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Abstract—For a linear stochastic control system with quadratic objective functional, we intro-
duce various generalizations of the notions of optimality on average and stochastic optimality
on an infinite time interval that take into account possible degeneration of the parameter of
the disturbing process with time (attenuation of the disturbances) or the presence of a discount
function in the objective functional. This lets us improve upon the quality estimate for a well
known optimal control in this problem from the point of view of both asymptotic behavior of
the functional’s expectation and its asymptotic probabilistic properties. In particular, in the
considered case we have found an improvement for the well known logarithmic upper bound on
the optimal control for a family of defect processes.
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1. INTRODUCTION: MODEL DESCRIPTION
AND DIFFERENT OPTIMALITY DEFINITIONS

This work is devoted to studying stochastic optimality in the control problem for a linear system
with quadratic objective functional (see the linear controller problem in [1]). Traditional notions of
optimality for controls in stochastic processes are related to the values of expectations of objective
functionals defined on the trajectories of these processes. In what follows we call solutions of the
corresponding optimization problems controls optimal on average. In the linear controller problem,
such controls are well known for both finite and infinite time intervals (when optimality definitions
are related to the asymptotic behavior of the objective functional’s expectation); see, e.g., [2].

Unlike the traditional approach, definitions of stochastic optimality usually stem from criteria
based on studying the asymptotic behavior of the functionals themselves in some probabilistic sense
of the word. The main tool for studying stochastic optimality are various martingale versions of
the laws of large numbers and limit theorems of probability theory. According to them, different
kinds of optimality can be distinguished: optimality in probability, optimality almost surely (a.s.),
optimality in distribution and so on. Brief surveys of this topic can be found in [3]; see also [4],
where a result on stochastic optimality for linear controllers has been established that cannot be
improved under standard assumptions on system parameters. These assumptions, which for linear
controllable systems relate to such notions as exponential stability, stabilizability, controllability,
recoverability and so on, in different combinations yield sufficient conditions for the existence of
a so-called established optimal control law on an infinite time interval [2]. However, as we will
see in this work, in certain special cases that have important applications the result of [4] can be
significantly improved.

Below we give the model description and different optimality definitions that will be used
throughout the paper. In particular, we introduce a new definition of optimality on average on
an infinite time interval that generalizes preexisting definitions and lets us improve upon known
results in the considered cases.
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ON STOCHASTIC OPTIMALITY FOR A LINEAR CONTROLLER 629

Consider a full probability space {Ω,F ,P} and an n-dimensional random process Xt, t � 0,
defined in this space with the following equation:

dXt = AtXtdt+BtUtdt+Gtdwt, X0 = x, (1)

where the initial state x is nonrandom; wt, t � 0, a d-dimensional standard Wiener process; Ut,
t � 0, an admissible control, i.e., a k-dimensional random process compatible with the filtration
{Ft}t�0, Ft = σ{ws, s � t} such that Eq. (1) has a solution; At, Bt, Gt, t � 0, bounded matrix
functions of time with dimensions suitable for (1).

We denote the set of admissible controls by U . For every T > 0 as the objective functional we
define a random variable (r.v.)

JT (U
T ) =

T∫

0

(X ′
tQtXt + U ′

tRtUt) dt, (2)

where UT = {Ut}t�T is a restriction of control U ∈ U on the interval [0, T ]; Qt, Rt, t � 0, bounded
matrix functions of time that are nonnegative definite and positive definite respectively (′ denotes
transposition). Here UT ∈ UT , where UT is the set of admissible controls considered on the
interval [0, T ].

In the traditional sense, a control U∗T is called optimal on interval [0, T ] (we further call it
optimal on average) if

EJT (U
∗T ) = inf

UT∈UT
EJT (U

T ). (3)

For the model (1), (2), the form of a solution for problem (3) is well known (see, e.g., [2]). It is also
known that under certain conditions there exists a control U∗, defined on an infinite time interval,
that can be obtained by, in a certain sense, passing to the limit for U∗T as T → ∞ (see [2]). As
the planning horizon tends to infinity, one traditionally poses the optimality problem for U∗ in the
sense of averages in the long run, i.e., as a solution of the following problem:

lim sup
T→∞

EJT (U)

T
→ inf

U∈U
. (4)

In case when the disturbance is degenerating as t → ∞ or is attenuating (“small noise”), i.e., if
‖Gt‖ −→ 0, where ‖ · ‖ denotes the Euclidean norm, criterion (4) turns out to be inefficient. Indeed,
value of the quality functional on U∗ can be written as EJT (U

∗) =
∫ T
0 tr(ΠtGtG

′
t) dt+ lT , where lt

is some bounded function and Πt is a nonnegative definite bounded matrix function (see, e.g., [2]).
If the parameters of control system (1), (2) are constant, in particular, Gt ≡ G, then Πt ≡ Π,
the criterion value in (4) on control U∗ equals tr(ΠGG′), and this value is minimal in the set of
admissible controls. However, if ‖Gt‖ → 0, t → ∞, then the value of EJT (U

∗) may grow much
slower than T (and may even be bounded if

∫∞
0 ‖Gt‖2 dt < ∞), and in this case the criterion value

in (4) turns out to be zero for the entire set of controls.

