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1. INTRODUCTION

Linear stochastic control systems are widely used in modeling the processes in different fields of eco�
nomics: macroeconomic regulation, economics of transport, ecological economics, insurance, etc. In the
choice of control actions within long planning intervals, one of the important tasks is the stabilization of
the system, i.e., support of its evolution trajectory close to the earlier chosen state. For example, for macro
economic stabilization, the variables to be corrected can be inflation, unemployment, etc. [1, 2]; in eco�
logical economics, it can be the regulation of the volume of harmful waste [3]. Here it is meant that any
deviation of the current state of the process and control from the target leads to losses, and in their esti�
mation, account is taken for the time preferences of the agents realizing these strategies. Time preferences
are at the core of the differences in their estimation of future events (“gain” or “loss”) and influence their
decisions, thus making them an important socieoconomic aspect of modeling. “Positive” time prefer�
ences mean the desire to speed up “gains” and to postpone “losses”. The “negative” time preferences
denote the reverse situation, and in zero preferences the factor of time has no role in the choice. It is
assumed that time preferences can be expressed in terms of the discounting function  determining the
“weight” of the event to occur at the time moment  at its estimation at the initial moment. The dis�
counting function decreases for positive time preferences, increases for negative time preferences, and
remains constant at the zero time preferences. 

In the mathematical modeling of the stabilization process, a number of problems arise. The first is to
assess the quality of the chosen strategy of control, i.e., to determine the utility function for the planning
period and to form a criterion of optimality under a planning horizon tending to infinity. It is natural to
assign the optimality functional in the integral quadratic form [4] and to include the discounting function
there reflecting the subjects’ time preferences. For the decisions to be made on unbounded planning hori�
zons, a criterion is used that includes the minimization of the upper limit from the expected losses per unit
of the accumulated discount [3, 5]. The thus defined law of control will be called the average optimal over
an infinite�time horizon. Another important problem is the evaluation of the long�term effects from the
application of the optimal strategy, i.e., how far the corresponding trajectory of the system’s growth will
correspond to the planned level. Here it is supposed to consider two kinds of assessments of the deviations
of the controlled process from the planned value—in the mean square and with probability 1.

It is also of interest to find how far the choice of the optimal control in the use of the functional with
discounting promotes the achievement of the target in the stabilization of the trajectory, taking into
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account the differences in the priority of the future for the subjects. Note that in the analysis of the mac�
roeconomic model formulated in [6] as a problem of a linear quadratic regulator, a proposition was made
on the stabilizing effect of the negative time preferences but on the destablilizing effect of the positive ones
in the use of the exponential discounting function; see also [7]. Now the work is organized in the following
way. Section 2 is devoted to the description of the model and to finding the optimal control law. Section 3
considers the long�term consequences of the use of this strategy. The basic conclusions are formulated in
Section 4.

2. DESCRIPTION OF THE MODEL AND DETERMINATION 
OF THE OPTIMAL CONTROL

Consider the linear economic control system under uncertainty. Let on the complete probability space
 an n�dimensional stochastic process   determining the state of the system and described

by equation 
(1)

be given, where the initial state x is a non�random;   is a d�dimensional standard Wiener process;
  is an admissible control, or the k�dimensional stochastic process, adapted to filtration  and

 such that Eq. (1) has the solution; A, B, and G are matrices of such dimensionalities,
under which (1) makes sense; for matrix G parameters of the perturbing process it is supposed that 
(  is the matrix’s Eucleadean norm). The set of admissible controls will be denoted as 

Now let us go to the mathematical description of the problem of stabilization. Consider the determined
process described by Eq. (1) at  (0 is the zero matrix), and let  be the fixed vector. Suppose there is
control  at which  is the stationary state of this process, i.e.,  (0 is the
zero vector). Note that, for example, at  and  such control always exists.

We define the cost functional (a random variable), which takes account for the losses caused by devia�
tion of process  and admissible control  from  and u0, respectively, as well as the dependent subjec�
tive estimate of these losses (i.e., time preferences) for the planning period  

(2)

where  is admissible control, Q, R are symmetric matrices, positive semidefinite and positive defi�
nite, respectively, ′ is the transpose sign, and  is the discounting function reflecting the time preferences
of the agents and having properties given in the following assumption. 

Assumption �. The discounting function is  

(1) it is monotone and differentiable; if  is increasing, then   if  is decreasing, then
 

(2) the discounting rate  is a bounded function at any  (“⋅” is a time derivative) and
 where  is a constant.

We note that a decreasing  corresponds to positive time preferences ( ), in the case of negative
time preferences  increases ( ), if  then the time preferences are zero ( ).

To estimate the performance of control actions chosen in order to stabilize the system in a long�term
period, consider the criterion of optimality proposed in [3, 5]. We will try to find control  such that
the correlation 

(3)

is fulfilled for any  at a constant  independent of control. In (3) a comparison is made of the
upper limits of the relationships, which are the expected losses per unit of the accumulated discount with
the use of different control.

