

with the estimate previously obtained for ‖pt‖2, gives b).
Lemma 2. Let Assumptions 1 and 2 be satisfied. Then

lim
t→∞

‖X∗
t ‖2

t∫
0

(‖Gs‖2 + Ls) ds

= 0 almost surely .

Proof. We express the solution of (6) in the form
X∗

t = Zt + βt, where Zt solves the homogeneous stochastic
differential equation (6), i.e. for mt ≡ qt ≡ rt ≡ 0, and

βt =

t∫
0

Φ(t, s)[mt −BtR
−1
t (rt + B′

tpt)] .

Then from Assumptions 1–2, b) of Lemma 1 and for some
constant c > 0 it follows that

‖βt‖2 ≤ c

t∫
0

e−κ2(s−t)Ls ds . (9)

Based on (9), by the similar argument as in the proof

of Lemma 1, we have ‖βt‖2/
t∫
0

Ls ds → 0, t →∞. As

concerns Zt, it is known (see [18]) that

‖Zt‖2
t∫
0

‖Gs‖2 ds

→ 0 , a.s., t →∞ ,

and this concludes the proof of the lemma.
Detectability of (At,

√
Qt) required in Assumption 2

implies state-dependent inequality for deterministic homo-
geneous linear regulator with zero initial condition. It will
be needed later to prove the optimality of the feedback U∗.

Lemma 3. Consider (xt, ut), satisfying the deterministic
linear system

dxt = Atxtdt + Btutdt , x0 = 0 . (10)

If (At,
√

Qt) is detectable, then there exists a constant
c0 > 0, such that for any (xt, ut) obeying (10), and T > 0,
we have

‖xT ‖2 +

T∫
0

‖xt‖2 dt ≤ c0

T∫
0

(x′tQtxt + u′tRtut) dt .

The validity of the above statement may be established by
straightforward adaptation of the argument from the proof
of Lemma 3.6 in [12] using the detectability property of
(At,

√
Qt), and hence we omit the proof here.

Now we are ready to state the main result on the average
optimality of the feedback U∗.

Theorem 1. Let Assumptions 1 and 2 be satisfied. Then
the control U∗ given by (4)–(6) is a solution to (8).

Proof. Choose U ∈ U and define ut = Ut − U∗
t ,

xt = Xt −X∗
t . Note that (xt, ut) satisfies (10). It may be

shown, see also [16], that JT (U∗)− JT (U) =

−2

T∫
0

[(X∗
t )′Qtxt + (U∗

t )′Rtut + q′txt + r′tut] dt

−
T∫

0

(x′tQtxt + u′tRtut) dt = 2x′T (ΠT X∗
T + pT )

−
T∫

0

(x′tQtxt + u′tRtut) dt− 2

T∫
0

x′tΠtGt dwt

≤ c1(‖X∗
T ‖2 + ‖pT ‖2)− c2

T∫
0

‖xt‖2 dt− 2

T∫
0

x′tΠtGt dwt.

(11)
The last inequality (11), valid for some constants

c1, c2 > 0, was obtained by the use of Lemma 3 and the
elementary inequality 2ab ≤ a2/c + cb2 for appropriate a, b,
and c > 0. Thus we have

EJT (U∗) ≤ EJT (U) + c1(E‖X∗
T ‖2 + ‖pT ‖2) (12)

After dividing both sides of (12) by
T∫
0

(‖Gt‖2 + Lt) dt, apply

Lemmas 1–2 and get the required optimality of U∗.
Recall (8). We conclude the proof showing that the ex-

tended long-run average criterion is finite on U∗. From (3)–
(6) we obtain the expression for the cost

JT (U∗) = x′Π0x + 2p′0x

−(X∗
T )′ΠT X∗

T − 2p′T X∗
T + NT + 2MT , (13)

where NT =

T∫
0

tr(G′
tΠtGt) dt

+

T∫
0

[2p′t(µt + BtR
−1
t B′

tpt)− r′tR
−1
t rt] dt ,



tr(·) denotes the matrix trace and the term MT is of the
form

MT =

T∫
0

(X∗
t )′ΠtGtdwt +

T∫
0

p′tGtdwt ,

From the above expressions and the use
of Lemmas 1–2 we get the finite value of

lim sup
T→∞

EJT (U∗)/
T∫
0

(‖Gt‖2 + Lt) dt. The proof is complete.

