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Abstract—The optimality criteria used in the problem of stochastic linear regulator over an
infinite time horizon were analyzed. A certain criterion for long-run average and pathwise
ergodic were shown to be inefficient with regard for the disturbance factor. Consideration was
given to a new criterion of the extended long-run average and its use in the discounted control
systems.
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1. INTRODUCTION: MODEL DESCRIPTION AND PROBLEM
OF CHOOSING THE OPTIMALITY CRITERION

In the control problems, choice of the optimality criterion is one of the most important questions.
For the stochastic systems, the expectation of the objective functional is usually carried out over
a finite horizon. If with increase of the planning interval the expected value of the functional also
becomes unbounded, then at formulating the problem over an infinite time horizon the criterion of
long-run average is often used; see, for example, [1]. The present paper considers a control system
known as the stochastic linear regulator. Let then on the complete probability space {Ω,F ,P}
given be an n-dimensional stochastic process Xt, t � 0, obeying the equation

dXt = AtXtdt+BtUtdt+Gtdwt, X0 = x, (1)

where the initial state x is a non-random; wt, t � 0, is the standard d-dimensional Wiener process;
Ut, t � 0, is an admissible control or k-dimensional stochastic process adapted to filtration {Ft}t�0,
Ft = σ{ws, s � t} such that Eq. (1) admits a solution; At, Bt, Gt, t � 0, are bounded matrices
having dimensions for which (1) has sense,

∫∞
0 ‖Gt‖2 dt > 0. Denote by U the set of admissible

controls.

Performance of the control used over the interval [0, T ] is estimated by the quadratic objective
functional

JT (U) =

T∫

0

(X ′
tQtXt + U ′

tRtUt) dt, (2)

where Ut is the admissible control U∈ U over the interval [0, T ]; Qt � 0, Rt � ρI, t � 0, are bounded
symmetrical matrices, where ′ is the transpose sign, ρ > 0 is a constant, the notation A � B means
that the difference of the matrices A−B is positive semidefinite, and I is the identity matrix.

Then the control problem for (1), (2) with the criterion of long-run average is given by

lim sup
T→∞

EJT (U)

T
→ inf

U∈U
. (3)
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As was noted in [2], the long-run average (3) disregards the fundamental factor of the integral
noise actions ZT =

∫ T
0 Gt dwt affecting the system behavior over a long-run period. As the result, it

was indicated to possible inefficiency of this criterion, for example, in the case of damped perturba-
tions, that is, for limt→∞ ‖Gt‖ = 0, as well as to its inapplicability to the discounted problems where
in (2) the matrices Qt = ftQ and Rt = ftR, where ft > 0 is a decreasing discount function. As the
result, the notion of extended long-run average using in the normalization E(Z ′

TZT ) =
∫ T
0 ‖Gt‖2 dt

as the sum of variances of the components of the vector ZT was introduced, and consideration was
given to the problem of control like

lim sup
T→∞

EJT (U)
T∫

0
‖Gt‖2 dt

→ inf
U∈U

. (4)

It turned out (see [2]) that under natural assumptions on the system parameters the well-known
stable control law U∗ established as the limit (for T → ∞) of solutions U∗T of the problems of
control over finite intervals is optimal for the new criterion. Additionally, if

∫ T
0 ‖Gt‖2 dt → ∞,

T → ∞, then, as it was shown in [3], that U∗ also becomes solution of the problem with a pathwise
analog of the extended long-run average:

lim sup
T→∞

JT (U)
T∫

0
‖Gt‖2 dt

→ inf
U∈U

with probability one. (5)

The criterion in (5) represents a generalization of the pathwise long-run average lim sup
T→∞

(JT (U)/T )

called also the pathwise ergodic average, see [1]. The choice of normalization
∫ T
0 ‖Gt‖2dt in

(4) and (5) is due to the fact that EJT (U
∗) =

∫ T
0 tr(G′

tΠtGt) dt+ lT , where tr(·) is the ma-
trix trace, lt is a bounded function, Πt is a positive semidefinite bounded matrix [2], and
JT (U

∗) = EJT (U
∗) + ξT and lim

T→∞
(ξT /

∫ T
0 ‖Gt‖2 dt) = ξ almost sure (a.s.), where ξ is a random

variable (see [3]). At the same time, as will be shown below, the criteria of long-run and pathwise
long-run average can take identical values over a whole set of controls that are not somehow related
with the property of optimality under a finite T .

