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1. INTRODUCTION

Linear stochastic differential equations are widely used in the simulation of physical, chemical–bio�
logical, economic, and other processes (see, e.g., [1–4]) and in the mathematical control theory [5, 6].
The study of the asymptotic behavior of solutions to such equations plays an important in various appli�
cations. For example, in [7], this issue was directly related to the possibility of applying the simulated
annealing algorithm to global minimum search (see [1]). In [6, 8] information of this kind was also
required in the study of almost sure optimality (i.e., optimality with probability 1) for a controlled stochas�
tic process on an infinite horizon in various formulations (so�called stochastic optimality). In the study of
stochastic optimality in the control problem for a linear system with a quadratic objective functional (lin�
ear�quadratic regulator), a key issue addressed in [6] was the almost sure asymptotic behavior of a con�
trolled process with average�optimal control. In this paper, we examine more general asymptotic proper�
ties of this process, which makes it possible to improve and generalize the results obtained in [6, 8] con�
cerning almost sure optimality in the sense of the so�called stochastic long�run average in the linear�
quadratic regulator problem for various nonstandard situations, including a general discount function
present in the cost functional.

Consider an n�dimensional stochastic process Xt, t ≥ 0, defined on a complete probability space {Ω, �, P}.
The dynamics of this process is described by the equation

(1.1)

where the initial state x is nonrandom, wt (t ≥ 0) is a d�dimensional standard Wiener process, and At and
Gt (t ≥ 0) are bounded matrix functions of appropriate sizes. Specifically, an equation of form (1.1)
describes the above controlled stochastic process with average�optimal control in the linear�quadratic reg�
ulator problem. Additionally, all the processes considered in what follows are assumed to be defined on the
same probability space.

Assume that the solution of problem (1.1) with Gt ≡ O (O is a zero matrix) and with the initial condition
 = x (t0 ≥ 0 is an arbitrary moment of time), i.e., the solution of a deterministic equation, is exponen�

tially stable. The following assumption is made according to the definition of exponential stability
(see, e.g., [5]).

dXt AtXtdt Gtdwt, X0+ x,= =

Xt0
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Assumption 1. The function At is such that the fundamental matrix Φ�(t, s) for the function �t := At

admits the exponential estimate

(1.2)

where κ1, κ2 > 0 are positive constants and ||·|| is the Euclidean norm. Recall that the fundamental matrix
Φ�(t, s) for the matrix function �t, t ≥ 0, solves the problem

(1.3)

where I is the identity matrix. Moreover, Φ�(t, s) = Φ�(t, 0)Φ�(0, s) and Φ�(s, t) = (t, s).

Two approaches can be used in the study of asymptotic probability properties of the solution to
problem (1.1). One is associated with the construction of upper functions for processes. It is well known
(see [6, 8]) that upper functions majorize a process with probability 1, starting at a finite time, and the
search for them is based on applying the law of the iterated logarithm for stochastic integrals. In the gen�
eral case of a bounded function Gt satisfying Assumption 1, it was shown in [6] that an upper function for
||Xt||2 is b0ln t, where b0 > 0 is a constant. The form of the upper function was refined in [8], where its various
representations involving the parameters of the perturbing process (as functionals of ||Gt||2, t ≥ 0) were
obtained. The other approach involves the search for suitable normalizing multipliers guaranteeing that
the process almost surely (a.s.) tends asymptotically to zero. This approach is associated with applying
limit theorems from probability theory, specifically, the strong law of large numbers for semimartingales
(see [9]). Examples of assertions of this type for solutions of stochastic differential equations can be found
in [10]. In this paper, the result of [11] on the behavior of the process ||Xt||2 is extended to several dimen�
sions in the case of suitably chosen normalization, which involves the parameters of the perturbing process
in explicit form and has a simple interpretation. Accordingly, as was said above, the result of [8] on almost
sure optimality in the linear regulator problem can be generalized without using a number of additional
constraints.

