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Abstract—The solution of the problem of organizing optimal
communications in circulant networks of degree four is
considered. For a family of optimal circulant networks with
the minimum diameter and average distance for any number
of nodes in a graph, we propose an optimal pair routing
algorithm of constant complexity based on using the relative
addressing of nodes in a network. The new algorithm is an
analytical extension to any number of nodes in the network of
the routing method proposed for dense Gaussian networks,
and it does not use division operations, which are very
expensive to implement in fixed-point format. This extension is
based on the proposed scheme of transformations on the plane
of geometrical patterns of optimal circulant networks. The
developed routing algorithm is the basis for generating the
series of routing algorithms for different subfamilies of the
optimal two-dimensional circulants. The general routing
algorithm and its modification for a separate subclass of
circulants are implemented in the HDL NoC model with
circulant topology. All the algorithm parameters important for
networks-on-chip, including the consumption of memory,
logical resources, and execution time are comprehensively
investigated. The results of a comparative analysis of the
new algorithms with other routing algorithms, previously
implemented in the networks-on-chip, are presented.

Index Terms—Graph Theory, Network topology, On-chip
interconnection networks, Routing protocols.

I. INTRODUCTION

IN THIS paper, we investigate the solution to the problem of

organizing efficient routing algorithms in networks-on-chip

(NoCs) [1], [2], [3], [4], [5] with a topology of the class of

undirected degree four circulant networks. Circulant networks

(graphs) (see the surveys [6], [7], [8], [9]) are a class of regular

graphs well-known both in applied practical solutions and in

theoretical research (see, for instance, [10], [11], [12], [13],

[14], [15], [16], [17], [18], [19], [20], [21], [22]).

Circulant graphs are studied as topologies in multiprocessor

systems [6], [7], [8] and large hierarchical networks [10], and

also in networks-on-chip [23], [24], [25], [26]. Compared to pop-

ular NoC topologies, such as 2Dmesh and 2D torus [4], [5], they

have a smaller diameter and lower average distance for the same

number of nodes and links in the network [10], [23], [25]. There-

fore, they are very promising for applications in networks-on-

chip. The problem of the organization of an effective communi-

cation subsystem (and, primarily, optimal communications in

NoCs with a circulant topology) is very acute. There are many

routing algorithms developed for circulant networks, but one

must take into account the special requirements for organizing

communications in NoCs. They are restrictions on the number of

connections between routers, on the total number of elements of

all routers, and on the chip resources occupied by all routers.

Let us give the basic definitions further used in the paper.

An undirected circulant graph CðN; s1; . . . ; skÞ has a set of

vertices V ¼ ZN ¼ f0; 1; . . . ; N � 1g and a set of edges

E ¼ fðv; v� siðmod NÞÞjv 2 V; i ¼ 1; kg, where N is

the number of nodes; S ¼ fs1; s2; . . . ; skg is the set of

generators, with 1 � s1 < . . . < sk < N; k is the dimension.

The degree of a vertex of a circulant is d ¼ 2k, if sk 6¼ N=2
or 2kþ 1 otherwise. In this paper, we consider a family of

optimal degree four circulant graphs (two-dimensional circu-

lants), which have simultaneous a minimum diameter and an

average distance, and maximum connectivity. The diameter

of a graph is D ¼ maxu; v2V lðu; vÞ, where lðu; vÞ is the

length of the shortest path between the vertices u and v.
Diameter and average distance evaluate structural delays in a

network, as well as its connectivity and survivability [10],

[24], [27]. The minimum diameter and average distance are

important parameters for topologies of multiprocessor systems

with an equal number of nodes and communication lines.

The aim of this paper is to develop an effective routing

algorithm for the implementation in a NoC with two-dimen-

sional optimal circulant topology [6], [24]. The mathematical

foundations of the proposed algorithm were reported at the

conference in [28]. Here this algorithm was finalized, formal-

ized, and implemented in the HDL NoC model. The compari-

son of the results of operation of the developed algorithm with

other routing algorithms is presented.
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II. BACKGROUND

A. Related Work

The two-dimensional circulants are studied in connection

with various practical applications as communication models

of complex systems, in graph theory and cryptography. It has

been proved in [29] that for any number of vertices, circulant

graphs of the form (1) simultaneously have the minimum

diameter and average distance coinciding with their exact

lower bounds, that is, they are optimal:

Theorem 1. For any integer N � 5, the optimal circulant is

C N ; d; dþ 1ð Þ; (1)

where d is the nearest integer to ð�1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2N � 1

p Þ=2.
The family of circulants (1) was independently discovered

in [30] as a family of graphs of the form CðN; b� 1; bÞ,
where b ¼ d ffiffiffiffiffiffiffiffiffiffi

N=2
p e; and called Midimew networks. The fam-

ily of circulant graphs CðND; D; Dþ 1Þ; where ND ¼
2D2 þ 2Dþ 1; was proposed in [31] and called dense Gauss-

ian networks in [26].

The shortest path problem for two-dimensional circulants

has been studied in many works, and it remains (as before)

actual (see, for example, [32], [33]). There are routing algo-

rithms proposed for two-dimensional circulant networks of

general form CðN; s1; s2Þ (for example, in [25], [34], [35],

[36], [37], [38]) and specialized routing algorithms for graphs

of family (1) (in [23], [24], [30], [39]). The algorithms from

[23], [24], [25] have been implemented in NoCs.

In [24] an analytical routing algorithm (called Pair

exchange algorithm, PEA) was developed to determine the

shortest paths in circulants of family (1) between any two

nodes given by absolute addressing, i.e., labeled with integers

from 0 to N � 1: It was shown that in the PEA algorithm, the

number of operations does not depend on the number of nodes

in the network, in contrast to [34] with an estimate of

Oð2 logNÞ; [35] with an estimate of Oð ffiffiffiffiffi
N2

p Þ; [36], [37], and
[38] with a common estimate OðlogNÞ; [39] with an estimate

of OðDÞ, and also to [40] with quadratic complexity OðN2Þ.
In [24] HDL modeling of a NoC shows that the PEA algorithm

has also a number of advantages over the routing algorithms

from [23], [25], proposed for a NoC, including less consump-

tion of chip resources. But the PEA algorithm requires the

division operations, which are very expensive to implement in

fixed-point format.

On the other hand, in [26] and [41], for dense Gaussian

graphs, the authors proposed a different type of routing algo-

rithm based on using integer additions and comparisons.

Dense Gaussian graphs, for which development of routing

algorithms is an urgent problem in recent times (see, for exam-

ple, [33], [42], [43]), are circulant graphs of family (1) with

ND vertices. The authors of [26], [41] note that routing algo-

rithms of this type do not use the implementation of the

Euclidean division algorithm with large computational costs,

unlike, for example, the algorithms from [37], [44]. The

essence of the considered routing algorithm is to use a set of

neighboring zeros in a dense tessellation of graphs on the Z2

plane to determine the shortest paths between vertices. It

should be noted that in [45] the author also applies the method

of using neighboring zeros for routing in double-loop graphs

with N ¼ 2D2 vertices.

We extended the method from [26], [41] to all graphs of the

family (1) with any number of vertices by analytically deter-

mining the coordinates of the necessary neighboring zeros.