Practical application of the results obtained includes possible use of the extended long-run aver-
ages for control of systems where the specificity of the considered plants presumes time-dependence
of the parameters of their dynamics, including varying nature of the perturbation variance. Motion
control [4, 5], flow control in the wireless networks [6, 7], problems in mechanics [8] and neurobiol-
ogy [9] exemplify such formulations. In addition, analysis of the performance of the control actions
may require estimation of the functional on the controls close to the optimal (see, for example, [10]
for the case of constant parameters) which gives rise to the need for certain studies to be carried out
here in what follows. The problems of long-run stabilization of the economic systems with a quite
general discounted [11] such as the macroeconomic control [12] can be reckoned among another
application class.

The present paper aims at investigating efficiency of the criterion for long-run average, its gen-
eralization, as well as their pathwise versions in the stochastic system (1), (2) from the standpoint
of most precise allowance for the order of functional variation over the stable optimal control law.
Section 2 introduces the notion of criterion efficiency, formulates assumptions about the system
parameters, as well as auxiliary assertions about the asymptotic behavior of the integral quadratic
functionals of the solutions of the linear stochastic differential equations. Section 3 presents the
main results obtained in the paper and an example of analyzing the criteria for the case of scalar
linear regulator. Section 4 discusses application of the extended long-run average to the problems
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of discount system control. Conclusions summarize the study, and all statements are proved in the
Appendix.

2. BASIC ASSUMPTIONS AND AUXILIARY RESULTS

We first formulate the main assumption about the parameters of system (1)–(2) enabling one
to study the control problem under T → ∞.

Assumption P. The functions At, Bt, Qt, and Rt, t � 0, are such that there exists an absolutely
continuous bounded function Πt, t � 0 with values in the set of positive semidefinite symmetric
matrices satisfying the Riccati equation

Π̇t +ΠtAt +A′
tΠt −ΠtBtR

−1
t B′

tΠt +Qt = 0 (6)

and such that the fundamental matrix Φ(t, s) for the function At := At −BtR
−1
t B′

tΠt admits the
exponential estimate

‖Φ(t, s)‖ � κ1e
−κ2(t−s), s � t, (7)

under certain positive constants κ1, κ2 > 0.

We recall that the fundamental matrix Φ(t, s) is the solution of the problem

∂Φ(t, s)

∂t
= AtΦ(t, s), Φ(s, s) = I.

If estimate (7) is valid for Φ(t, s) corresponding to At, then At is called the exponentially
stable matrix (see [13, Definition 2.1, p. 7]), and the action Ut = KtXt, where Kt is a bounded
matrix, leading to such At in (1), is called the exponentially stable law. There are various sufficient
conditions related with the properties of the linear control systems which ensure satisfaction of
Assumption P. For example, such requirements include stabilizability and detectability (see [13,
Theorem 2.2, p. 21; 14]).

If Assumption P is valid, then there exists a stable control law U∗ given by the linear feedback

U∗
t = −R−1

t B′
tΠtX

∗
t , (8)

where the process X∗
t , t � 0, is given by

dX∗
t = (At −BtR

−1
t B′

tΠt)X
∗
t dt+Gtdwt, X∗

0 = x. (9)

As was noticed earlier (see also [15]), the form of U∗ can be obtained by the passage to the limit
for T→∞ in the control law U∗T

t = −R−1
t B′

tΠ
T
t X

∗T
t , where ΠT

t � 0 is the solution of (6) with the
boundary condition ΠT

T = 0, the process X∗T
t , t � T , being determined from (1) for Ut = U∗T

t . At
that, it is known (see [16, Theorem 3.9, p. 301]) that EJT (U

∗T ) = inf
U∈U

EJT (U), that is, there exists

a relation between the stable law and the solution of the control problem over finite intervals.