Definition 1. Control  will be called average optimal over an infinite�time horizon if (3) is fulfilled for
any  at  and weakly average optimal if 
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Suppose control  has been found that is average optimal (weakly optimal) over an infinite�time hori�

zon, and  is the corresponding process defined by (1). Here it is investigated how far the application of

the average optimal control U* provides the achievement of the goal to keep  near  in the long run.

The process  is considered, assigning the deviation of the random trajectory  from the tar�
get vector x0, and two kinds of estimates will be found: 

⎯estimates for the difference in the mean square 

⎯estimates in the sense of close to probable (c.t.p.) for  in accordance with the def�

inition of the upper function for a stochastic process.

Definition 2. Function  is called the upper function for the process  if there is an a.s. finite

moment of time  such that  holds almost surely for any 
Now we provide a number of basic assumptions related to the parameters of the control system, which,

as will be given below, guarantee for the existence of control U*. For systems with discounting these
requirements have been formulated in [3].

Assumption �
1. Matrices  B, Q, R,  such that there is a bounded absolutely continuous func�

tion  This function takes values in a set of symmetrical positive semidefinite matrices and satisfies
the Riccati equation 

(4)

In this case the fundamental matrix  admits for function  the exponential estimate 

(5)

with some positive constants  I is an identity matrix.
2. There is a constant  such that for any pair  satisfying the equation 

the inequality 

is true. 
The fundamental matrix  for function  is defined as the solution of problem 

Definition 3. If  admits the estimate (5), then matrix  is called exponentially stable. 
The conditions in assumption � are common enough and there are various well�known requirements

for the properties of the linear control systems, whose fulfillment implies that assumption � is valid. We
should note here also such characteristics as uniform complete controllability of pair  and the uni�
form complete observability of  (see [8], [9]).

The statement below provides a optimal control law.
Theorem 1. Let assumptions  and  hold. Then control of the form

(6)

where function satisfies (4) and the process  satisfies the equation. 

(7)
is

(a) average optimal over an infinite�time horizon, if in assumption  

(b) weakly average optimal over an infinite�time horizon if in assumption  
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Proof. For bounded  (i.e., in positive and zero discounting), the statement of Theorem 1 is a conse�
quence of the application of the result on the average optimality for systems with a time�varying of param�

eters of the perturbation process, see [5]. Indeed, having changed variables 

 we obtain the equation of the dynamics of the process  +

  The objective functional in new variables  =  in

this  Then, on condition of the fulfillment of assumptions  and  according to the state�

ment of Theorem 1 from [5], control  is average optimal over an infinite�time horizon

in the sense of the solution of problem  The inverse change of

variables to those made earlier, as well as assumption  lead to the optimal control U* of type
(6) and to its corresponding process (7) in the initial system with discounting. For the case of the negative
discounting (increasing ), Theorem 1 was proved in [3, Theorem 3] with assumptions  and  

Note 1. If the there is no uncertainty in the system, i.e.,  then, as was shown in [3], instead of
problem (3), the standard linear quadratic control problem over an infinite�time horizon can be consid�
ered 

and the control lawU* given in Theorem 1 defined by (6)–(7) at  will be the solution of this problem.

In considering difference  based on (7) we write out the equation of the dynamics for this
process as 

(8)

where  is a bounded matrix.

It is well known (see [8, 10]) that the asymptotic behavior of the solutions of linear stochastic differen�
tial equation of type (8) depends on the characteristics of the fundamental matrix  constructed for

function  In the following lemma, the statement about the dependence of the property of the exponen�

tial stability of matrix  on the asymptotic discounting rate  is formulated.

Lemma 1. Let assumptions  and  be fulfilled and  is a constant from (5). Then

(a) if  matrix  is exponentially stable;

(b) if  then for the fundamental matrix  estimate 

 is true (9)

at some positive constant  constant 

Proof. Matrix  can be represented as  then on assumption  
is exponentially stable. Then

from which, taking into account the definition of the asymptotic discounting rate  the estimate 

follows with constant  and an arbitrarily small number 

Under the conditions of (a), by finding  we obtain the exponential estimate of
type (5). In (b) we assign  
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Note that for discounting functions with asymptotically nonpositive rate  the condition in (a) of
Lemma 1 is always fulfilled. When conventional exponential discounting with   the
possibility of an exponential estimate of the fundamental matrix will be determined by the relationship
between rate γ and constant κ2.

3. ESTIMATE OF LONG�TERM EFFECTS FROM THE APPLICATION 
OF OPTIMAL MANAGEMENT STRATEGIES 

At first we define the bounds for  as the mean of the squared distance between

the process on optimal control and its target level. 

Theorem 2. Let the conditions of Theorem 1 hold and  be the constant from (5). Then the bounds for the
mean square difference are defined as follows:

(a) if  then 

(b) if  then 

where   are positive constants.
Proof. The lower bound in (a) and (b) will be the consequence of the relation 

(10)

which holds with some constants  Now we prove the inequality in (10).