We also developed a routing algorithm on this basis and stud-

ied its applicability in NoCs.

The novelty of the study, conducted in this article, is as

follows:

� we introduced a relative addressing of network nodes

and proposed an optimal adaptive routing for any num-

ber of nodes in the optimal family of circulant graphs

(1);

� we reduced to OðlogNÞ the required number of opera-

tions, when number of nodes N grows, compared to the

routing algorithm from [26];

� with a view to a reduction the consumed memory in a

NoC, we developed a routing algorithm for a subclass

(special case) of two-dimensional circulants;

� we conducted a comparison of the new routing algo-

rithms with other algorithms, including the PEA algo-

rithm, in terms of the main criteria of suitability for

NoCs (consumed memory and logical resources, and

operation time).

The rest of the paper is organized as follows. In Section II,

we present a family of degree four optimal circulant graphs,

as well as a scheme of transformations on the Z2 plane of the

geometric images of its graphs. In Section III, we define the

relative addressing of the vertices of graphs of the family (1)

in terms of the shortest path vectors and consider some of their

properties; we propose an Oð1Þ algorithm for optimal routing

in circulant networks using relative node addressing.

Section IV contains some estimates of the reduction in the

number of operations in the routing algorithm. Also, for a sub-

class of the family of graphs (1), a modification of the routing

algorithm that does not require an additional memory to store

parameters during the operation of the algorithm is described.

Section V presents the results of implementation of the new

routing algorithms in a NoC with optimal circulant topology

and their comparison with other routing algorithms imple-

mented in NoCs.

B. A Family of Optimal Degree Four Circulant Networks

The following description of the family of graphs (1) was

obtained with the generators as functions of diameterD > 1:

C N ; s1; s2ð Þ ¼ C N ; D� 1; Dð Þ; if ND�1 < N � 2D2;

C N ; D; Dþ 1ð Þ; if 2D2 < N � ND;

(

(2)
whereND ¼ 2D2 þ 2Dþ 1 corresponds to the maximum pos-

sible number of vertices of degree four circulant of diameterD.

In this work, we will use the description (2) for graphs of

family (1). To understand the structure of graphs of the family

(2), we consider their plane tessellation on the Z2 plane in the
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form of a rhomboid configuration of unit squares of an integer

lattice. To sequentially obtain all graphs of the family (2), we

describe briefly the scheme of transformations on the plane of

their geometric representations presented in [28].

According to (2), there are two ranges of N variation:

Q1ðDÞ ¼ ½ND�1 þ 1; . . . ; 2D2�, where s1 ¼ D� 1; s2 ¼
D; and Q2ðDÞ ¼ ½2D2 þ 1; . . . ; ND�, where s1 ¼ D;
s2 ¼ Dþ 1.
Theway to obtain optimal graphs of the family (2) with anyN

is as follows. We successively decrease the number of vertices

N in a graph, starting fromN ¼ ND to N ¼ ND�1 þ 1. Fig. 1
(a) shows the initial position of plane tessellation on Z2 of the

circulants with N 2 Q2ðDÞ (here, D ¼ 3). An initial position

for graphs fromQ1ðDÞ is the position shown in Fig. 1(b), which
demonstrates an example of the graph Cð18; 2; 3Þ of diameter

D ¼ 3 (a fragment is shown; unshaded cells belong simulta-

neously to adjacent rhombuses). In Fig. 1, a diagram of possible

displacements of the corresponding rhombuses on the plane is

also presented. The result is achieved by simultaneously moving

the packing layers A and B in two opposite directions along the

X-axis by an equal number of steps. As a result of the given

transformation, any circulant of the family (2) of diameterD >
1 and number of nodes ND�1 þ 1 � N < ND forms a dense

packing of rhombuses on Z2 with a possible symmetric overlap

of vertices of neighboring rhombuses at most on the last two lev-

els of vertices numberedD andD� 1.
In Fig. 1(a), the coordinates of a central zero at the plane are

indicated by z0 ¼ ð0; 0Þ; the coordinates of zeros (zero nodes)
of neighboring regions with the central rhombus are indicated

by �zi; i ¼ 1; 4. As shown in [26], the neighboring zeros par-
ticipate in determining the shortest paths between the two ver-

tices of the graph.

III. STUDY AREA

A. Search for the Shortest Paths in Degree Four Circulants

Fig. 2(a) shows an example of a circulant graph of the fam-

ily (2) with description Cð19; 3; 4Þ of diameter 3. In Fig. 2

(b), a packing on the plane of graph Cð12; 2; 3Þ is presented.
Here we show two methods of addressing of vertices – abso-

lute and relative – determined through the number of steps

(with a “þ” or “-“ sign) along with generators s1 ¼ 2 and s2 ¼

3 from the central (zero) vertex. The formula for a translation

from relative addressing to the absolute one is presented: abso-

lute number of a vertex m, 0 � m � 11, m ¼ 2xþ
3yðmod 12Þ, where ðx; yÞ is the relative address of m. Miss-

ing edges between the vertices, located at distance (diameter)

D from vertex 0; are shown in green. The formal definition of

relative vertex addressing for circulants is given below.

For two nodes u, v of a circulant graph CðN ; s1; s2Þ; we
define the shortest path vector from u to v as vector

P ðu; vÞ ¼ ðp1; p2Þ having two coordinates, where jpkj,
with k ¼ 1; 2; specifies the number of hops along the edges

corresponding to generator sk (or �sk) in a shortest path from

u to v; the “þ” (“-“) sign determines a movement along sk (or
�sk). Note that the shortest path vector in general can define

multiple shortest paths between two nodes at once. The short-

est path problem for a graph is formulated as follows: given

two nodes u and v of a graph, find a path (paths) between u
and v having a minimum length.

Let D > 1 be a positive integer, and ðx; yÞ and ðx0; y0Þ be
the shortest path vectors (or relative addressing from node 0)

of two nodes u and v, that is P ð0; uÞ ¼ ðx; yÞ, P ð0; vÞ ¼
ðx0; y0Þ. In a circulant graph of diameter D we have jxj þ
jyj � D and jx0j þ jy0j � D. The vector P ðu; vÞ ¼
ðx0 � x; y0 � yÞ defines a path from u to v of length l ¼
jx0 � xj þ jy0 � yj called by l1 � norm [46]. The l1 � norm
has another notation: k P ðu; vÞ k ¼ jx0 � xj þ jy0 � yj:

But P ðu; vÞ ¼ ðx0 � x; y
0 � yÞ not always is the shortest

path vector in a circulant by closure of connections: if l > D,

then P ðu; vÞ does not define the shortest path from u to v; if
l ¼ D; then P ðu; vÞ can define the shortest path in some

cases. The following two theorems allow to reduce the amount

of required operations when developing a routing algorithm.