When considering the long-run averages, we rely on the approach proposed in [17] where the
optimality of the control U∗ was associated with the solution of problem lim sup

T→∞
EKT (U) → inf

U∈U
or

lim sup
T→∞

KT (U) → inf
U∈U

a.s. The former case suggests the optimality in the average over an infinite

time horizon in the criterion K; the latter case suggests stochastic (pathwise) optimality. The
long-run average corresponds to EKT (U) = EJT (U)/T , the extended long-run average is obtained
for EKT (U) = EJT (U)/

∫ T
0 ‖Gt‖2 dt. Introduce the following definition.

Definition 1. Let U∗ be a stable control law optimal in the average over an infinite time horizon
with respect to the criterion K in system (1), (2). The criterion K is called
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(a) efficient if 0 < lim sup
T→∞

EKT (U
∗) < ∞ for lim sup

T→∞
EJT (U

∗) > 0;

(b) inefficient if there exists a set UE ⊆ U such that lim sup
T→∞

EKT (U
∗) = lim sup

T→∞
EKT (U

ε) = 0 for

any U ε ∈ UE .

Some auxiliary results concerning the asymptotic behavior of the functionals like (2) are required
for the further study of the efficiency of the criteria for long-run average. The exponentially stable
laws will be considered as the control strategies because at that the properties of the corresponding
trajectories Xt are similar to X∗

t . Therefore, we consider an n-dimensional stochastic process Zt

satisfying the equation

dZt = ĀtZtdt+Gtdwt, Z0 = z, (10)

where the bounded matrix Āt is exponentially stable and z is a non-random vector of the initial
state.

Lemma 1. Let Mt be an n× n bounded matrix. Then, for the process Zt, t � 0, representing
solution (10) there exists a constant cz > 0, such that

lim sup
T→∞

∣
∣
∣
T∫

0
E(Z ′

tMtZt)dt
∣
∣
∣

T∫

0
‖Gt‖2dt

< cz.

Lemma 1, as well as all subsequent lemmas and theorems, are proved in the Appendix.

Lemma 2. Let Mt be an n× n bounded matrix. Then, for the process Zt, t � 0, defined by (10),
Valid is the relation

lim
T→∞

T∫

0
[Z ′

tMtZt − E(Z ′
tMtZt)] dt

T∫

0
‖Gt‖2dt

= ξ a.s.,

where

(a) ξ = 0 if
∫ T
0 ‖Gt‖2 dt → ∞, T → ∞;

(b) ξ is a random variable if
∫∞
0 ‖Gt‖2 dt < ∞.

3. MAIN RESULTS AND AN EXAMPLE OF INVESTIGATING THE CRITERIA

3.1. Main Results

Passing to the analysis of the long-run averages, we turn to Definition 1. Inefficiency of K implies
that at using this criterion the optimal stable control law U∗ is “indistinguishable” in terms of the
introduced estimate of application performance from the rest of strategies. The efficient criterion
is constructed so as to take into consideration as accurately as possible the order of variation of the
expected value of the objective functional. By paying attention to (A.4), one can, in particular,
specify the main factor of disturbance actions. Of interest is the situation where the variance∫ T
0 ‖Gt‖2 dt of the integral perturbations grows slower than the planning interval T .