In another situation, even if disturbances are not attenuating but functions Qt, Rt are infinitesi-
mal for t → ∞ (which happens in the case of a discount function in the functional that we consider
in Section 5), it does not make sense to use the criterion from (4), and one must use a different
definition for optimality on average on an infinite time interval. This definition for controllable
diffusive processes, that also takes into account how discount function influences the behavior of
the objective functional’s expectation, has been given in [5]. Note also that in the special case
of an exponential discount it is natural to pose a problem similar to (3) but considered not for a
finite interval [0, T ] but rather for the interval [0,∞). As we will show, for n = 1 the problem with
discount can be reduced to a standard linear controller problem with a suitable change of variables
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but with an attenuating disturbance. The situation of a degenerate disturbance also arises by itself
in a number of applications (see, e.g., [6]).

In this work, we propose to use a new definition of optimality in the sense of long-run averages
that generalizes the previous definition and lets us account for possible attenuation in the disturbing
process. Besides, this definition will also imply the definition of optimality given in [5] for a problem
with discount, a property demonstrated in this work with the help of the interrelation between
problems that we have already noted.

In what follows we will assume that the system is not deterministic on the entire infinite time
interval, that is, formally speaking, that

∫∞
0 ‖Gt‖2 dt > 0.

Definition 1. A control U∗ ∈ U is called optimal on average on an infinite time interval (or
optimal in the sense of long-run averages) if it is a solution to the following problem:

lim sup
T→∞

EJT (U)
T∫
0
‖Gt‖2 dt

→ inf
U∈U

. (5)

Obviously, in case of constant parameters problems (4) and (5) are equivalent. At the same time,
the functional in (5) directly takes into account the contribution of noise collected over the planning
period. More precisely, it includes information about the ratios of expected costs (values of the
functional) to the sum of variances of the random variables that form the integral noise vector
ZT =

∫ T
0 Gt dwt on the interval [0, T ] (indeed, it is easy to show with the multidimensional Ito

formula that EZ ′
TZT =

∫ T
0 ‖Gt‖2 dt).

Another optimality definition, the so-called “overtaking” optimality on average, has also been
introduced in [5].

Definition 2. A control U∗ ∈ U is called overtaking optimal on average if for every ε > 0 there
exists T0 > 0 such that for an arbitrary admissible control U ∈ U it holds that

EJT (U
∗) < EJT (U) + ε for every T > T0. (6)

Note that overtaking optimality on average for a control implies its optimality in the sense of (5).

Studies of stochastic optimality are usually based on studying the asymptotic probabilistic be-
havior of the functional and comparing it for different controls: the control U∗ defined as optimal
on average and an arbitrary admissible control. For further definitions of stochastic optimality, we
will use the notion of a defect process for control U∗ (see [4]).

Definition 3. The defect process for a control U∗ on control U ∈ U is the process

ΔT (U) := JT (U
∗)− JT (U), T > 0. (7)

Choosing all possible U ∈ U , we arrive at a family of processes {ΔT (U)}U∈U .
We give two definitions that let us compare the order of changes in the defect process in the

sense of expectation and in the probabilistic sense with a certain positive nonincreasing function gT
(definitions of “g-optimality almost surely” and “g-optimality in probability” were first given in [7]).

Definition 4. A control U∗ is called g-optimal on average if

lim sup
T→∞

gTEΔT (U) � 0 for every U ∈ U . (8)

Definition 5. A control U∗ is called g-optimal almost surely if

lim sup
T→∞

gTΔT (U) � 0 with probability 1 for every U ∈ U . (9)
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ON STOCHASTIC OPTIMALITY FOR A LINEAR CONTROLLER 631

It is clear that in order to find a possible order of function g for which (9) holds it suffices to
find an upper function for the family of defect processes defined as follows.

Definition 6. A nondecreasing function hT is an upper function for a family of defect processes
{ΔT (U)}U∈U if for every U ∈ U there almost surely exists a finite time moment T0 for which
ΔT (U) � hT almost surely for T > T0.

Once we have found an upper function hT , g-optimality of control U∗ will follow for gT = o(1/hT ).
For the considered stochastic linear controller problem under standard assumptions on system
parameters, in [4] we have obtained an upper function of the form b0 lnT , where b0 > 0 is a constant.

The main purpose of this work is to get results on upper functions in the linear stochastic
control problem that would generalize the results of [4], taking into account possible degeneration
of function Gt for t → ∞ and improving the order of upper functions in such cases. A new
approach to defining g-optimality, related to finding such upper functions, can be characterized
as an approach that uses as normalizing functions gT functions of not only time T but also of
the integral expression

∫ T
0 ‖Gt‖2 dt (there is a similarity here with different normalizations in (4)

and (5) in defining optimality in the sense of long-run averages).