Theorem 2. Let ðx; yÞ and ðx0; y0Þ be shortest path vectors

from vertex 0 to vertices u and v, accordingly, in a graph of

the family (2) of diameter D > 1. If

x0 � x þj jy0 � yj j < D; (3)

then the vector P ðu; vÞ ¼ ðx0 � x; y0 � yÞ defines the

shortest path from u to v.
Proof: By the symmetry of circulant graphs, if v� u ¼ v0 �

u0ðmod NÞ, then P ðu; vÞ ¼ P ðu0; v0Þ. Therefore,

Fig. 1. Plane tessellation of graphs: a) CðN; D; Dþ 1Þ, N ¼ ND,
D ¼ 3; b) CðN; D� 1; DÞ, N ¼ 2D2, D ¼ 3.

Fig. 2. (a) Circulant graph Cð19; 3; 4Þ: an absolute addressing; (b) A pack-
ing on the plane of graph Cð12; 2; 3Þ.
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P u; vð Þ ¼ P 0; v� uð Þ for v > u;

P 0; N þ v� uð Þ for v < u;

�

that is, P ðu; vÞ ¼ P ð0; kÞ, and the sum of modules of its

coordinates is less than D for the vertex k. To all vertices k
for which this inequality holds, P ð0; kÞ sets the shortest path
from 0 to k. Then P ðu; vÞ, calculated by the formula

P ðu; vÞ ¼ P ð0; vÞ � P ð0; uÞ, specifies the shortest path

between u and v, that is, it is a relative address. Q.E.D.
Theorem 3. Let ðx; yÞ and ðx0; y0Þ be shortest path vectors

from vertex 0 to vertices u and v, accordingly, in a graph of

the family (2) of diameter D > 1 and the number of nodes

2D2 þD � N � ND. If

x0 � x þj jy0 � yj j � D; (4)

then the vector P ðu; vÞ ¼ ðx0 � x; y0 � yÞ defines the

shortest path from u to v.
Proof: It follows from the property of graphs of the family

(2) that only for the indicated number of vertices of graphs, all

vertices located at distance D from vertex 0 do not have paths

from vertex 0 with the length less than D. Q.E.D.

Note that in dense Gaussian graphs withN ¼ ND; the prop-
erty (4) holds, which allow to reduce the amount of required

operations when developing a routing algorithm for them

compared to the algorithm from [26].

B. Routing Algorithm for Degree Four Circulant Networks

The essence of the method of routing, using relative

addressing of nodes in a network, is as follows. To send a

packet from node u ¼ ðx; yÞ to node v ¼ ðx0; y0Þ, we

need to obtain the minimum of jDXj þ jDY j from the values

ðDX; DY Þ ¼ ðx0 � x; y0 � yÞ. Adding the corresponding

coordinates of ðDX; DY Þ term by term with the coordinates

of neighboring zeros from a set of minimum required zeros

and then comparing the resulting sums of their modules, we

choose the minimum, which gives us the shortest path. The

obtained minimal l1norm values of ðDX; DY Þ will determine

the shortest path between the two vertices. In the general case,

as shown by us by an experimental test in Wolfram Mathema-

tica 10 for any number of nodes (and shown in [26] at the

example of dense Gaussian graphs), it is enough to get the

coordinates of nine nearest zeros, including the central zero.

Thus, two values ðDX; DY Þ are the inputs of the router.

And then, with each next transition to a neighboring node

along the shortest path, one of the coordinates decreases by

one (in absolute value). The packet reaches the destination

node v, when DX ¼ 0 and DY ¼ 0. The estimate of the

time complexity of this routing procedure is Oð1Þ. By being

able to use the entire set of the shortest paths to a destination

node, the routing can be made adaptive and fault-tolerant to

node and link failures.

The main problem lies in determining the set of neighboring

zeros needed to calculate ðDX; DY Þ and the coordinates of

neighboring zeros relative to the central zero. We determined

them analytically for any number of nodes in graphs of the

family (2) using the proposed scheme of transformations

of their patterns on the plane Z2 (Fig. 1). For graphs of

the family (2), the following property takes place: when

the number of nodes in a graph decreases by one, then the

coordinates of zeros z2, z3, and z4 also change by one –

the coordinate x increases, and the coordinate y decreases.

For symmetrically located zeros �z2, �z3, and �z4, vice
versa, the coordinate y increases, and the coordinate x
decreases by one (in absolute value).

The coordinates of zeros of neighboring regions z1; z2; z3; z4
can be expressed in terms of coordinates z1 and any of

z2; z3; z4. Take, for example, z3. Then we have the following

result shown in Table I and Table II. Note that the conducted

analysis allowed us to provide a complete characterization of the

properties of neighboring zeros to construct the optimal routing

for any number of nodes in a NoC.

Tables I and II give the formulas for calculation of coordi-

nates of four neighboring zeros z1; z2; z3; and z4. For graphs
with description CðN ; D; Dþ 1Þ; they are shown in Table I;

for graphs with descriptionCðN ; D� 1; DÞ – in Table II. The
coordinates of the other four zeros, symmetrically located atZ2,

differ only in signs. In Table I, the parameter k specifies the dif-
ference between ND andN; in Table II – between 2D2 andN .

Thus, for a network with any number of nodes, we need to store

nomore than 8 memory blocks for the algorithm to execute.

At the stage of forming a communication subsystem in a

NoC with the circulant topology under consideration, we must

form the necessary parameters for the routing algorithm to

work, that is, to perform preprocessing stage.

Preprocessing (created at the stage of forming a network

topology):

Input: N – number of nodes in a NoC topology;

Output: D – diameter; mapping the labels of nodes 0; 1; . . . ; N �
1 into their vectors of the shortest path from node 0 (using

any algorithm from [12], [24], [40]); forming parameters

from Table I (or Table II).

TABLE I
COORDINATES OF ZEROS FOR CIRCULANTS {CðN; D; Dþ 1Þ j 2D2 þ 1 � N � ND; Di1g
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Consider the results of preprocessing stage by the example

of forming NoC topology modelled by the circulant graph

Cð15; 2; 3Þ.
The graph diameter is D ¼ 3; k ¼ 3. In Table III, the

mapping of the labels of nodes i � bN=2c into their vectors of
the shortest path from the vertex 0 (the relative addressing) is

presented. In Table IV, parameters ai and bi , where i ¼ 1; 4;
are computed from Table II for the k ¼ 3.

Note that at the preparation stage, we will only need to

determine (using Table I or Table II) the coordinates of the

zeros z1 ¼ ða1; b1Þ and z3 ¼ ða3; b3Þ, which will reduce the

required memory for the routing algorithm to work.

Below we describe the routing algorithm itself (we named it

the GRBT algorithm – General Routing Based on Tessellation

algorithm), which is executed on each router, in which a request

to transmit a packet arrives. This routing algorithm is applicable

to circulant networks of the family (2) with any arbitrary number

of nodes. The main items of the algorithm are the following: on

the first step, check the condition (3) for the l1-norm of relative

source-destination addresses (lines 1–2); on the second step, cal-

culate the shortest path vectors using all the neighboring zeros

(lines 4–11); on the third step, find the minimal shortest path

vector by comparing among all neighboring zeros (line 12).

In the GRBT algorithm, the condition (4) can be used instead

of (3). In this case, the algorithm determines the shortest paths

in a graph with any 2D2 þD � N � ND. For ND�1 < N <
2D2 þD; it determines suboptimal paths (one hop more than

the shortest path) only for those source-destination pairs, for

which the length between them is equal to the diameter.