Assumption G.

lim
T→∞

T∫

0
‖Gt‖2dt
T

= 0. (11)
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For the case of G, we demonstrate by constructing the set UE from Definition 1 that the criterion
for long-run average is inefficient. It follows from boundedness of the function Bt that there exists
a constant b̄ > 0 such that ‖Bt‖ � b̄, t � 0. Since Assumption P is satisfied, the set of numbers E
can be defined as follows:

E = {ε > 0 : κ3 = κ2 − εκ1b̄ > 0}.
For ε ∈ E , consider the control

U ε
t = (−R−1

t B′Πt + εI)Xε
t ,

where the process Xε
t , t � 0, is defined by the equation

dXε
t = (At −BR−1

t B′Πt + εBt)X
ε
t dt+Gtdwt, Xε

0 = x, (12)

and define the set of controls UE = {U ε, ε ∈ E}. We notice that U∗ corresponds to the case ε = 0
and, consequently, U∗∈ UE . The following fact can be readily verified.

Lemma 3. Let Assumption P be satisfied, and ε ∈ E be fixed. Then, the matrix

At −BR−1
t B′

tΠt + εBt

in Eq. (12) is exponentially stable.

The following result concerns estimation of growth of EJT (U
ε) for U ε ∈ UE showing inefficiency

of using the criterion for long-run average.

Theorem 1. Let Assumption P be satisfied. Then, for any U ε ∈ UE there exists a constant cε > 0
such that

lim sup
T→∞

EJT (U
ε)

T∫

0
‖Gt‖2 dt

< cε. (13)

If at that Assumption G is valid, then

lim
T→∞

EJT (U
ε)

T
= 0. (14)

At studying efficiency of the pathwise criteria, one can use an analog of Definition 1 where EKT

is replaced by KT and EJT by JT , and also assume the following.

Assumption G1.
T∫

0

‖Gt‖2dt → ∞, T → ∞. (15)

Now we formulate the result concerning the values of the pathwise criteria on the controls from
the set UE and also demonstrating inefficiency of the pathwise ergodic.

Theorem 2. Let Assumptions P and G1 be satisfied. Then, for any U ε ∈ UE with the probability
one

lim sup
T→∞

JT (U
ε)

T∫

0
‖Gt‖2 dt

= lim sup
T→∞

EJT (U
ε)

T∫

0
‖Gt‖2 dt

. (16)

If at that Assumption G is valid, then

lim
T→∞

JT (U
ε)

T
= 0 a.s. (17)
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Interestingly, according to (16) the value of the stochastic (pathwise) extended long-run average
from problem (5) is non-random on the set UE . More exactly, it coincides with the result of applying
criterion for mean, which can be considered an a analog of the well-known ergodicity property of
the autonomous control systems, see, for example, [1].

Remark 1. In distinction to the long-run averages, as one can judge from representation (A.4),
the efficiency of the criteria for extended long-run average is independent of the specificity of the
noise parameters. Here, the key role is played by the behavior of the matrix Πt which is determined
on the basis of the parameters of the deterministic control system.

1. As follows from (A.4) and Theorem 2, for the criteria for extended long-run average to
be efficient it suffices that the solution Πt of the Riccati equation (6) be bounded away from
zero, that is, Πt � αI, t � 0, under a certain constant α > 0. This property of Πt is known
(see [18, Assertion 16, p. 137]) to take place if the matrix pair (At,

√
Qt) is uniformly completely

observable under the conditions of Assumption P. In particular, we note that this requirement is
satisfied for Qt � qI, t � 0, where q > 0 is a constant.

2. If ‖Πt‖ → 0, t → ∞, then the criteria (4) and also (5) are inefficient if Assumption G1 is
valid. Indeed, consider UE with the controls U ε ∈ UE , where ε is an arbitrary real number and
U ε
t = (−R−1

t B′Πt + εKt)X
ε
t ; at that, the matrix Kt is such that ‖Kt‖ → 0, t → ∞. The pro-

cess Xε
t , t � 0, obeys equation dXε

t = (At −BR−1
t B′Πt + εBtKt)X

ε
t dt+Gtdwt, X

ε
0 = x, its matrix

is also exponentially stable (see, for example, [19, Theorem 4.4.6, p. 127]). Therefore, one can take
advantage of (A.3), (A.4) and Lemma 2 to obtain the relation

lim sup
T→∞

⎛

⎝EJT (U
ε)
/ T∫

0

‖Gt‖2 dt
⎞

⎠ = lim sup
T→∞

⎛

⎝JT (U
ε)
/ T∫

0

‖Gt‖2 dt
⎞

⎠ = 0 a.s.