The paper is organized as follows. Section 2 contains basic assumptions of our model. Section 3
gives the form of a control U∗ for which we formulate the theorem that it is, under corresponding
assumptions, optimal in the sense of three different definitions: a new definition of averages in the
long run (5), overtaking optimality on average, and g-optimality on average. Section 4 is devoted to
studying probabilistic properties of this control. It contains statements related to the form of upper
functions that imply, in particular, that in the case of a degenerate disturbance the defect process
bound can be significantly improved compared to the logarithmic function found in [4]. Besides, in
the same section we study stochastic optimality of control U∗ from the point of view of one more
definition: long-run averages with probability one. Section 5 considers the linear controller problem
with discounting as it is used in economic, ecological, and behavioral applications; we show how it
can be transformed to a standard problem with attenuating disturbance and apply our results to
this model. Proofs of all statements are relegated to the Appendix.

2. BASIC ASSUMPTIONS OF OUR MODEL

For brevity we do not show here the form of a well known control in the synthesis form that
represents a solution of problem (3); it can be found, e.g., in [2]. In this work, we consider a control
defined on an infinite time interval, or the so-called established optimal control law U∗ for T → ∞.
It also has a synthesis form (see [2]). Before we show the form of this control and formulate state-
ments regarding its optimality in one sense or another, let us recount the assumptions introduced
in [4] that are necessary for subsequent proofs. Conditions on the parameters of system (1), (2)
that are sufficient for these assumptions to hold, as well as for the control U∗ to exist, can be found
in [4]. These are conditions standard for a linear controller considered on an infinite time interval,
such as uniform complete controllability of the pair (At, Bt) and uniform complete recoverability of
the pair (At, Qt) or an exponential bound on the fundamental matrix for function At; see also [2].

We remind that the fundamental matrix Φ(t, s) for a matrix function At, t � 0, is a solution of
the following problem:

∂Φ(t, s)

∂t
= AtΦ(t, s), Φ(s, s) = I, (10)

where I denotes the unit matrix. Here Φ(t, s) = Φ(t, 0)Φ(0, s), Φ(s, t) = Φ−1(t, s).

Assumption 1. Functions At, Bt, Qt, Rt, t � 0, are such that there exists an absolutely continu-
ous bounded function Πt, t � 0, with values in the set of nonnegative definite symmetric matrices
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that satisfies the Riccati equation

Π̇t +ΠtAt +A′
tΠt −ΠtBtR

−1
t B′

tΠt +Qt = 0 (11)

and such that the fundamental matrix ΦA(t, s) for function At := At − BtR
−1
t B′

tΠt satisfies the
exponential bound

‖ΦA(t, s)‖ � κ1e
−κ2(t−s), s � t, (12)

for some positive constants κ1, κ2 > 0.

Assumption 2. There exists a constant c0 > 0 such that for every pair (xt, ut)t�T satisfying
equation

dxt = Atxtdt+Btutdt, x0 = 0, (13)

it holds that

‖xT ‖2 +
T∫

0

‖xt‖2 dt � c0

T∫

0

(x′tQtxt + u′tRtut)dt. (14)

In the next section, we give the form of a control for which it is known that under certain
standard conditions on parameters it represents a solution of problem (4). We will show that in
certain cases, it may also have stronger properties in the sense of optimality on average on an
infinite time interval.

3. A CONTROL OPTIMAL ON AVERAGE ON AN INFINITE TIME INTERVAL

As we have already mentioned, in case of a linear–quadratic controller (under certain conditions
on system parameters) solution of the control problem for T → ∞ can be found as the limit of the
solution of (3) for a finite T .

Theorem 1. Suppose that Assumptions 1 and 2 hold. Then

(a) a control of the form

U∗
t = −R−1

t B′
tΠtX

∗
t , (15)

where process {X∗
t }∞t=0 is defined by

dX∗
t = (At −BtR

−1
t B′

tΠt)X
∗
t dt+Gtdwt, X∗

0 = x, (16)

is a solution for problem (5);
(b) control U∗ is g-optimal on average for every function gT such that gT → 0, T → ∞;
(c) moreover, if at least one of the following two conditions holds:

∞∫

0

‖Gt‖2 dt < ∞, lim
t→∞ ‖Gt‖ = 0, (17)

control U∗ is also overtaking optimal on average and g-optimal on average for gT ≡ 1.

To prove this theorem (the proof is given in the Appendix), we use a lemma that is interesting
in its own right.

Lemma. Suppose that Assumption 1 holds. Then E‖X∗
T ‖2 is bounded in T . If, moreover, at

least one condition in (17) also holds then limT→∞E‖X∗
T ‖2 = 0.

The proofs of this lemma and all subsequent theorems are given in the Appendix.
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4. PROBABILISTIC PROPERTIES OF CONTROLS OPTIMAL ON AVERAGE

In what follows we will use the notion of an upper function for an arbitrary process {Yt}∞t=0

defined on the probability space {Ω,F ,P} with filtration F = (F)t�0.

Definition 7. A nondecreasing function h∗T is an upper function for process {YT }T�0 if there
almost surely exists a finite time moment t0(ω) such that inequality YT � h∗T holds with probability
one for every T > t0.