This work is organized as follows. Section 2 presents the main result concerning the almost sure con�
vergence of a normalized process and gives several auxiliary assertions that are of interest on their own.
Additionally, an example of modeling a process is presented that illustrates the validity of the results
proved. In Section 3, the results are applied to the study of stochastic optimality in the infinite�horizon
linear regulator problem. A problem with discounting is considered separately.

2. MAIN RESULTS AND A MODELING EXAMPLE

2.1. Main Results

Theorem 1. Let Assumption 1 hold and  > 0. Then, for the process Xt described by Eq. (1.1), it is

true that ||XT||2/   0 a.s. as T  ∞.

Note that the normalization  directly takes into account the contribution of the noise accu�

mulated over the time T. More precisely, it is equal to the sum of the variances of the random variables

making up the vector of integral disturbances �T =  on the interval [0, T] (indeed, it is easy to show

with the use of the multidimensional Ito formula that  = ).

To prove Theorem 1, we need several lemmas.

Lemma 1. Let  be a stochastic process,  be a standard one�dimensional Wiener process,

and the stochastic integral  be defined. Suppose also that Γt is a nondecreasing function and Γ0 = 0.

Given any a, b: 0 ≤ a < b, if  ≤ c1(Γb – Γa) (where c1 > 0 is a constant) and  = ∞, then

/ΓT  0 a.s. as T  ∞.
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Proof. This result is proved using the approach described, for example, in [12]. It is based on well�
known tests for the convergence of random sequences to discretized versions of continuous�time pro�

cesses. Define the process  := /ΓT. By assumption,  =  ≤ c1/ΓT. Next, a

sequence  is constructed that approximates (in a sense) the process  on sequences of intervals (in n)

so that   0 a.s. and   0 as n  ∞ (where �(x) is a nondecreasing function).

For n = 1, 2, … consider the sequence Wn = nγ (γ > 1), and let  := . Then  =

 ≤ c1/Wn = c1/nγ. Thus,  < ∞ and, by the convergence test for random

sequences,   0 a.s. as n  ∞.

Define the set

(2.1)

and the sequence of random variables Zn := . Then

With the help of the last inequality,  is estimated as

The expectation of the second term in this relation is estimated using the inequality from [13], accord�
ing to which, for a local martingale Mt with M0 = 0 and a quadratic characteristic 〈Mt〉 for any p > 0, there

exists a number Cp such that E( )p ≤ CpE([〈Mt〉]p/2), where  = . Using this result with p = 2,

we obtain

and, accordingly,

(2.2)

Consider (Wn + 1 – Wn)/Wn = ((n + 1)γ – nγ)/nγ = (1 + 1/n)γ – 1. Let γ0 be an integer such that γ < γ0. Obvi�

ously, (1 + 1/n)γ < (1 + . By applying a well�known formula, (1 +  is expanded in the power
series
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where

which yields the estimate (1 +  < 1 + c/n with a constant c. In what follows, c > 0 denotes constants
(possibly varying from formula to formula) whose particular values are of no importance. Therefore,

(2.3)

Then it obviously follows from (2.2) and (2.3) that  < c/n2. By the convergence test for random

sequences, this estimate implies that Zn  0 a.s. as n  ∞, whence  =   0 a.s. as

T  ∞. The lemma is proved.

Lemma 2. Let  be a stochastic process such that EYt = 0 for any t ≥ 0, and let Γt be a nondecreasing
function with Γ0 = 0. If there exists a number A > 0 such that, for any a and b : A ≤ a < b, we have

 ≤ c21Γb,  ≤ c22(Γb – Γa) (where c21, c22 > 0 are constants) and  = ∞, then

  0 a.s. as T  ∞.

Proof. Define the process  := . According to a well�known relation for mean�square inte�

grable processes (see [12]), we have  =  = . Moreover, by

assumption,  ≤ c21/ΓT . As in the proof of Lemma 1, a sequence  approximating

the process  is constructed by setting Wn = nγ, (γ > 1). More precisely, let  :=  (n =

1, 2, …). We find that

Therefore,  < ∞ and, by the convergence test for random sequences,   0 a.s. as n  ∞.