3.2. Example of Studying the Criteria

We notice that the common long-run average is less risk-sensitive than the extended long-run
average relative to the variation of the criterion values. Indeed, the quadratic objective risk func-
tional can also be interpreted as the risk functional of deviation of the trajectory and control [20].
On the other hand, normalization of T corresponds to the case of constant perturbation variance
(risk due to the action of uncertainty on the system), and the actual dynamics of the diffusion
matrix exerts no influence on the relation between the risk functional and the measure of varia-
tion of the integral noise impact. Estimation of the performance of the stable control laws in the
one-dimensional problems with identical (constant) values of the parameters At = a, Bt = b, and
Rt = 1, but different Gt can be considered as an example. For existence of U∗, it suffices to assume
that, first, q > 0 which corresponds to observability of the deterministic control system, as well as
b �= 0 for controllability (see [16, Section 3.4.2, p. 267]). Since the parameters are constant, instead
of the solution of the differential Riccati equation one can consider a positive root of the algebraic
Riccati equation given by

2aΠ− b2Π2 + q = 0

and equal to

Π =
a+

√
a2 + b2q

b2
.

The above conditions for the parameters also ensure the exponential estimate (7) of the function
Φ(t, s) = exp{−(t− s)

√
a2 + b2}. Consequently, Assumption P is satisfied and the stable control

law is defined:
U

∗(i)
t = −b2ΠX

∗(i)
t ,

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 10 2016
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Fig. 1. Study of the long-run average: (1) l1T , (2) l
2
T , (3) l

3
T .

Fig. 2. Study of the extended long-run average: (1) g1T , (2) g
2
T , (3) g

3
T .

where X
∗(i)
t (i = 1, 2, 3) is the notation of the process obtained from the general dynamics Eq. (9)

under a corresponding G
(i)
t :

dX
∗(i)
t = −b2ΠX

∗(i)
t dt+G

(i)
t dwt, X

∗(i)
0 = x,

where G
(1)
t = sin t, G

(2)
t = 0.55/

√
t+ 1, G

(3)
t = e−t/2.

The lower estimate of the criterion J∗g
i = lim sup

T→∞
(EJT (U

(i))/
∫ T
0 (G

(i)
t )2 dt) for the extended long-

run average (i = 1, 2, 3) in all three cases equals Π (see also the representation (A.4)):

Π = J∗g
1 = J∗g

2 � Π(x2 + 1) = J∗g
3 .

In the case of G
(3)
t = e−t/2, the value of the criterion includes also an additional term Πx2 showing

the contribution of the initial state in the case of fastly damping perturbations. Here we see also
an analog to the deterministic linear regulator.

If we consider the long-run average, then only in the first case the value is equal to a constant
smaller than Π:

J∗
1 =

Π

2
= lim sup

T→∞
EJT (U

∗(1))
T

,

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 10 2016



ANALYSIS OF CRITERIA FOR LONG-RUN AVERAGE 1763

in the two remaining situations (this result was established within the framework of Theorem 1)
the result is equal to zero:

J∗
2 = J∗

3 = lim sup
T→∞

EJT (U
∗(2))

T
= lim sup

T→∞
EJT (U

∗(3))
T

= 0.