The structure of the GRBT algorithm for graphs of the family

(2) allows us to parallel execution of operations of addition/sub-

traction and comparison, which, being implemented in NoCs,

will reduce the execution time of the algorithm by several times.

Above presented version of the routing algorithm uses all nine

nearest zeros for its operation. But for some infinite subfamilies

of values ofN , the number of zeros needed to execute the rout-

ing algorithm is less than 9. The following result is a generaliza-

tion of experimental data obtained.

Theorem 4: LetCðN ; s1; s2Þ be a graph of the family (2) of

diameterD > 2, andN be any value from the following ones

2D2 �D�D=2; 2D2 �D=2;

2D2 þD=2; 2D2 þDþD=2:

(

Then the number of zeros sufficient for the GRBT algorithm to

be realized correctly is 7.

Proof: As it was shown in [26], [41], the minimal path from a

node ðx; yÞ to a node ðx0; y
0 Þ is one of the nine path alternatives

considering the destination node image in the nine tessellations

at the plane, including the central region, as it is illustrated in

Fig. 1. For proof of the theorem, it is sufficient to consider the

two nodes as source nodes in the routing withmaximum distance

from vertex 0 in the central region: u1 ¼ Ds1 and u2 ¼ Ds2.
Next, it is necessary to determine which neighboring zeros

from the set fzi; i ¼ 0; 4g are sufficient for the correct

TABLE II
COORDINATES OF ZEROS FOR CIRCULANTS {CðN;D� 1; DÞ j ND�1 þ 1 � N � 2D2; Di2g

TABLE III
TABLE OF MAPPING THE LABELS OF NODES TO THEIR VECTORS OF A SHORT-

EST PATH FROM NODE 0

TABLE IV
PARAMETERS ðai; biÞ FOR THE ROUTING ALGORITHM

Algorithm 1. General routing algorithm.

Input: ðx; yÞ – source node; ðx0; y
0 Þ – destination node; D –

diameter; ai , bi – parameters from Table I (or Table II).

Output: ðDX; DY Þ – the shortest path vector from ðx; yÞ to

ðx0; y
0 Þ.

1: begin DX :¼ x0 � x; DY :¼ y0 � y; Dxo : ¼ DX;

Dyo : ¼ DY ;

2: If jDXj þ jDY j � D then

3: begin

4: Dx1 : ¼ DX þ a1; Dy1 : ¼ DY þ b1;
5: Dx2 : ¼ DX þ a2; Dy2 : ¼ DY þ b2;
6: Dx3 : ¼ DX þ a3; Dy3 : ¼ DY þ b3;
7: Dx4 : ¼ DX þ a4; Dy4 : ¼ DY þ b4;

8: Dx5 : ¼ DX � a1; Dy5 : ¼ DY � b1;
9: Dx6 : ¼ DX � a2; Dy6 : ¼ DY � b2;
10: Dx7 : ¼ DX � a3; Dy7 : ¼ DY � b3;
11 Dx8 : ¼ DX � a4; Dy8 : ¼ DY � b4;
12 ðDX; DY Þ : ¼ ðDxi; DyiÞ such that jDxij þ jDyij is

minimum;

13 end

14 end
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operation of the routing algorithm, that is, at least one of

u1; u2 must satisfy the following conditions: for the subfamily

of circulants CðN; D; Dþ 1Þ – either k zi � u1 k� 2D or k
zi � u2 k� 2D; for the subfamily of circulants CðN ; D� 1;
DÞ – either k zi � u1 k� 2D� 2 or k zi � u2 k� 2D� 2:

1) Consider circulants of the form CðN; D; Dþ 1Þ,
where 2D2 þ 1 � N � ND.

Let k ¼ bD=2c þ 1; where D > 1, then N ¼
2D2 þDþ dD=2e. We have: z0 � u1 ¼ ð�D; 0Þ; k
z0 � u1 k ¼ D; z1 � u1 ¼ ð1; �DÞ; k z1� u1 k
¼ Dþ 1; z3 � u1 ¼ ðbD=2c þ 1; dD=2eÞ; k z3�
u1 k ¼ Dþ 1 < 2D; z4 � u2 ¼ ðbD=2c; dD= 2eÞ; k
z4 � u2 k ¼ D:
But z2 � u1 ¼ ðDþ 2þ bD=2c;� dD=2 eÞ; k
z2 � u1 k ¼ Dþ 2þ 2b D=2c þ 2D; z2 � u2 ¼
ð2Dþ 2þ bD=2c; �bD=2c �DÞ; k z2 � u2 k ¼ 3D
þ2þ 2bD=2 c > 2D:
Therefore, for N ¼ 2D2 þDþ dD=2e; it is neces-

sary only 7 zeros: z0, �z1; �z3; �z4.
Let k ¼ Dþ dD=2e þ 1; where D > 1, then N ¼
2D2 þ bD=2c. We have: z0 � u1 ¼ ð�D; 0Þ; k
z0 � u1 k ¼ D; z1 � u1 ¼ ð1;�DÞ; k z1 � u1 k ¼
Dþ 1; z2 � u2 ¼ ð�1þ dD=2e; D� dD=2 eÞ; k
z2 � u2 k ¼ Dþ 1 < 2D; z4 � u1 ¼ ðdD=2e; D�
dD=2 eÞ; k z4 �u1 k ¼ D:
But z3 � u1 ¼ ðDþ 1þ D=2; � dD=2 eÞ; k z3�
u1 k ¼ Dþ 1þ 2dD=2e > 2D; z3 � u2 ¼ ð2Dþ 1þ
dD=2e;� dD=2e �DÞ; k z3 � u2 k ¼ 3Dþ 1þ
2dD=2 e> 2D:
Thus, for N ¼ 2D2 þ bD=2c; it is necessary only 7

zeros: z0, �z1; �z2; �z4.
2) Consider circulants of the form CðN ;D� 1; DÞ,

where 2D2 � 2Dþ 2 � N � 2D2.

If k ¼ dD=2e, where D > 2, then N ¼ 2D2 �
dD=2e. If k ¼ Dþ bD=2 c, where D > 2, then N ¼
2D2 �D� bD= 2c. The proofs for these values of N
are similar to the proofs for case 1. Q.E.D.

This result corresponds to empty sets in Table I and Table II

and gives the possibility to reduce the required memory under

routing in a NoC. Further in the article, we will denote by z
the number of neighboring zeros required for the operation of

the GRBT algorithm.

IV. DESIGN

A. Analysis of the Routing Algorithm

We have the following reductions in the number of opera-

tions required for the GRBT algorithm to be fulfilled:

1) For networks with the number of nodes, indicated in

Theorem 4, when 7 zeros are used instead of 9 ones, the

reduction in operations is 22%.

2) For many source-destination pairs – due to the fulfill-

ment of condition (3) or (4).

The plot of reductions in the number of operations, required

for the GRBT algorithm due to the fulfillment of condition

(3), is presented in Fig. 3(a). The parameter � means the ratio

of the number of source-destination pairs with a l1-norm,

smaller than graph diameter D; to the total number of node

pairs. This parameter gives a payoff function from 32 % to 56

% in the running time of the GRBT algorithm for graphs with

a different number of nodes, 14 � N � 313. Sections of the

falling curve for values of � at a given diameter D, where 3 �
D � 12; correspond to a maximum of � for N ¼ ND�1 þ 1
and to a minimum forN ¼ ND.