We denote

αT := e−2κ2T

T∫

0

e2κ2t‖Gt‖2 dt. (18)

Theorem 2. Suppose that Assumption 1 holds. Then

h∗T = cα sup
t�T

(αt ln t), (19)

where cα > 0 is a certain constant, is an upper function for process ‖X∗
T ‖2, where {X∗

t }∞t=0 is
given by Eq. (16). Moreover, if limT→∞ αT lnT = 0 then ‖X∗

T ‖2 → 0 with probability one, and
any positive constant is an upper function for this process.

Remark 1. An obvious corollary of Theorem 2 is the fact that if a function αT lnT is bounded
for T → ∞, then a certain constant c∗ > 0 is also an upper function for the process ‖X∗

T ‖2. Another
obvious corollary of this theorem is a result obtained in [4].

In many natural situations, conditions of the theorem and the form of the upper function that
use the value αT defined in (18) can be restated in original terms that explicitly account for
the behavior of the disturbing process parameter. We formulate the corresponding statements as
corollaries.

Corollary 1. Suppose that Assumption 1 holds. If limt→∞ ‖Gt‖ = 0 then an upper function of
the process YT = ‖X∗

T ‖2 always satisfies h∗T = o(lnT ).

Corollary 2. Suppose that Assumption 1 holds.

(1) If a function ‖GT ‖2 lnT is bounded for T → ∞, then a certain positive constant is an upper
function for process ‖X∗

T ‖2. Moreover, if limT→∞ ‖GT ‖2 lnT = 0 then ‖X∗
T ‖2 → 0 a.s., and any

positive constant represents an upper function.

(2) Let ‖GT ‖2 lnT → +∞ for T → ∞ and suppose that starting from some finite moment of
time, the function ‖Gt‖ is differentiable, and it holds that

− d

dt
ln ‖Gt‖ � κ2 − ε (20)

for some ε > 0. Then
h∗T = cG sup

t�T
(‖Gt‖2 ln t), (21)

where cG > 0 is a certain constant, is an upper function for process ‖X∗
T ‖2.

Let us now turn to the problem of upper functions for the family of defect processes {ΔT (U)}U∈U
defined for a control (15).

Theorem 3. Suppose that conditions of Theorem 1 hold, and ĥT is an arbitrary nondecreasing
unbounded function. Then a function of the form

hT = max{ĥT , h∗T }, (22)

where h∗T is an upper function for process ‖X∗
T ‖2, defined in Theorem 2 (Corollary 2), under the

corresponding assumptions is an upper function for the family of defect processes {ΔT (U)}U∈U .
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In conclusion of this section, let us consider the problem of optimality for the control U∗ in the
sense of stochastic long-run averages, namely in the sense of solving the following problem:

lim sup
T→∞

JT (U)
T∫
0
‖Gt‖2 dt

→ inf
U∈U

a.s. (23)

Let us formulate a few assumptions on the properties of function ‖Gt‖.
Assumption 3.

∫ T
0 ‖Gt‖2 dt → ∞ for T → ∞.

Assumption 4. Either the function ‖Gt‖2 ln t is bounded or ‖Gt‖2 ln t → ∞ for t → ∞.

In some applications (see below an example of a linear–quadratic controller with generalized
discounting) it is convenient to use the following assumption.

Assumption 5. The function ‖Gt‖ is nonincreasing and differentiable.

Theorem 4. Suppose that conditions of Theorem 1, Assumption 3, and either Assumption 4 or
Assumption 5 hold. Then control U∗ given by (15) and (16) is a solution of problem (23).

Next we consider examples in which we will suppose that Assumptions 1 and 2 hold (and,
consequently, statements (a) and (b) of Theorem 1 also hold).

Example 1. Let ‖Gt‖ = 2+sin t
(t+1)α , α > 0. Then, obviously, statement (c) of Theorem 1 on over-

taking optimality on average and g-optimality on average for gT ≡ 1 hold for the control U∗.
Since limT→∞ ‖GT ‖2 lnT = 0, according to Corollary 2 an arbitrary positive constant will yield an
upper function for the process ‖X∗

T ‖2. Then, by Theorem 3, any increasing unbounded function
is an upper function for the family of defect processes for control U∗. Further, if α � 1/2 then∫ T
0 ‖Gt‖2 dt → ∞, T → ∞, so by Theorem 4 the control U∗ will also be optimal in the sense of
solving problem (23).

Example 2. Let ‖Gt‖ = 1
lnβ(t+2)

, 0 < β < 1/2 . Then statement (c) of Theorem 1 also holds;

by Corollary 2, function h∗T = cG lnT
ln2β(T+2)

is an upper function for process ‖X∗
T ‖2, so, consequently,

function hT = c̄(ln T )1−2β for some c̄ is also such, and by Theorem 3 it is also an upper function
for the defect process. Besides, it is easy to see that function ‖Gt‖ satisfies Assumptions 3 and 4,
so the statement of Theorem 4 also holds.

We consider one more sample application of our results in the next section.