At that, EJT (U
∗(2))/T decreases asymptotically as lnT/T , and for EJT (U

∗(2))/T in turns
out that the order of variation is about 1/T . In the above example, the long-run average
tends to lower values, which takes place even in the case where the variance of the inte-
gral noise actions grows in proportion to T . The graphs depict liT = sup

t�T
{EJt(U∗(i))/t} and

giT = sup
t�T

{
EJt(U

∗(i))/
∫ T
0 (G

(i)
s )2 ds

}
vs. the planning horizon T . They underlie calculation of the

criteria of long-run (Fig. 1) and extended long-run (Fig. 2) averages, as well as the values of J∗
i and

J∗g
i themselves, i = 1, 2, 3. The calculations were carried out for the parameters a = 0, b = q = 1,

and x = 1.25; at that, Π = 1, T ∈ (0, 100]. We also notice that for the extended long-run average

the difference between giT and J∗g
i has the order of decrease equal to 1/

∫ T
0 (G

(i)
t )2 dt.

Therefore, in the long-run average no difference is made between the impact of noise on the
system dynamics within the long-run period. On the contrary, the criterion for the extended long-
run average takes into account the balance in the relation between the quadratic risk functional
and risk caused by a random impact on the system.

4. EXTENDED LONG-RUN AVERAGE AND THE DISCOUNTED SYSTEMS

Consider a discounted control system with state X̃t, t � 0, defined by an n-dimensional control-
lable stochastic process with the dynamics given by

dX̃t = AX̃tdt+BŨtdt+Gdwt, X̃0 = x, (18)

where A, B, and G, ‖G‖ > 0, are constant matrices, the admissible control Ũt is defined as in (1),
and U is the set of admissible controls.

The objective functional which includes the discount function ft is given by

J̃T (Ũ) =

T∫

0

ft(X̃
′
tQX̃t + Ũ ′

tRŨt) dt, (19)

where Ũt are the admissible controls Ũ ∈ U over the interval [0, T ], Q � 0 and R > 0 are constant
symmetrical matrices, ft > 0, f0 = 1 is the discount function assumed to be nonincreasing and
differentiable, ft → 0, t → ∞, and the discount rate φt = −ḟt/ft, t � 0, is bounded. The discount
functions satisfying the above assumptions are exemplified by the traditional exponential function
with ft = e−γt (γ > 0); hyperbolic discount function for ft = 1/(1 + θt)θ1/θ (θ1, θ > 0); and the
so-called double discounting ft = m1e

−αt + (1−m1)e
−βt (α, β > 0, 0 < m1 < 1).

Obviously, (18), (19) do not belong to the aforementioned class of systems (1), (2) in view of
unboundedness of the matrix ftR away from zero. Indeed, in this case the Riccati equation

˙̃Πt + Π̃tA+A′Π̃t − (1/ft)Π̃tBR−1B′Π̃t + ftQ = 0, (20)

companion of (6), includes unbounded coefficients and gives rise to the question of existence of the
stable control law

Ũ∗
t = −R−1B′(Π̃t/ft)X̃

∗
t . (21)

AUTOMATION AND REMOTE CONTROL Vol. 77 No. 10 2016
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Additionally, it is required to construct an adequate criterion for optimality over an infinite time
horizon. As will be clear from the following reasoning, the extended long-run average is ineffi-
cient for the discounted systems. The questions of determining the optimal control and selection
of the criterion for (18), (19) were discussed in [2, 3, 11]. System (18), (19) was shown to be re-
ducible by the change of variables Xt =

√
ftX̃t, Ut =

√
ftŨt to (1), (2) with At = A− (1/2)φtI,

Bt = B, Gt =
√
ftG, Qt = Q, and Rt = R. The values of the objective functionals coincide, that is,

JT (U) = J̃T (Ũ ), and the criterion for extended long-run average (4) may be used in the new system
lim sup
T→∞

(EJT (U)/
∫ T
0 ft‖G‖2 dt). If for the aforementioned matrices of parameters Assumption P

is valid, then there exists a stable optimal control law (8) like U∗
t = −R−1B′ΠtX

∗
t , where X∗

t is
defined by (9) and the bounded matrix function Πt satisfies the Riccati equation

Π̇t +Πt(A− (1/2)φtI) + (A′ − (1/2)φtI)Πt −ΠtBR−1B′Πt +Q = 0. (22)

By returning to the original discounted system, we have

Ũ∗d
t = −R−1B′ΠtX̃

∗d
t , (23)

dX̃∗d
t = (A−BR−1B′Πt)X̃

∗d
t dt+Gdwt, X̃∗d

0 = x.