For the set  defined in (2.1), consider the sequence
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Using the Cauchy–Schwarz inequality E|YtYs| ≤ , the condition of the lemma, and (2.3), we
obtain

Therefore, Zn  0 a.s. as n  ∞, and  =   0 a.s. as T  ∞. The lemma is proved.

Lemma 3. Let a one�dimensional stochastic process  be described by the equation

(2.4)

where αt is a d�dimensional bounded vector function of time t and wt is a d�dimensional Wiener process (here,

' denotes transposition). Let  > 0, at least, for sufficiently large T. Then, as T  ∞,

  0 a.s. (2.5)

Proof. By using Ito’s formula, we write the equation for the dynamics of ,

(2.6)

and the corresponding equation for :

(2.7)

Subtracting Eq. (2.7) from (2.6) yields

(2.8)

In integral form, (2.8) is written as
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Dividing both sides of (2.9) by  yields

(2.10)

Now the task is to analyze the asymptotic behavior of the terms on the right�hand side of (2.10). The fol�

lowing two cases are considered separately: (i)   ∞, T  ∞ and (ii)  < ∞.
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Consider case (i) first. Let ΓT := , and let  and  be the jth components of the vector func�

tion αt and the Wiener process wt, respectively. Then  = . Let us verify that the

conditions of Lemma 1 are satisfied for each of the terms of the last sum.
Note that zt is a Gaussian stochastic process with the expectation Ezt = 0 and the covariance function

(2.11)

The bounded function  =  satisfies Eq. (2.7), whence

(2.12)

Therefore,  ≤ cΓT for any j = 1, 2, …, d, and, by Lemma, 1 /   0 a.s.
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Define St := . The first term in (2.14) represents , where the function St satisfies the equa�

tion dSt = –Stdt + , S0 = 0. Therefore,  =  – Sb. Concerning the second term, we note

that c  =  =  – Sb. By applying (2.12), relation (2.14) is trans�

formed into

(2.15)

The second condition in Lemma 2 holds as well. Indeed, by virtue of (2.13),

. (2.16)

Therefore,

for a > A.

By Lemma 2,

  0 a.s. as T  ∞.

Taking into account that  is bounded and using the above relations and (2.10), we complete the
proof of (2.5) in case (i).

Consider case (ii). Let us show that zT  0 a.s. as T  ∞. For this purpose, we use representation (2.9).

Define ΘT :=  = . It is well known (see [12]) that the limit Θ∞ =  exists if so

does the improper integral . The validity of the latter can be shown using (2.12) and (2.16).

It remains to analyze the asymptotic behavior of the martingale MT := . Making a random

change of time, we have MT = , where  is a Wiener process ans 〈MT〉 = . By anal�

ogy with the proof of the existence of Θ∞, it is easy to see that 〈MT〉  〈M∞〉, T  ∞. Therefore, M∞ =

 exists as well. It can be shown (see [8]) that   0, T  ∞. Using the above results concerning

the convergence of the terms on the right�hand side of (2.9), we obtain zT  z∞ a.s. as T  ∞. Since

  0, T  ∞, we conclude that, by definition, zT   in mean square and, moreover,  = 0.
As was noted in [12], if there are two types of convergence for a random sequence, then the limiting ran�
dom variables a.s. coincide; i.e., z∞ =  = 0. Lemma 3 is proved.