5. A LINEAR–QUADRATIC CONTROLLER WITH GENERALIZED DISCOUNTING

Consider a linear controllable system of the following form. A one-dimensional random process
{X̂t}∞t=0 is defined over a probability space {Ω,F ,P} with the following equation:

dX̂t = aX̂tdt+ bÛtdt+ σdwt, X̂0 = x, (24)

where {wt}∞t=0 is a one-dimensional standard Wiener process; a, b �= 0, σ > 0 are constants; {Ût}∞t=0,
a control admissible in the sense described in Section 1. Consider the deterministic process given
by Eq. (24) for σ = 0, and let x0 be a fixed number. Then X̂0 ≡ x0 is the stationary state of this
process for control Ût ≡ u0 = −a

bx0. We define the objective functional that accounts for losses
due to the deviation of the random (perturbed) process and a certain admissible control from x0
and u0 respectively:

JT (Û
T ) =

T∫

0

ft(q(X̂t − x0)
2 + (Ût − u0)

2) dt, (25)
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where q > 0 is a constant; ft, a discounting function. We assume that function ft has the following
properties: (1) f0 = 1, ft > 0 for t � 0; (2) ft is nonincreasing and differentiable on [0,∞); (3) the
decrease rate of function ft is bounded, i.e., there exists K > 0 such that − d

dt ln ft � K. For
instance, for ft ≡ 1 the model (24) and (25) corresponds to a standard stochastic linear–quadratic
controller. If ft = e−γt (γ > 0) then it is a problem with standard discounting; for ft =

1
(1+θt)θ1/θ

(θ1, θ > 0) we get the general form of a hyperbolic discounting problem [8]; in case when ft =
m1e

−αt + (1−m1)e
−βt (α, β > 0, 0 < m1 < 1) we get a problem with double discounting [9]. Such

discount factors have been traditionally used in ecological, economic, and behavioral models [8–10].

In [5], the author studied a control problem for a diffusive process with quality criterion

lim infT→∞
(
E

∫ T
0 ftc(xt, ut) dt

/ ∫ T
0 ft dt

)
, where c(x, u) is a certain function and the discounting

function ft is such that fT → 0,
∫ T
0 ft dt → ∞ as T → ∞. In particular, existence conditions for

overtaking optimal on average controls were obtained.

In case limt→∞ ft = 0, system (24) and (25) does not have a property belonging to the system
of sufficient existence conditions for an established optimal control law on an infinite time interval,
namely the property that coefficient ft in the second term of functional (25) is separated from zero
(see [2]). However, we will see that by a change of variables this problem can be reduced to the
problem of a standard stochastic linear–quadratic controller for which the said sufficient conditions
do hold. And then the problem begins to conform to the results found in this work. Thus, we
denote

Xt :=
√
ft(X̂t − x0), Ut :=

√
ft(Ût − u0). (26)

Dynamics of the process {Xt} will be given by equation

dXt = atXtdt+ bUtdt+ σtdwt, X0 = x− x0, (27)

where 2at = 2a+ ḟt/ft is a bounded function, σt = σ
√
ft.

The functional (25) in new notation assumes the following form:

JT (U) =

T∫

0

(qX2
t + U2

t ) dt. (28)

The problem of the form (5) for finding a control optimal on average on an infinite time interval is
now formulated as follows:

lim sup
T→∞

EJT (U)
T∫
0
σ2
t dt

= lim sup
T→∞

EJT (U)

σ2
T∫
0
ft dt

→ inf
U∈U

. (29)

It is easy to check (see [10]) that system (27)–(29) satisfies Assumptions 1 and 2, so, consequently,
by Theorem 1 a control U∗ of the form (15) is a solution for problem (29). To find the character
of the upper function we can use Corollary 2 and Theorem 3. For instance, for cases of stan-
dard, double exponential, and hyperbolic discounting we get as a result that any nondecreasing
unbounded function can serve as the upper function for the defect process of control U∗. For clas-
sical discounting it is not an unexpected result since on the optimal control the functional (28) as
T → ∞ asymptotically converges to a certain random value, and the worst possible result in the
sense of the defect process can be found with a competing control on which (28) asymptotically
converges to a different random value. In the case of a hyperbolic discount factor with θ1 � θ, the
functional (28) on U∗ will already tend to infinity for T → ∞. In this case, the possibility to upper
bound the family of defect processes with any function hT → ∞, T → ∞ means that the difference
of the values of functionals may grow arbitrarily slow.
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Since σt = σ
√
ft is nonincreasing and differentiable, it means that for the case when

∫ T
0 ftdt → ∞,

T → ∞ the statement of Theorem 4 also holds, i.e., U∗ is stochastically optimal in the sense of (23).
For instance, it holds for a hyperbolic discount function for θ1 � θ.

6. CONCLUSION

This work is devoted to studying stochastic optimality in dynamical systems, a problem that has
become especially relevant lately due to increased interest in studying behavior objective functionals
on optimal trajectories in one probabilistic sense or another. The notion of stochastic optimality
based on asymptotic probabilistic comparison of objective functionals for different controls on large
time intervals turns out to be stronger than traditional optimality on average since it lets us make
judgements about the control quality not only on average for all realizations but also on a single
individual trajectory.