Define matrix  It is known (see, for example, [11, p. 98, Theorem 4.2.4]), that  satisfies
the linear matrix differential equation 
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and solution (11) is written as

Note also that 

where  is the matrix trace.

As function  is bounded, then (see [12, p. 40, Theorem 5]) there are constants  such that 

which is equivalent to relationship
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using which and the relation  in integration, we come to (10).
Thus, the inequality for the lower bound has been proved.

Moving to the proof of the type of the upper estimate in (a) and (b), from (8) by the Ito isometry we
write out the estimate 

(14)

As has been shown (see Lemma 1), from the conditions of (a) of the statement being proved it follows

the exponential stability of matrix  Using this property, we transform (14) to the form 

(15)

with some constants  It is easy to see that the expression in the right�hand side (15) is also

bounded from above by some constant, i.e., 
The relation in (b) follows from the application of (9b) of Lemma 1 in the estimation of the fundamen�

tal matrix  in expression (14). 
Note 2. In case  the estimates for  may be slightly different than those given in Theorem 2. If

 then matrix  is exponentially stable. Then, substituting  in (15), we obtain that

  Thus, under these conditions in the deterministic control system with discounting, the
use of the optimal strategy in the long term ensures the achievement of the goal to stabilize the system.
From relation (14) it follows that for  and  the exponential estimate of It. 2b of Theo�
rem 2 remains unchanged.

The result of Theorem 2 makes it possible to analyze the consequences of the application of the optimal
control obtained from the solution of the problem of stabilization of an economic system by using different
types of discounting. The application of the asympotically nonpositive ensures that the mean square devi�
ation of the trajectory of the process is kept within certain limits. At the same time, positive exponential
discounting may lead to a considerable deviation of the system’s state from its target level even in the
absence of uncertainty. We show it by an example. 

Example. Consider a deterministic linear regulator with exponential discounting. Assign the equation
of state

and the cost functional

where  are constants; γ is the rate of discounting; and the target values are 
In the case of a system with constant parameters, the above�mentioned properties of uniform complete

controllability and uniform complete observability of pairs of matrices, sufficient for the fulfillment of
assumption �, the equivalents of controllability  and of observability are  (see [9]).
As  and , the considered linear control system has these properties and for it the assump�
tion � is fulfilled. By Note 1 (see also the statement of Theorem 1), the optimal control is given as 

where  is the positive root of the Riccati algebraic equation 

(16)

The trajectory  dynamics is determined by the equation 

We will show that there exist the values  such that  i.e., the trajectory  instead of
tending to zero (the target state ) will increase exponentially.
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We find the positive root of Eq. (16):

and moreover  if  It is easy to see that the required condition is provided
at 

Now we turn to the study of process  in terms of the possibility of its estimation by means of the
upper functions. As seen from the previous reasoning, not all kinds of discounting lead to the exponential

stability of matrix  We formulate and prove an auxilliary statement on the form of the upper function
for the general case of the arbitrary bounded matrix in the equation of the process. 

 Lemma 2. Let the stochastic process be given by the equation 

where  is the bounded time�varying matrix, G is the constant matrix, and  is a non�random vector.
Then

(a) if matrix  is exponentially stable, then the upper function for the process  appears as 

(b) in other cases the upper function for the process  has the order of an exponent, i.e., 
where  are some positive constants and constant  is chosen from the condition of the exponential sta�
bility of matrix 

Proof. The statement of (a) was proved in [8, Lemma A.2]. In other cases, when  is an arbitrary
bounded matrix, there is a constant  providing the exponential stability of matrix  In fact,
by Lyapunov’s estimate [13, p. 132], we have 

where  is a constant. By choosing  it is possible to achieve the exponential stability of
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Consider the process  described by the equation 
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The statement of Theorem 3 allows us to consider the effect of time preferences on the probabilistic
properties of the average optimal control. If discounting is performed at an asymptotically nonpositive
rate, then the corresponding process is upper bounded by the logarithmic function. The conventional
exponential discounting may lead to a substantially different probabilistic properties of the average opti�
mal control. First of all, it is possible that the exponential stability in the matrix in the linear equation of
the process will be violated. Due to this there appear the upper estimates for the process, increasing much
faster than the logarithm, which is the common bound in the case of constant parameters of the perturba�
tions and the exponential stability of the mentioned matrix. 

4. CONCLUSIONS

In the considered model, the time preferences of the subjects have a noticeable effect on the results of
the dynamic optimization made in order to stabilize the system. Here, it is shown that the type of average
optimality over an infinite�time horizon for the control law and the dynamics of the process correspond�
ing to it are determined depending on the discounting function reflecting the time preferences. We note
the main difference between the conventional exponential and other kinds of discounting lies in the fact
that the use of the exponential discounting function in estimating future losses fails to guarantee the sta�
bilization of optimal trajectories in the long run. 
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