Proof of Theorem 1. Consider the process  defined by the equation

(2.17)
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where  denotes a zero vector. For the ith component of this vector process, we can write  =  +

 and  = 0, where  is the ith row of the matrix Gt. Obviously, this equation implies that  cor�

responds to the process in Lemma 3 with zt =  and αt = . If  > 0, then the lemma holds;

otherwise, it is clear that   0, T  ∞. Thus, as T  ∞,

  0 a.s. (2.18)

Define the process Zt := Xt – . By virtue of (1.1) and (2.17), it is described by the equation dZt = AtZtdt +

(At + I) , Z0 = x, whose solution is given by ZT = Φ�(T, 0)x + (T, t)(At + I) , where Φ�(t, s)

is a fundamental matrix for the matrix function �t := At. Dividing both sides by (ΓT)1/2 = 

and using Assumption 1, since the matrix function At is bounded, we obtain the estimate

(2.19)

Applying property (2.18), we find that, for any number � > 0, there exists a.s. a finite time t0(ω) such that

|| ||(Γt)
–1/2 < � for any t > t0 and almost all ω. Substituting this relation into (2.19) yields

(2.20)

Since the second term in (2.20) tends a.s. to zero as T  ∞, in a similar manner, for arbitrary �1 > 0, we

obtain  < �1 a.s. for any T > t1(ω). Accordingly,

a.s. for any

where t1(ω) and t2(ω) are a.s. finite.

Thus, ||ZT||(ΓT)–1/2  0 a.s. as T  ∞. By the definition of Zt, it is obvious that ||XT||2/   0 a.s.

as T  ∞ as well, which completes the proof of the theorem.

2.2. Modeling Example

Consider the equation

(2.21)

It is easy to see that the function Φ�(t, s) = exp(s – t) constructed for �t = –1 satisfies Assumption 1
and that the variance of integral noise actions
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increases indefinitely as T  ∞. Figures 1a and 1b show the trajectories of Xt(ω) for two different ω for

large t. It was shown in [5] that, for n = 1 (see Eq. (1.1)), the relation   ∞, T  ∞, is sufficient

for  = +∞. Obviously, this condition holds for Gt corresponding to the process given by (2.21)

and the normalization with the help of ΓT = (T + 3)/  – 3/  is required for the process

 =  to tend asymptotically a.s. to zero, which can be seen in Figs. 2a and 2b for two realiza�
tions of the process for T = 10000.
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3. STOCHASTIC OPTIMALITY FOR A LINEAR REGULATOR

3.1. Classical Linear�Quadratic Regulator

Now consider an n�dimensional controlled stochastic process Vt, t ≥ 0, described by the equation

(3.1)

where the initial state x is nonrandom; wt (t ≥ 0) is a d�dimensional standard Wiener process; Ut (t ≥ 0) is
an admissible control or a k�dimensional stochastic process adapted to a filtration {�t}t ≥ 0, �t =

dVt CtVtdt BtVtdt Gtdwt, V0+ + x,= =
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σ{ws, s ≤ t} such that Eq. (3.1) is solvable; and Ct, Bt, and Gt, t ≥ 0, are bounded matrix functions of time of
suitable sizes such that (3.1) makes sense.

The set of admissible controls is denoted by �. For every T > 0, the objective functional is defined as
the random variable

(3.2)

where UT = {Ut}t ≤ T is the restriction of the control U ∈ � to the interval [0, T] and Qt and Rt (t ≥ 0) are
positive semidefinite and positive definite bounded matrix functions of time, respectively. Moreover, UT ∈ �T,
where �T is the set of admissible controls considered on [0, T]. The parameters of the control system sat�
isfy the following assumptions.

Assumption 2. The functions Ct, Bt, Qt, and Rt, t ≥ 0, are such that there exists an absolutely continuous
bounded function Πt (t ≥ 0) with values in the set of positive semidefinite symmetric matrices that satisfies
the Riccati equation

(3.3)

and such that the fundamental matrix Φ�(t, s) for the function �t := Ct –  satisfies exponential
estimate (1.2).

Assumption 3. There is a constant c0 > 0 such that any pair (xt, ut)t ≤ T obeying the equation

(3.4)

satisfies the inequality

(3.5)

The standard conditions on the parameters of system (3.1), (3.2), which are sufficient for Assumptions 2 and 3
to hold, can be found in [6] (see also [5]).