If we study systems considered with infinite planning horizons, then from the point of view
of both optimality on average and stochastic optimality it is natural to study controls that are
established (as the planning horizon tends to infinity) optimal on average controls. In the linear–
quadratic controller problem, the established optimal control law that exists under certain condi-
tions on the parameters is well known, and it also is optimal on average in the sense of long-run
averages and also in a certain stochastic sense if we apply to the functional (that is, to be more
precise, to the defect process) a normalization in the form of a function that tends to infinity
slightly faster than logarithmically. However, it turns out that in certain nonstandard situations,
e.g., if the disturbing process parameter degenerates with time or the functional contains a dis-
counting function that tends to zero, the usual long-run averages criterion becomes inefficient, and
normalizations of the functional and defect process used in the general case can be significantly
weakened.

In this work, we have proposed a generalization of the long-run averages criterion that accounts
for the contribution of noise to system dynamics. As we studied the rate of growth for the defect
process, we have obtained a general representation for upper functions in many cases, in particular
for attenuating disturbances, that lets us improve over a previously known logarithmic bound.
As a direction for further study, we single out the study of stochastic optimality in situations
when disturbances increase in time, i.e., for ‖Gt‖ → ∞, t → ∞, and formulations of more general
optimality conditions in the sense of stochastic long-run averages for a standard controller.
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APPENDIX

Proof of Lemma. Solution of Eq. (16) has the form

X∗
T = ΦA(T, 0)x+

T∫

0

ΦA(T, t)Gt dwt, (A.1)

where ΦA(t, s) is the fundamental matrix for function At := At − BtR
−1
t B′

tΠt. Using the Ito’s
isometry property, we get that

E‖X∗
T ‖2 � ‖ΦA(T, 0)‖2‖x‖2 +

T∫

0

‖ΦA(T, t)‖2‖Gt‖2 dt.

AUTOMATION AND REMOTE CONTROL Vol. 74 No. 4 2013



ON STOCHASTIC OPTIMALITY FOR A LINEAR CONTROLLER 637

In what follows we will denote by c all constants whose specific values do not matter and may
change from formula to formula. Using the exponential bound (12) formulated in Assumption 1,
we get

E‖X∗
T ‖2 � ce−2κ2T ‖x‖2 + c

T∫

0

e−2κ2(T−t)‖Gt‖2 dt, (A.2)

which, since function Gt is bounded, implies that E‖X∗
T ‖2 is bounded. Suppose now that the

first condition from (17) holds. We show that in this case the second term in (A.2), just like the
first, is also infinitesimal as T tends to infinity. To prove it, fix an ε > 0 and choose T0 such that∫∞
T0

‖Gt‖2 dt < ε. Then

T∫

0

e−2κ2(T−t)‖Gt‖2 dt �
T0∫

0

e−2κ2(T−t)‖Gt‖2 dt+
T∫

T0

‖Gt‖2 dt � ce−2κ2T + ε,

and since ε was arbitrary we get the necessary bound. Suppose now that the second condition
from (17) holds. We compute the limit of the second term in (A.2) with the l’Hôpital’s rule:
limT→∞ e−2k2T

∫ T
0 e2k2t‖Gt‖2 dt = limT→∞ ‖GT ‖2/(2k2) = 0, i.e., again limT→∞E‖X∗

T ‖2 = 0.

Proof of Theorem 1. Fix an arbitrary admissible control U ∈ U , denote by Xt the corresponding
phase process, and let us find the corresponding defect process (7) for control U∗. We denote
xt := Xt −X∗

t , ut := Ut − U∗
t . Note that the pair (xt, ut)t�T satisfies (13). Under Assumptions 1

and 2, for the defect process ΔT = ΔT (U) an estimate of the following form has been bound in [4]:

ΔT � c1‖X∗
T ‖2 − c2

T∫

0

‖xt‖2 dt− 2

T∫

0

x′tΠtGtdwt, (A.3)

where c1, c2 are some positive constants. Consequently,

JT (U
∗) � JT (U) + c1‖X∗

T ‖2 − 2

T∫

0

x′tΠtGtdwt. (A.4)

This, obviously, implies that

EJT (U
∗) � EJT (U) + c1E‖X∗

T ‖2, (A.5)

and after normalization we get

EJT (U
∗)

T∫
0
‖Gt‖2 dt

� EJT (U)
T∫
0
‖Gt‖2 dt

+ c1
E‖X∗

T ‖2
T∫
0
‖Gt‖2 dt

. (A.6)

Therefore, if the integral
∫∞
0 ‖Gt‖2 dt diverges, we get from (A.6) that

lim sup
T→∞

EJT (U
∗)

T∫
0
‖Gt‖2 dt

� lim sup
T→∞

EJT (U)
T∫
0
‖Gt‖2 dt

, (A.7)

i.e., control U∗ is a solution of problem (5). If, on the other hand, the said integral converges then
by Lemma 1 limT→∞E‖X∗

T ‖2 = 0, and then (A.7) will also hold. This proves statement (a) of
the Theorem 1. Let us check for completeness that the expression in the left-hand side of (A.7)
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is finite. From (11) and (16) with the Ito’s formula we get that d((X∗
t )

′ΠtX
∗
t ) = −{(X∗

t )
′QtX

∗
t +

(U∗
t )

′RtU
∗
t }dt+ tr(G′

tΠtGt)dt+ 2(X∗
t )

′ΠtGtdwt, i.e.,

JT (U
∗) = x′Π0x− (X∗

T )
′ΠTX

∗
T +

T∫

0

tr(G′
tΠtGt) dt+ 2

T∫

0

(X∗
t )

′ΠtGtdwt. (A.8)

Consequently, EJT (U
∗) � x′Π0x+

∫ T
0 tr(G′

tΠtGt) dt, and since functions Πt, Gt are bounded we

get that lim supT→∞
(
EJT (U

∗)/
∫ T
0 ‖Gt‖2 dt

)
< ∞.