The lowest points on the plot correspond to a payoff func-

tion in operations for dense Gaussian graphs in comparison

with the routing algorithm proposed for them in [26]. This

advantage (in comparison with the algorithm from [26])

increases as OðlogNÞ when N grows.

The plot of reductions in the number of operations, required

for the GRBT algorithm due to the fulfillment of condition (4),

is presented in Fig. 3(b). Here the parameter � is the same as

the parameter � at ranges ND�1 < N < 2D2 þD of Fig. 3(a)

and increases at ranges 2D2 þD � N � ND. This parameter

gives a payoff function from 52 % to 56 % in the running time

of the GRBT algorithm in comparison with the algorithm from

[26] for dense Gaussian graphs with a different number of

nodesN ¼ ND, 3 � D � 12.
The data presented in Fig. 3 is obtained by computer simu-

lation of the GRBT algorithm by enumeration of all possible

source-destination pairs for each graph from the family (2) in

a given range of N .

Now we give an example of the GRBT algorithm execution.

Fig. 3. Relative reduction of the operations number of the GRBT algorithm
for graphs of the family (2): a) by using (3); b) by using (4).

418 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: Higher School of Economics. Downloaded on January 08,2023 at 07:55:56 UTC from IEEE Xplore.  Restrictions apply. 



Example 1. Consider a NoC with a circulant topology with

signature Cð38; 4; 5Þ of diameter D ¼ 4. We have three

zeros from Table I, plus their symmetrical ones, plus ð0; 0Þ.
Thus, there is a set of 7 zeros: fð5;�4Þ; ð7; 2Þ; ð2; 6Þ;
ð�5; 4Þ; ð�7; �2Þ; ð�2;�6Þ; ð0; 0Þg:

Let a source node be 6 with ðx; yÞ ¼ ð�1; 2Þ; and a desti-

nation node be 3 with ðx0; y
0 Þ ¼ ð2; �1Þ. As ðx0 � x; y0�

yÞ ¼ ð3; �3Þ; and l ¼ 6 > D, the following set of pairs of

coordinates can be obtained by adding coordinates of seven

zeros to ð3;�3Þ: fð8;�7Þ; ð10;�1Þ; ð5; 3Þ; ð�2; 1Þ;
ð�4;�5Þ; ð1;�9Þ; ð3;�3Þg:
The pair with the minimum l1-norm is ð�2; 1Þ, which is

the shortest path vector from node 6 to node 3.

Now, let a source node be 6 with ðx; yÞ ¼ ð�1; 2Þ; and a

destination node be 4 with ðx0; y
0 Þ ¼ ð1; 0Þ. As ðx0 � x; y0

�yÞ ¼ ð2; �2Þ; and l ¼ 4 ¼ D; then the vector of the

shortest path from node 6 to node 4 is ð2; �2Þ.
The example of the GRBT algorithm execution for cir-

culant Cð38; 4; 5Þ is presented in Fig. 4. Here the source

node (red) is 6 with ðx; yÞ ¼ ð�1; 2Þ; and destination

node (blue) is 3 with ðx0; y0Þ ¼ ð2; �1Þ. The vector of

the shortest paths from node 6 to node 3 will be ð�2; 1Þ
(shown by the red line).

B. A Reduction of the Routing Algorithm Parameters

Using Table I and Table II and changing N and, accord-

ingly, obtaining the parameter k, we can have different

versions of the GRBT algorithm for any number of nodes

in graphs of the family (2) with two times less number of

parameters obtained at the stage of pre-preparation. More-

over, we can get routing algorithms, for which the coordi-

nates of the required neighboring zeros can be calculated

in dynamics.

For a specific NoC with a certain number of nodes, we can

go even further and not pre-calculate the coordinates of neigh-

boring zeros but use the formulas for them from Table I and

Table II in the routing algorithm itself. This is possible when

we consider subclasses of the general set of graphs of the

given family of circulants. In such specialized routing algo-

rithms, there is no memory to store additional parameters for

the algorithm to work.

We propose a modification of the routing algorithm applica-

ble to an infinite subfamily of the number of nodes in graphs

of the family (2). Consider this option, for example, for graphs

of the form CðN; D; Dþ 1Þ with N ¼ 2D2 þD, D > 1.
In this case, the parameter k ¼ Dþ 1: Using Table I, we

obtain the desired algorithm.

Below we describe the routing algorithm (we named it the

SRBT algorithm – Specialized Routing Based on Tessellation

algorithm), which is executed on each router, in which a

request to transmit a packet arrives. The SRBT algorithm

is applicable to circulant networks with the number of

nodes N ¼ 2D2 þD for any diameter D > 1. Note that

for such values of N; condition (4) is satisfied, as well as

for dense Gaussian graphs.

Note that a parallel implementation of this algorithm in

NoCs may provide a faster solution, but it will increase the

required memory and hardware overhead in NoCs.

When implementing the routing algorithm in NoCs, we

used both versions of the routing algorithms: the full one – for

any number of nodes in graphs of the family (2) and its modifi-

cation – for the considered subclass of graphs. The estimates

of our algorithms for the required memory resources and time

execution are presented in the next sections. We implemented

only sequential versions of the GRBT and SRBT algorithms

in order not to increase the required memory and to be able to

compare them with other algorithms earlier developed for

NoCs, which are also sequential.

Fig. 4. An example of possible paths to a destination node calculated by the
GRBT algorithm for neighboring zeros in circulant Cð38; 4; 5Þ.

Algorithm 2. SRBT – a modification of the GRBT algorithm

for the given subfamily of circulants.

Input: ðx; yÞ – source node; ðx0; y0Þ – destination node;D –

diameter.

Output: ðX; Y Þ – the shortest path vector from ðx; yÞ to ðx0; y0Þ.
1: beginX :¼ x0 � x; Y :¼ y0 � y;
2: If jXj þ jY j > D then

3: begin

4: 4 : x0 : ¼ X þDþ 1; y0 : ¼ Y �D; x1 : ¼
X � 1; y1 : ¼ Y þ 2D; x2 : ¼ X þ 2Dþ 1; y2 :
¼ Y ; x3 : ¼ X þD; y3 : ¼ Y þ D; x4 : ¼
X �D� 1; y4 : ¼ Y þD; x5 : ¼ X þ 1; y5 : ¼
Y � 2D; x6 : ¼ X � 2D� 1; y6 : ¼ Y ; x7 : ¼
X �D; y7 : ¼ Y �D; X :¼ x0; Y :¼ y0;
a : ¼ jXj þ jY j;

5: For ði ¼ 1; i < 8; iþþÞ
6: begin

7: b : ¼ jxij þ jyij;
8: If b < a then {a : ¼ b; X :¼ xi; Y :¼ yi;}
9: end

10: end

11: end
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V. EXPERIMENTAL RESULTS

A. Routing Algorithm Implementation in NoCs

The GRBT algorithm was implemented in NoCs with a

two-dimensional circulant topology of optimal graphs of the

family (2).