Definition 1. A control U* ∈ � is said to be almost surely optimal on an infinite horizon or optimal in the
sense of the generalized stochastic long�run average if it solves the problem

   with probability 1. (3.6)

This definition generalizes the well�known concept of the stochastic long�run average (see, e.g., [14]).
Under Assumptions 2 and 3, the control U* is defined as

(3.7)

where the process  is defined by the equation

(3.8)

In [8] the stochastic optimality of U* in the sense of the solution to problem (3.6) was proved under some
additional assumptions, for example, ||Gt||2ln t  ∞, t  ∞. It will be shown later that these constraints
can be avoided by applying the results of Section 1.

Theorem 2. Let Assumptions 2 and 3 hold, and let   ∞ as T  ∞. Then the control 

defined by (3.7) and (3.8) solves problem (3.6).
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Proof. Let U ∈ � be an arbitrary fixed admissible control. By using Eq. (3.1), we find the corresponding

process Vt and define xt := Vt –  and ut = Ut – . Note that the pair (xt, ut) satisfies Eq. (3.4). Under
Assumptions 1 and 2, the following estimate was obtained in [6]:

(3.9)

where �T :=  –  and  > 0 and  > 0 are constants. Normalizing (3.9) by

the multiplier ΓT =  yields

(3.10)

According to [6],  ≤ 0 for any function gT > 0 such that gT  0, T  ∞. By assumption,

we can set gT = (ΓT)–1. The process  satisfies Assumption 1. Consequently, Theorem 1 holds for it.
In view of the obtained relations, passage to the limit as T  ∞ in (3.10) produces

To complete the proof of the theorem, we show that the criterion  has a finite

value. Combining (3.3) and (3.8) with Ito’s formula yields

i.e.,

(3.11)

Let us verify that the conditions of Lemma 1 hold for the last term in (3.11). The solution of Eq. (3.8) has

the form  = Φ�(t, 0)x + , where Φ�(t, s) is the fundamental matrix for the function �t :=

C t – . By the Ito isometry, it follows from exponential estimate (1.2) that E|| ||2 ≤  +

. Since Gt is bounded, this relation implies that  is bounded as well. The bound�

edness of Πt implies that, for each term  = , (l = 1, …, d) in the sum ,

we have   ≤ . By Lemma 1,   0 a.s. as T  ∞. Then

the normalized value (3.11) is asymptotically estimated as  ≤

 ≤ cJ, where cJ > 0 is a constant. The theorem is proved.

3.2. Linear�Quadratic Regulator with Discounting

Consider an n�dimensional controlled stochastic process , t ≥ 0, described by the equation

(3.12)

where  is an admissible control in the sense described in Section 3.1; C, B, and G are matrices of suitable

sizes; and  is a nonrandom vector. The set of admissible controls is denoted by . Assume that ||G|| > 0.

Vt
* Ut

*

JT U*( ) JT U( ) c̃1 VT
* 2

�T,+ +≤

c̃2 Gt'Πtxt

2
td

0

T

∫– 2 xt'ΠtGt wtd
0

T

∫ c̃1 c̃2

Gt
2

td
0

T

∫
JT U*( ) ΓT( ) 1–

JT U( ) ΓT( ) 1–
c̃1 VT*

2
ΓT( ) 1– �T ΓT( ) 1–

.+ +≤

sup�TgT
T ∞→

lim

Vt
*

sup
JT U*( )

Gt
2

td

0

T

∫

����������������
T ∞→

lim sup
JT U( )

Gt
2

td

0

T

∫

���������������� .
T ∞→

lim≤

sup JT U*( )/ Gt
2

td
0

T

∫( )
T ∞→

lim

d Vt*( )'ΠtVt*( ) Vt*( )'QtVt* Ut*( )'RtUt*+{ }dt– tr Gt'ΠtGt( )dt 2 Vt*( )'ΠtGtdwt;+ +=