Below we study a stochastic control problem with ex-
tended pathwise long-run average criterion

lim sup
T→∞

JT (U)
T∫
0

(‖Gt‖2 + Lt) dt

→ inf
U∈U

a.s. , (14)

which is a straightforward generalization of (7). The notion
of pathwise control means that we apply optimality criteria
constructed on sample paths themselves rather than on their
average values.

Afterwards the following assumption appears to be neces-
sary in the study of pathwise optimality:

Assumption 3.

lim
T→∞

1
T∫
0

(‖Gt‖2 + Lt) dt

= 0 .

Note we could not expect Assumption 3 to be a corollary
of Assumption 1. For instance, it may not hold for Lt and
Gt that tend to zero as t →∞.

Theorem 2. Let Assumptions 1–3 be satisfied. Then the
control U∗ given by (4)–(6) is a solution to (14). Moreover,

lim sup
T→∞

JT (U∗)
T∫
0

(‖Gt‖2 + Lt) dt

= lim sup
T→∞

EJT (U∗)
T∫
0

(‖Gt‖2 + Lt) dt

.

(15)
Remark 1. Note that (15) can be viewed as analogous

to the well-known ergodicity property in pathwise stochastic
control of autonomous systems [1].

Proof. Recall the upper bound (11) previously established
for the difference JT (U∗)− JT (U) and notice that

lim sup
T→∞

gT (c2

T∫
0

‖xt‖2 dt− 2

T∫
0

x′tΠtGt dwt) ≤ 0

for any function gT → 0, T →∞, please refer to Lemma
A.1 in [16]. Since Assumption 3 holds, we may set

gT = 1/
T∫
0

(‖Gt‖2 + Lt) dt. Then the pathwise optimality of

U∗ follows from Lemmas 1 and 2.
We use (13) to prove (15). It is sufficient to study the

asymptotic behavior of the Ito integral MT . Seeing that its
quadratic variation

EM2
T ≤ c

T∫
0

(‖Gt‖2 + Lt) dt , with some c > 0 ,

by Lemma 1 from [18] we get MT /
T∫
0

(‖Gt‖2 + Lt) dt → 0 ,

a.s., T →∞. Thus the proof is finished.

IV. DISCOUNTED TRACKING PROBLEMS

Consider a linear time-invariant controlled stochastic
process Yt, t ≥ 0 :

dYt = AYtdt + BVtdt + Gdwt , Y0 = y , (16)

where y is non-random, Vt, t ≥ 0 is an admissible control
defined similarly to that of Section 2; V is the set of
admissible controls.

Let vector functions yt, vt represent the reference trajec-
tories of state and control, respectively. Assume that any
deviation of Yt, Vt from yt, vt results in a loss. The loss
is evaluated by the agents according to the concept of time
preference which relates to the timing of an outcome and
can be expressed by means of discount function ft > 0. The
total loss over the planning horizon [0, T ] is measured by a
quadratic cost functional:

J
(d)
T (V ) =

T∫
0

ft[(Yt−yt)′Q(Yt−yt)+(Vt−vt)′R(Vt−vt)] dt ,

(17)
where A,B, G,Q ≥ 0, R > 0, are known constant matrices;
V ∈ V; non-increasing ft is a discount function, lim

t→∞
ft = 0,

f0 = 1, with bounded discount rate φt = −ḟt/ft.

Examples of discount functions. Conventional exponential
discounting ft = e−γt, γ > 0 ; hyperbolic discounting [19]
ft = 1/(1 + θt)θ1/θ , for θ, θ1 > 0 ; double exponential [20]
ft = λe−γ1t + (1− λ)e−γ2t ; γ1, γ2 > 0 , 0 ≤ λ ≤ 1 .

In the absence of reference paths known criterion for
discounted LQG control is based on long-term expected loss
per unit of cumulated discount [21]:

lim sup
T→∞

EJ
(d)
T (V )

T∫
0

ft dt

→ inf
V ∈V

.