The latter two statements of the theorem can be shown immediately with inequality (A.5) and
Lemma 1, which concludes the proof of Theorem 1.

Proof of Theorem 2. Following an idea from [4] (see the proof of Lemma A.2 there), we first
consider the process {X̃t}∞t=0 whose dynamics is given by equation

dX̃t = −κ2IX̃t dt+Gtdwt, X̃0 = 0, (A.9)

where I is the unit matrix. Solving (A.9) and making a standard change of time for each component
in the solution X̃i

T , i = 1, . . . , n, we get

X̃i
T = e−κ2T

d∑
j=1

T∫

0

eκ2tGij
t dw

j
t = e−κ2TM i

T = e−κ2T ŵi
〈M i

T 〉, (A.10)

where ŵi is a Wiener process, Gij
t are elements of matrix Gt, and 〈M i

T 〉 =
∫ T
0 e2κ2t

(∑d
j=1(G

ij
t )

2
)
dt

is the quadratic characteristic of martingale M i
T . Thus, it holds on the set {〈M i∞〉 < ∞} that

(X̃i
T )

2 → 0 a.s. On the set {〈M i
T 〉 → ∞} we apply the repeated logarithm law to Wiener process ŵi

and conclude as a result that there exist a number c > 0 and a time moment ti0(ω) such that
(ŵi

〈M i
T
〉)
2 � c〈M i

T 〉 ln ln〈M i
T 〉 for T > ti0. Since elements of the matrix function Gt are bounded, we

have ln ln〈M i
T 〉 � clnT . Therefore, for T > ti0(ω) it holds that

(X̃i
T )

2 � ce−2κ2T

T∫

0

e2κ2t‖Gt‖2 dt lnT = cαT lnT a.s., i = 1, . . . , n,

so
‖X̃T ‖2 � c̃αT lnT (A.11)

with probability one for T > t̃0(ω) for some t̃0 = t̃0(ω) and some constant c̃ > 0.

Consider now the process Zt = X∗
t − X̃t, which due to (16) and (A.9) is given by relations

dZt = (At −BtR
−1
t B′

tΠt)Zt dt+ (At + κ2I)X̃t dt, Z0 = x and has, respectively, the form ZT =
ΦA(T, 0)x+

∫ T
0 ΦA(T, t)(At+κ2I)X̃t dt, where ΦA(t, s) is the fundamental matrix for matrix func-

tion At := At − BtR
−1
t B′

tΠt. Then for T > t̃0 (where t̃0 is the random time moment defined
above)

‖ZT ‖ � ‖ΦA(T, 0)x‖ +
t̃0∫

0

‖ΦA(T, t)‖‖(At + κ2I)X̃t‖ dt

+

T∫

t̃0

‖ΦA(T, t)‖‖(At + κ2I)‖‖X̃t‖ dt.
(A.12)
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Since Assumption 1 holds, the first two terms in the right-hand side of the latter inequality tend
to zero a.s. In order to estimate the last term, note that for the function h̃ = c̃ supt�T (αT lnT )

h̃
−1/2
T

T∫

t̃0

‖ΦA(T, t)‖‖(At + κ2I)‖‖X̃t‖ dt �
T∫

t̃0

‖ΦA(T, t)‖‖(At + κ2I)‖h̃−1/2
t ‖X̃t‖ dt,

and due to relation (A.11) the latter expression is bounded a.s. Thus, it easily follows from (A.11)
by definition of the process Zt that function h∗ defined in (19) (and coinciding with h̃ up to a
constant factor) is an upper function for the process ‖X∗

T ‖2. If limT→∞ αT lnT = 0 then, due
to (A.11), ‖X̃T ‖ → 0 a.s. Then it is easy to see that ‖ZT ‖ → 0 a.s. as well, and this proves the
last statement of Theorem 2.

Proof of Corollary 1. If αT lnT is a bounded function, the statement of this corollary is obvious.
Otherwise, the integral in (18) must also be an unbounded growing function of T . Then (using,
for instance, l’Hôpital’s rule), it is easy to show that if limt→∞ ‖Gt‖ = 0 then also limT→∞ αT = 0.
Since the continuous function αT lnT is unbounded, for every nondecreasing sequence Ti > 0,
Ti → ∞, there exists a nondecreasing sequence T̄i > 0, T̄i → ∞, T̄i � Ti, for which it holds
that supt�Ti

(αt ln t) = (αT̄i
ln T̄i). Consequently, supt�Ti

(αt ln t)/ lnTi � αT̄i
ln T̄i/ ln T̄i = αT̄i

→ 0,
i → ∞. Since by Theorem 2 the upper function h∗T = cα supt�T (αt ln t), then, since the sequence Ti

was arbitrary, we conclude that h∗T = o(ln T ).