It is also known that control (23) is optimal (see [11]) with respect to the criterion of expected
long-run loss per unit of the cumulated discount

lim sup
T→∞

EJ̃T (Ũ )
T∫

0
ft dt

→ inf
Ũ∈U

. (24)

Passing to determination of Ũ∗ from (21), compare (20) and (22) from which one can readily
see that Πt = Π̃t/ft. Therefore, existence of Πt ensures existence of the solution also for Eq. (20).
Moreover, at that Ũ∗

t = Ũ∗d
t , X̃∗

t = X̃∗d
t . It follows from the properties of the discount function ft

and the above relation between Πt and Π̃t that ‖Π̃t‖ → 0, t → ∞. Then, by item 2 of Remark 1
for the extended long-run average for the discounted system the criterion is inefficient. Use of the
expected long-run loss per unit of the cumulated discount (24) is substantiated by the above rea-
soning about rearrangement of (18), (19) to the standard control system (1), (2) and its subsequent
optimization.

5. CONCLUSIONS

The present paper analyzed the optimality criteria used in the problem of control of the linear
stochastic systems over an infinite time horizon. The long-run average, as well as the pathwise
ergodic average, are inefficient because they can take zero values for an entire set of controls other
than the optimal one. This fact was established by determining the order of growth of the objective
functionals on the exponentially stable control laws. The key part is played here by the variability
of the parameters of the perturbing process, and this distinction is taken into consideration in
the structure of the new criterion called the extended long-run average, as well in its stochastic
counterpart. To be more specific, normalization is used in the form of a sum of variances of the
components of the vector of integral noise actions, which allows one to get a criterion efficient in
terms of the factor under consideration. At the same time, for the discounted control systems
the solution of the Riccati equation defining the stable optimal control law tends to zero. As
was noted above, this leads to inefficiency of the criteria for long-run average. In such situation,
it is worthwhile to use the expected long-run loss per unit of the cumulated discount, which is
justified by the relationship of the discounted control system and the standard problem including
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the criterion for extended long-run average. Construction and efficiency analysis of the optimality
criteria in the tracking problems for the stochastic linear regulator and also consideration of the
case of growing perturbations (‖Gt‖ → ∞, t → ∞, see [21]) can be mentioned as the lines for future
research.
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APPENDIX

Proof of Lemma 1. Consider the linear matrix differential equation

Ṗt + Ā′
tPt + PtĀt +Mt = 0, (A.1)

with solution representable as Pt =
∫∞
t Φ′(s, t)MsΦ(s, t) ds and bounded in virtue of the matrices

Āt and Mt.

Using (10) and (A.1), by the Ito isometry we get d(Z ′
tPtZt) = −Z ′

tMtZtdt+ tr(G′
tPtGt)dt+

2Z ′
tPtGtdwt. Therefore, we get the representation

T∫

0

Z ′
tMtZt dt = zP0z − Z ′

TPTZT +

T∫

0

tr(G′
tPtGt) dt+ 2

T∫

0

Z ′
tPtGt dwt, (A.2)

and for the expected value

T∫

0

E(Z ′
tMtZt) dt = z′P0z − E(Z ′

TPTZT ) +

T∫

0

tr(G′
tPtGt) dt. (A.3)

We note that for Āt = At −BtR
−1
t B′

tΠt, z = x, the process Zt = X∗
t , Pt = Πt and (A.3) provide

EJT (U
∗) = x′Π0x− E[(X∗

T )
′ΠTX

∗
T ] +

T∫

0

tr(G′
tΠtGt) dt. (A.4)

To estimate the second term in (A.3), we write down the solution of Eq. (10):

Zt = Φ(t, 0)z +

t∫

0

Φ(t, s)Gsdws,

where Φ(t, s) is the fundamental matrix for the function Āt admitting an exponential estimate
like (7) with the constants κ̄1, κ̄2 > 0. Then, for c > 0 in virtue of the Ito isometry

E‖Zt‖2 � c

⎛

⎝e−2κ̄2t‖z‖2 +
t∫

0

e−2κ̄2(t−s)‖Gs‖2ds
⎞

⎠.