For the GRBT algorithm to work, the router must store the

following parameters: 1) the diameter of a graph; 2) the coor-

dinates of a node in the network; 3) the coordinates of zeros

from Table I (or Table II) for the corresponding family of

graphs; 4) the results of intermediate calculations, that is, the

values of xi and yi; where 0 � i � z� 1.
As a more accurate estimate of the required memory for

these parameters, we do not use half of the number of graph

nodes (N=2) but a function of its diameter D:

1) Since the diameter of a graph CðN;D; Dþ 1Þ is D ¼
b ffiffiffiffiffiffiffiffiffiffi

N=2
p c, it takes dlog 2 b ffiffiffiffiffiffiffiffiffiffi

N=2
p ce bits to be stored in

the router.

2) As jxj; jyj � D, only 2dlog 2De þ 2 bits are required to

store the coordinates of a node ðx; yÞ (where 2 bits are

needed for a sign).

3) The upper bounds for the coordinates of zeros ðai; biÞ
follow from Table I and Table II: jaij; jbij � 2Dþ
bD=2c þ 1. Note that of the total number of coordinates

of neighboring zeros, only half of them need to be stored

in memory. Hence, to store them, ðz� 1Þdlog 2ð2D
þbD=2 c þ 1Þe bits are enough, where z 2 f7; 9g.

4) The upper bounds for results of intermediate calcula-

tions (i. e., for variables xi and yi, i ¼ 0; z� 1) are as

follows: jxij; jyij � 4Dþ bD=2c þ 1. Accordingly, the
number of bits for storing them is 2zdlog 2ð4Dþ
bD=2c þ 1Þe þ 2z� 2; where z 2 f7; 9g. Here we

take into account the possibility of addition of variables

with the maximum value.

Thus, the total amount of memory (in bits) for the operation

of the GRBT algorithm in Verilog can be calculated using the

following formula:

Mall ¼ 2zdlog 2ð4j
ffiffiffiffiffiffiffiffiffiffi
N=2

p
j þ ��j ffiffiffiffiffiffiffiffiffiffi

N=2
p

j=2��þ 1Þe
þ z � 1ð Þdlog 2ð2j

ffiffiffiffiffiffiffiffiffiffi
N=2

p
j þ ��j ffiffiffiffiffiffiffiffiffiffi

N=2
p

j=2��þ 1Þe;
þ 3dlog 2j

ffiffiffiffiffiffiffiffiffiffi
N=2

p
je þ 2z

where z 2 f7; 9g:
It should be emphasized that due to the peculiarity of graphs

of the family (2) and relative addressing of their vertices, it is

possible to use not Mall ¼ 3z � dlog 2N=2e þ 2z� 2 but the

above function Mallð
ffiffiffiffiffiffiffiffiffiffi
N=2

p Þ as an estimate of the required

memory, which gives significant savings with an increase in

the number of nodes in a graph (for example, for N ¼ 4900;
it is already more than 30 %).

We simulated NoCs with the number of nodes from 9 to

100, where N ¼ n2, 3 � n � 10. Circulant topologies from

the family (2) were selected. Table V shows the results of the

theoretical calculation of occupied memory in bits, consumed

memory resources in REG, and logical blocks in ALM

obtained after modeling of the GRBT algorithm.

The following conclusions can be stated from the data

obtained. With a pronounced increase in the used logical

and memory resources due to the increase in the bits of

depth of numbers, the number of coordinates of the used

zeros for the network makes a valuable impact. The net-

work Cð81; 6; 7Þ is clearly distinguished; its resource

consumption is lower than that of networks with 64 and

100 nodes. This is due to the fact that the number of zero

coordinates for it is 7 instead of 9, which leads to a

decrease in the number of comparisons to determine the

shortest path vector ðDX; DY Þ.

B. Memory Consumption Estimations for Routing

Algorithms in NoCs

We made a comparative analysis of the hardware resources

consumption for the GRBT algorithm and other routing algo-

rithms from [23], [24], [25] previously implemented in NoCs

with two-dimensional circulant topology. Table VI and

Table VII show the results of NoC modeling with the follow-

ing five routing algorithms implemented in them: the PEA

[24], Table routing algorithm (TRA) [25], Clockwise algo-

rithm (CA) [25], Adaptive algorithm (AA) [25], Algorithm for

circulants of type CðN ; d; dþ 1Þ (AC) [23]. The last col-

umns of Table VI and Table VII show the results for the pro-

posed GRBT algorithm. Table VI shows the required cost of

memory resources (REG), Table VII shows the consumption

of logical resources (ALM) of the FPGA chip.

Comparing the obtained data for the required memory

resources in the network with the number of nodes not exceed-

ing N ¼ 100, we obtain the following conclusions. The

GRBT algorithm in using registers REG of the FPGA chip is

better only than the TRA for the number of nodes starting

from N ¼ 36, and it is almost 2 times better for N ¼ 81
and N ¼ 100. The GRBT algorithm in using ALM of the

FPGA chip is better than the AA and AC by more than 3 and 2

times, respectively, and slightly worse than the PEA. Note that

it was previously shown in [25] that logical resources for

NoCs are more critical than memory resources. Therefore, the

GRBT algorithm is more preferable than the AA and AC.

It should be emphasized that due to the peculiarity of graphs

of the family (2), the GRBT algorithm may use the function

Mallð
ffiffiffiffiffiffiffiffiffiffi
N=2

p Þ as an estimate of the required memory but not

TABLE V
THE RESULTS OBTAINED FOR THE GRBT ALGORITHM
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the function of N=2 or N , which has been used for all the

algorithms realized in NoCs (the CA, AA, AC, and PEA).

We also implemented in a NoC the SRBT agorithm, which

is obtained from the GRBT algorithm (suitable for any number

of nodes in the network) for the subfamily of graphs with

N ¼ 2D2 þD nodes. The difference of the SRBT algorithm

from the GRBT is the absence of the coefficients ai, bi, where
i ¼ 1; 4; required for storage in the network, and also a lower
upper bound for the results of intermediate calculations:

jxij; jyij � 3Dþ 1, i ¼ 0; 8. As a result, the amount of the

memory, required for the operation of the SRBT algorithm

decreased; it can be calculated by the formula: M2all ¼
3dlog 2j

ffiffiffiffiffiffiffiffiffiffi
N=2

p jeþ 18dlog 2ð3j
ffiffiffiffiffiffiffiffiffiffi
N=2

p j þ 1Þe þ 18.
A decrease in the use of chip resources, when implementing

the SRBT algorithm in a NoC, was obtained by up to 17 % in

comparison with the GRBT (Figs. 5 and 6).

C. Performance Comparison of Routing Algorithms in NoCs

We also measured the time spent on calculating paths in the

network and calculating one path in the high-level C# lan-

guage for all the algorithms under consideration, except for

the TRA.

Previously implemented in NoCs the routing algorithms

PEA, CA, AA, and AC were not compared in terms of the exe-

cution time. But we had the configurations of their implemen-

tations in a NoC with the number of nodes N ¼ n2 for

3 � n � 10. For the aforementioned comparison of algo-

rithms in time, we added the GRBT and SRBT algorithms,

although the SRBT is applicable only for N ¼ 2D2 þD;
D > 1: When calculating certain paths, the SRBT gives a

non-optimal route for the number of nodes N 6¼ 2D2 þD: In
this case, the route is still correct, but not always optimal.