Proof of Corollary 2. It is easy to see that if function ‖GT ‖2 lnT is bounded for T → ∞,
then function αT lnT is also bounded, and then statement from item (1) of Corollary 2 holds (see
Remark 1 to Theorem 2). If at the same time limT→∞ ‖GT ‖2 lnT = 0, we can show (using, in
particular, l’Hôpital’s rule) that limT→∞ αT lnT = 1

2κ2
limT→∞ ‖GT ‖2 lnT = 0. The latter relation

together with Theorem 2 concludes the proof of item (1).

To show the statement of item (2) it suffices to show that starting from a certain time moment
it holds that αt � c‖Gt‖2, where c > 0 is a certain constant. We denote φt = αt/‖Gt‖2, defined
due to conditions of item (2) at least for sufficiently large t. It is easy to check that φt satisfies

the linear differential equation dφt

dt =
(
−2

(
κ2 +

d
dt ln ‖Gt‖

)
φt + 1

)
, and in order for its solution to

be bounded it suffices that (20) holds. Thus, cα supt�T (αt ln t) � cG supt�T (‖Gt‖2 ln t) for some
constant cG > 0, which by Theorem 2 implies that statement (2) of the corollary holds.

Proof of Theorem 3. Using inequality (A.3) and taking into account the fact that functions Πt

and Gt are bounded, we get that for some c1, c2 it holds that

ΔT � c1‖X∗
T ‖2 +RT , (A.13)

where

RT := −c2

T∫

0

‖G′
tΠtxt‖2 dt− 2

T∫

0

x′tΠtGtdwt. (A.14)

According to the results of [4] (see Lemma A.1), the process RT is a.s. bounded from above by some
finite random variable, so every nondecreasing unbounded function ĥT will be an upper function for
the process RT . The upper function h∗T for process ‖X∗

T ‖2 was defined in Theorem 2 (Corollary 2).
Therefore, a function dominating both processes in (A.13) will be an upper function for process
ΔT = ΔT (U), i.e., hT = max{ĥT , h∗T }, and this concludes the proof of Theorem 3.

Proof of Theorem 4. It follows from (A.13) that

JT (U
∗)

T∫
0
‖Gt‖2 dt

� JT (U)
T∫
0
‖Gt‖2 dt

+ c1
‖X∗

T ‖2
T∫
0
‖GT ‖2 dt

+
RT

T∫
0
‖Gt‖2 dt

. (A.15)
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Under the conditions of Assumption 3 and due to the properties of process RT described above,
the limit of the positive part of the last term in inequality (A.15) is a.s. zero. Further, sup-
pose that Assumption 4 holds. If function ‖Gt‖2 ln t is bounded, then according to Corollary 2
some positive constant represents an upper function for ‖X∗

T ‖2, and the limit of the second term
in (A.15) is also zero a.s. If, on the other hand, ‖Gt‖2 ln t → ∞ for t → ∞, we use the gen-
eral form of an upper function for process ‖X∗

T ‖2 found in [4]. Since b0 lnT is such a func-
tion for some constant b0 > 0, and, moreover, it is easy to see that under the said assumption

limT→∞ lnT/
(∫ T

0 ‖Gt‖2 dt
)
= limT→∞ 1/(T‖GT ‖2) = 0, we conclude again that the limit of the

second term in (A.15) is zero a.s.

It remains to show that the latter takes place also in case Assumption 5 holds. We first show
that a similar property holds for the process defined in (A.9), i.e.,

‖X̃T ‖2
/ T∫

0

‖Gt‖2 dt → 0 a.s. (A.16)

As we have seen above, estimate (A.11) holds for process ‖X̃T ‖2. At the same time, under the
conditions of Assumption 3 it is easy to check that

lim
T→∞

αT lnT
/ T∫

0

‖Gt‖2 dt

=
1

2κ2
lim
T→∞

(‖GT ‖2 lnT )
/
⎛
⎝

T∫

0

‖Gt‖2 dt+ ‖GT ‖2
⎞
⎠ .

(A.17)

If at the same time Assumption 5 holds, then for T0 : T > T0 > 0, integrating by parts, we can
show that the following inequality also holds

‖GT ‖2 lnT �
T∫

T0

‖Gt‖2
t

dt+ ‖GT0‖2 lnT0.

Then (A.17) implies that limT→∞αT lnT/
∫ T
0 ‖Gt‖2 dt = 0, and (A.16) holds. Further, using in-

equality (A.12) for process Zt = X∗
t − X̃t, we see that ‖ZT ‖2

∫ T
0 /‖Gt‖2 dt → 0 a.s. and, therefore,

due to (A.16) a similar relation also holds for the process X∗
T . This concludes the proof of Theo-

rem 4.
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