JT U*( ) x'Π0x VT*( )'ΠTVT*– tr Gt'ΠtGt( ) td

0

T

∫ 2 Vt*( )'ΠtGt wt.d

0

T

∫+ +=

Vt* Φ� t s,( )Gs wsd
0

t

∫
BtBt'Πt Vt* ce

2κ2t–
x

2

c e
2κ2 t s–( )–

Gs
2

sd
0

t

∫ E Vt*
2

ξt
l

Vt*( )'ΠtGt( )
l

wt
l

d
0

T

∫ Vt*( )'ΠtGt wtd
0

T

∫
E ξt

l( )
2

td
a

b

∫ c Gt
2 td

a

b

∫ ΓT( ) 1–
Vt*( )'ΠtGt wtd

0

T

∫
sup JT U*( )/ Gt

2
td

0

T

∫( )
T ∞→

lim

sup tr Gt'ΠtGt( ) td
0

T

∫ / Gt
2

td
0

T

∫( )
T ∞→

lim

X̃t
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Let  and  be a fixed state vector and a fixed control vector such that  +  = . The cost func�

tional taking into account the losses due to the deviations of  from  and  from  on [0, T] is defined as

(3.13)

where  =  is the restriction of the control  ∈  to the interval [0, T] and Q and R are positive

semidefinite and positive definite symmetric matrices, respectively. Moreover,  ∈ , where  is the
set of admissible controls considered on [0, T], and ft is a discount function having the properties described
in the following assumption.

Assumption 4. The discount function ft > 0, t ≥ 0, is nonincreasing and differentiable; f0 = 1; ft  0,

t  ∞; and φt =  is bounded.

For example, the function ft = e–γt, γ > 0, corresponds to traditional exponential discounting, while ft =

1/(1 + , θ1, θ > 0, to hyperbolic discounting.
Let us define almost sure optimality for a system with discounting. For this purpose, the functional is

normalized using the accumulated discount approach proposed in [15], where the average optimality of
controlled stochastic processes on an infinite horizon with a cost functional involving a discount function
was studied.

Definition 2. A control  ∈  is said to be almost surely optimal on an infinite time horizon in the prob�
lem with discounting if it solves the problem

  with probability 1. (3.14)

As was noted in [8], the parameters of system (3.12), (3.13) do not satisfy a property from the set of suffi�
cient conditions allowing one to consider control problems for a linear�quadratic regulator when T  ∞.
More precisely, the matrix function ftR in (3.13) has to be bounded away from zero, which is obviously not
satisfied if Assumption 4 holds for ft. However, it was shown in [8] that, in the case n = 1, system (3.12),
(3.13) can be reduced to standard regulator (3.1), (3.2) by changing variables. Define

(3.15)

The dynamics of the process Xt, t ≥ 0, is described by the equation

(3.16)

In the new notation, functional (3.13) becomes

(3.17)

Obviously, JT( ) = JT(U). Let

and the set � is specified by . Then system (3.16), (3.17) corresponds to the form of (3.1), (3.2). More�
over, the optimality criterion from Definition 1 then becomes
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which coincides with (3.14) in Definition 2. Therefore, if the parameters of system (3.16), (3.17) satisfy

the conditions of Theorem 2, then the control  = /  + , where U* is given by (3.7), is almost
surely optimal on an infinite horizon in the problem with discounting. This result can be stated as the fol�
lowing theorem.

Theorem 3. Let Assumption 4 hold and   ∞ as T  ∞. Additionally, assume that the parameters

of system (3.12), (3.13) are such that Assumptions 2 and 3 hold for Ct = C – 1/2φtI, Bt ≡ B, Qt ≡ Q, and Rt ≡ R. Then
the control

(3.18)

where the process  is defined by the equation

(3.19)

is a solution of problem (3.14).
Proof. By assumption, Theorem 1 holds for control system (3.16), (3.17). Using the inverse of trans�

formation (3.15), i.e.,  =  + ,  =  + , we obtain  =  + 
and derive the equation

By assumption,  +  = , which yields (3.19). The theorem is proved.
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