This basic criterion was firstly introduced in [22] for
controlled diffusion processes in bounded domains with
no relation to linear-quadratic control. Taking into ac-
count the presence of reference trajectories, we denote by
St = ‖yt‖2 + ‖vt‖2 + ‖G‖2 and solve the control problem
with extended criterion of long-run expected loss per unit of
cumulated discount:

lim sup
T→∞

EJ
(d)
T (V )

T∫
0

ftSt dt

→ inf
V ∈V

, (18)

subsequently introducing the pathwise control problem

lim sup
T→∞

J
(d)
T (V )

T∫
0

ftSt dt

→ inf
V ∈V

a.s. (19)



The denominator in the extended criteria can be justified by
the following argument. Because of the cost matrices, (16)–
(17) is non-standard compared with (1)–(2) of Section 2. Let
us perform change of variables

Xt =
√

ftYt , Ut =
√

ftVt ,

immediately arriving to (1)–(2), with At = A− (1/2)φtI ,
Bt = B, Gt =

√
ftG, mt = 0, Qt = Q, Rt = R,

qt = −
√

ftQyt, rt = −
√

ftRvt . For the costs we have

J
(d)
T (V ) = JT (U) +

T∫
0

ft(y′tQyt + v′tRvt) dt .

Therefore the problem (18) can be eventually transformed
into (8) for the new variables Xt, Ut. Let us rewrite As-
sumptions 1,3. It should be noticed that Lt is then taken as
Lt = ft(‖yt‖2 + ‖vt‖2).

Assumption 4.

lim
t→∞

ft(‖yt‖2 + ‖vt‖2)
t∫
0

fs(‖ys‖2 + ‖vs‖2) ds

= 0 ,

Assumption 5.

lim
t→∞

1
t∫
0

fτSτ dτ

= 0 .

Remark 2. Since φt ≥ 0, then the stabilizability of (A,B)
and detectability of (A,

√
Q) imply the respective properties

for (A− (1/2)φtI,B) and (A− (1/2)φtI,
√

Q).
Now we use (4)–(6), and by the inverse change of variables

define
V ∗

t = −R−1B′(ΠtY
∗
t + p̂t) + vt , (20)

p̂t =

∞∫
t

fs

ft
Ψ′(s, t)(ΠsBvs −Qys) ds , (21)

where Ψ(t, s) corresponds to At = A−BR−1B′Πt, the
process Y ∗

t , t ≥ 0, is governed by

dY ∗
t = AtY

∗
t dt + B(vt −R−1B′p̂t)dt + Gdwt , Y ∗

0 = y .
(22)

Next we apply Theorems 1 and 2 to establish results on
average and pathwise optimality of the given feedback V ∗.

Theorem 3. Let (A,B) be stabilizable, (A,
√

Q) de-
tectable, and Assumption 4 holds. Then the control V ∗

determined by (20)–(22) is a solution to (18). If, in addition,
Assumption 5 is satisfied, then V ∗ also solves the pathwise
average control problem (19).

V. CONCLUSIONS

We studied LQG optimal control problems over an infinite-
time horizon. The stochastic control system possesses an ex-
ogenous component in the state equation and linear terms in
the associated cost, so called inhomogeneous. Extending the
notions of long-run average, two optimality criteria have been
proposed, both having as denominator the integral quadratic

index of system deviation from homogeneous deterministic
case on the planning horizon [0,T]. Thus, average control and
pathwise control problems were formulated. The suggested
feedback form of the control law, known from deterministic
LQ regulation, see, e.g., [23],[24], resulted to be optimal
under quite standard assumptions, such as stabilizability and
detectability, together with growth conditions on inhomoge-
neous part. We also established that the discounted tracking
problems can be handled within the inhomogeneous LQG
framework by a linear variable transformation. One direction
for future research would be to consider control systems with
stochastic inhomogeneous part. This is expected to require
more complex treatment, e.g., giving rise to linear backward
stochastic differential equations (BSDE) on infinite horizon.
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