However, this does not affect the calculation of the execution

time, since regardless of the length of the route, the number of

operations for its calculation does not change.

The node addresses in the GRBT and SRBT algorithms

were calculated using Dijkstra’s algorithm [40]. Dijkstra’s

algorithm gives the optimal path from the zero node to all the

other nodes. Then, taking into account the sign, the number of

hops along s1 and s2 generators at these paths is counted.

These are the (x; y) and (x0; y0) coordinates for the nodes.

All the other algorithms tested use absolute addressing of net-

work nodes.

When calculating the time of search for the shortest path in

the algorithms, a choice of source and destination nodes is the

following. For the CA, AA, AC, and PEA, the paths from the

zero node to all the others are calculated. For the GRBT and

SRBT algorithms, a random source and destination are speci-

fied, and 106 calculations are performed so that the results are

averaged.

The calculation was carried out on a computer with proces-

sor Intel Core i5-6500, 3.20 GHz, 32 GB RAM. For each net-

work, 106 calculations of the execution time (T ) of the

algorithms were carried out, and the average values of T (in

ms) were calculated (Figs. 7 and 8).

From the data in Figs. 7 and 8, we can conclude that the

dependencies in the implementation of the GRBT and SRBT

algorithms in the Verilog are also traced when they are exe-

cuted in a high-level language. The computation time of a

path for the SRBT is more linear than for the GRBT, which is

explained by the same number of operations performed in the

SRBT algorithm; which does not depend on the number z of

the required zeros involved in calculation of the shortest paths.

An increase in path calculation time with an increase in the

number of nodes in the network is due to the large sizes of var-

iables. The execution time of the SRBT algorithm is up to 46

% less than that of the GRBT.

When comparing the SRBT algorithm with the PEA, CA,

AA, and AC, the following conclusions can be obtained. The

SRBT algorithm (when calculating one path and paths in the

Fig. 6. Dependence of logical resources in ALM on number of nodes in the
network for the GRBT and SRBT algorithms.

Fig. 5. Dependence of memory resources in REG on number of nodes in the
network for the GRBT and SRBT algorithms.

TABLE VI
DEPENDENCE OF MEMORY RESOURCES IN REG ON THE NUMBER OF NODES
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entire network) turns out to be faster than AA. This is explained

by the fact that in the AA, there are more assignment and divi-

sion operations than in the SRBT. Other algorithms have more

operations than the SRBT, but they are mostly comparison

operations that are faster than assignment operations.

The SRBT algorithm, when the number of nodes in the net-

work is more than 64, starts calculating routes faster than the

CA. The CA is not optimal, and when the number of nodesN >
49, its efficiency drops to 50 %. Although the CA on the small

numbers of nodes shows the best speed for calculating the path;

its peculiarity leads to the fact that the path becomes much lon-

ger than the optimal one, which results in a sharp increase in

computation time. The results of search for the paths in differ-

ent routing algorithms are determined by the number of differ-

ent types of operations used and their execution time.

To substantiate the obtained execution times of the com-

pared routing algorithms in C#, we determined the speed of

individual operations in integer calculations. The calculation

was implemented on a computer with the following character-

istics: processor Intel Core i5-6500, 3.20 GHz, 32 GB RAM

on the following platform: OS Windows 8.1 for 64-bit system,

development environment – MS Visual Studio. The calcula-

tion was made by performing operations on one-dimensional

arrays with an array length equal to 109 elements. The calcula-

tion results are shown in Table VIII. The most time consuming

operations are the modulus or absolute value (j 	 j) and assign-

ment (: ¼ ). Also, the operations of calculating division and

remainder are done for a long time. For the PEA and GRBT

algorithms, the number of operations used was calculated and

presented in Table VIII. It should be noted that Table VIII

shows the exact values for the best case of the number of oper-

ations in the GRBT calculation. For the worst case, approxi-

mate values are given, since the averaged exact values can be

determined only by running the algorithm experimentally.

From Table VIII, it follows that the GRBT algorithm in

the worst case uses significantly more assignments and mod-

ulus computations than the PEA, but in its best case (which

is 32 % to 56 % of all the source-destination pairs), it is bet-

ter than the PEA. Based on the data obtained, a theoretical

calculation of the total time, required to compute one route

for the compared algorithms together with a practical test in

a NoC, was obtained (Table IX). Note that the running time

of the algorithms in practical implementation is longer than

the theoretical one, since additional operations are required

to store the results for further use in the program. Comparing

the difference between theoretical calculation and practical

implementation for each of versions of the PEA and GRBT,

Fig. 8. Dependence of the execution time on the routing algorithm for the
entire networkN ¼ n2.

TABLE VIII
OPERATION TIME AND THE NUMBER OF OPERATIONS USED IN THE PEA AND

GRBT ALGORITHMS

TABLE VII
DEPENDENCE OF LOGIC RESOURCES IN ALM ON THE NUMBER OF NODES

Fig. 7. Dependence of the execution time on the routing algorithm for one
routerN ¼ n2.
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it can be concluded that the influence of the type of opera-

tions on the speed of the algorithms occurs both as a result of

the values obtained in theoretical calculations and in the data

obtained in practical implementation. This explains the fact

that, despite the absence of time-consuming division opera-

tions, the GRBT algorithm in the worst case is somewhat

worse than the PEA.

To correctly compare the SRBT algorithm with the GRBT

and PEA algorithms, we recalculated the metric for the number

of nodes using the formula N ¼ 2D2 þD and recalculated

the results. The results are presented in Figs. 9 and 10.We com-

pare the GRBT and SRBT with the PEA, since the PEA, as it

was shown in [24], is the most efficient among other algorithms

in a number of checked parameters. When comparing for such

numbers of nodes, the difference in execution time between the

GRBT and SRBT is on average 12–20 % in favor of the SRBT.

Compared to the PEA, the GRBT algorithm runs 40–50 % lon-

ger, and almost so does the SRBT algorithm (30–35 % longer).

VI. CONCLUSION

For a family of optimal circulant networks of degree four

with any number of nodes, a Oð1Þ pair routing algorithm

(based on using relative addressing of nodes) was proposed.

The new algorithm is an analytical extension of the approach

presented in [26], [41] for dense Gaussian networks. The com-

plete characterization of neighboring zeros in the plane tessel-

lation made it possible to generate a series of routing

algorithms for various subclasses of the optimal two-dimen-

sional circulants. The routing algorithm in general form and

its modification for a separate subclass of circulants are imple-

mented in the HDL NoC model with a circulant topology. We

obtained the comparison results of the new algorithms with

other routing algorithms in terms of memory consumption and

execution time. We showed that the new routing algorithms

(when implemented in a NoC) do not have clear advantages

over the analytical algorithm from [24], but in some cases

(from 32 % to 56 % of all the source-destination pairs) show

better performance. They also proved to be better than a num-

ber of algorithms based on other design principles. In further

work, when developing such routing algorithms for NoCs, we

assume the possibility of successfully reducing the number of

neighboring zeros used and the number of time-consuming

operations, as well as the usage of a parallel implementation,

which is inherent in algorithms of this type.