Here and below c denotes a positive constant whose particular value is of no importance and can
vary from formula to formula. At that, it is evident that E‖Zt‖2 is bounded. Returning to (A.3),

we have
∣
∣
∣
∫ T
0 E(Z ′

tMtZt) dt
∣
∣
∣ � c(‖z‖2 + ∫ T

0 ‖Gt‖2 dt), which proves Lemma 1.
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Proof of Lemma 2. To find the representation

T∫

0
[Z ′

tMtZt − E(Z ′
tMtZt)] dt

T∫

0
‖Gt‖2dt

=
E(Z ′

TPTZT )− Z ′
TPTZT

T∫

0
‖Gt‖2 dt

+ 2

T∫

0
Z ′
tPtGt dwt

T∫

0
‖Gt‖2dt

, (A.5)

we use (A.2) and (A.3) and notice that in virtue of boundedness of Pt and exponential stability
of Āt we can apply the result of [3, Theorem 1] on asymptotic behavior of the normalized process
‖ZT ‖2/

∫ T
0 ‖Gt‖2dt to the first term in (A.5), whence follows the tendency of the expression under

consideration a.s. to zero for T →∞ (here we used the relations E‖ZT ‖2 � c and E‖ZT ‖2 → 0
if

∫∞
0 ‖Gt‖2dt < ∞). It was also shown in [3] that in the case of

∫ T
0 ‖Gt‖2dt → ∞, T → ∞, the

condition E‖Zt‖2 � c provides convergence of (
∫ T
0 Z ′

tPtGtdwt)/
∫ T
0 ‖Gt‖2dt → 0 with the probability

one (see the proof of Theorem 2 in [3]). If
∫∞
0 ‖Gt‖2dt < ∞, then there exists the random variable

ξ = (
∫∞
0 Z ′

tPtGtdwt)/
∫∞
0 ‖Gt‖2dt (see [3, Lemma 3]), which proves Lemma 2.

Proof of Lemma 3. Consider the matrix At := Ãt + B̃t, where Ãt is exponentially stable and
‖B̃t‖ � b̃ b̃ > 0 being of constant. Then, by an assertion in [19, Theorem 4.4.6, p. 127] the funda-
mental matrix Φ(t, s) corresponding to At = Ãt + B̃t admits the estimate ‖Φ(t, s)‖ � κ1e

−κ3(t−s),
s � t, where κ3 = κ2 − b̃. Assuming that Ãt = At −BtR

−1
t B′

tΠt, B̃t = εBt, from the condition
κ3 = κ2 − εb̄ > 0 we establish the desired property of the matrix At −BR−1

t B′
tΠt + εBt, which

proves Lemma 3.

Proof of Theorem 1. By Lemma 3, the matrix At −BR−1
t B′

tΠt + εBt in Eq. (12) is exponen-
tially stable. Relation (13) is obtained by applying Lemma 1 under Zt = Xε

t andMt = Qt + L′
tRtLt,

where Lt = −R−1
t B′

tΠt + εBt. Satisfaction of Assumption G leads to (14), which proves Theorem 1.

Proof of Theorem 2. The result (16) follows from Lemma 2 if we assume that Zt=Xε
t ,

Mt=Qt+L′
tRtLt, where Lt=−R−1

t B′
tΠt+εBt and set down the representation

JT (U
ε)

T∫

0
‖Gt‖2 dt

=
JT (U

ε)− EJT (U
ε)

T∫

0
‖Gt‖2 dt

+
EJT (U

ε)
T∫

0
‖Gt‖2 dt

.

At that, (17), obviously, follows from (14), which proves Theorem 2.
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