ACKNOWLEDGMENT

The authors wish to thank E.V. Lezhnev and A.A. Amerikanov

from HSE University for technical assistance and some calcula-

tions provided.

REFERENCES

[1] N. E. Jerger, T. Krishna, and L. S. Peh, On-Chip Networks: Second Edi-
tion. San Rafael, CA (USA): Morgan and Claypool Publishers, 2017.

[2] S. Hesham, J. Rettkowski, D. G€ohringer, and M. A. Abd El Ghany,
“Survey on real-time Network-on-Chip architectures,” in Proc. Int.
Symp. Appl. Reconfigurable Comput., 2015, vol. 9040, pp. 191–202,
doi: 10.1007/978-3-319-16214-0_16.

[3] W. J. Dally and B. P. Towles, Principles and Practices of Interconnec-
tion Networks. Amsterdam, Netherlands: Elsevier, 2003.

[4] D. Deb, J. Jose, S. Das, and H. K. Kapoor, “Cost effective routing tech-
niques in 2D mesh NoC using on-chip transmission lines,” J. Parallel
Distrib. Comput., vol. 123, pp. 118–129, Jan. 2019, doi: 10.1016/j.
jpdc.2018.09.009.

[5] A. Touzene and K. Day, “All-to-all broadcasting in torus network on
chip,” J. Supercomput., vol. 71, no. 7, pp. 2585–2596, Jul. 2015,
doi: 10.1007/S11227-015-1406-Z/FIGURES/5.

[6] E. A. Monakhova, “A survey on undirected circulant graphs,” Discret.
Math. Algorithms Appl., vol. 4, no. 1, 2012, Art. no. 1250002,
doi: 10.1142/S1793830912500024.

[7] F. K. Hwang, “A survey on multi-loop networks,” Theor. Comput. Sci.,
vol. 299, no. 1–3, pp. 107–121, Apr. 2003, doi: 10.1016/S0304-3975
(01)00341-3.

Fig. 10. Dependence of the execution time on the GRBT, SRBT and PEA
algorithms for the entire network,N ¼ 2D2 þD.

Fig. 9. Dependence of the execution time on the GRBT, SRBT and PEA
algorithms for one routerN ¼ 2D2 þD.

TABLE IX
TOTAL TIME FOR THE PEA AND GRBT ALGORITHMS

MONAKHOVA et al.: ROUTING ALGORITHMS IN OPTIMAL DEGREE FOUR CIRCULANT NETWORKS BASED ON RELATIVE ADDRESSING 423

Authorized licensed use limited to: Higher School of Economics. Downloaded on January 08,2023 at 07:55:56 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1007/978-3-319-16214-0_16
https://dx.doi.org/10.1016/j.jpdc.2018.09.009
https://dx.doi.org/10.1016/j.jpdc.2018.09.009
https://dx.doi.org/10.1007/S11227-015-1406-Z/FIGURES/5
https://dx.doi.org/10.1142/S1793830912500024
https://dx.doi.org/10.1016/S0304-3975(01)00341-3
https://dx.doi.org/10.1016/S0304-3975(01)00341-3


[8] J.-C. Bermond, F. Comellas, and D. F. Hsu, “Distributed loop computer-
networks: A survey,” J. Parallel Distrib. Comput., vol. 24, no. 1, pp. 2–10,
Jan. 1995, doi: 10.1006/jpdc.1995.1002.

[9] M. A. Fiol, “On congruence in Zn and the dimension of a multi-
dimensional circulant,” Discrete Math., vol. 141, no. 1–3,
pp. 123–134, Jun. 1995, doi: 10.1016/0012-365X(94)00361-L.

[10] X. Huang, A. F. Ramos, and Y. Deng, “Optimal circulant graphs as low-
latency network topologies,” J. Supercomputing, vol. 78, pp. 13 491–13510,
Mar. 2022, doi: 10.1007/s11227-022-04396-5.

[11] C. Dalf�o, M. A. Fiol, N. L�opez, and J. Ryan, “An improved Moore bound
and some new optimal families of mixed Abelian Cayley graphs,” Dis-
crete Math., vol. 343, no. 10, Oct. 2020, Art. no. 112034, doi: 10.1016/J.
DISC.2020.112034.

[12] O. G. Monakhov, E. A. Monakhova, A. Y. Romanov, A. M. Sukhov, and
E. V. Lezhnev, “Adaptive dynamic shortest path search algorithm in Net-
works-on-Chip based on circulant topologies,” IEEE Access, vol. 9,
pp. 160 836–160 846, 2021, doi: 10.1109/ACCESS.2021.3131635.

[13] S. Bujnowski, B. Marciniak, O. O. Oyerinde, Z. Lutowski,
A. Flizikowski, and S. G. Galan, “The possibility of equalizing the
transmission properties of networks described by chordal rings,” in
Proc. IEEE 15th Int. Conf. Signal Process. Commun. Syst., 2021,
pp. 1–8, doi: 10.1109/ICSPCS53099.2021.9660228.

[14] A. Erickson, I. A. Stewart, J. Navaridas, and A. E. Kiasari, “The stellar
transformation: From interconnection networks to datacenter networks,”
Comput. Netw., vol. 113, pp. 29–45, Feb. 2017, doi: 10.1016/J.
COMNET.2016.12.001.

[15] R. R. Lewis, “Analysis and construction of extremal circulant and other
Abelian Cayley graphs,” Open Univ., London, U.K., Ph.D. dessertation,
2021, Art. no. 390, doi: 10.21954/ou.ro.00013612.

[16] M. Nabi-Abdolyousefi and M. Mesbahi, “On the controllability proper-
ties of circulant networks,” IEEE Trans. Automat. Control, vol. 58,
no. 12, pp. 3179–3184, Dec. 2013, doi: 10.1109/TAC.2013.2259992.

[17] K. Reji Kumar and G. MacGillivray, “Efficient domination in circulant
graphs,”DiscreteMath., vol. 313, no. 6, pp. 767–771, 2013, doi: 10.1016/j.
disc.2012.12.003.

[18] R. R. Lewis, “The degree-diameter problem for circulant graphs of
degrees 10 and 11,” Discrete Math., vol. 341, no. 9, pp. 2553–2566,
Sep. 2018, doi: 10.1016/J.DISC.2018.05.024.

[19] R. El-Shanawany and A. El-Mesady, “On orthogonal labelling for the
orthogonal covering of the circulant graphs,” Malaysian J. Math. Sci.,
vol. 12, no. 2, pp. 161–173, 2018.

[20] A. El-Mesady, Y. S. Hamed, and H. Shabana, “On the decomposi-
tion of circulant graphs using algorithmic approaches,” Alexandria
Eng. J., vol. 61, no. 10, pp. 8263–8275, Oct. 2022, doi: 10.1016/j.
aej.2022.01.049.

[21] A. El-Mesady, O. Bazighifan, and Q. Al-Mdallal, “On infinite circulant-
balanced complete multipartite graphs decompositions based on general-
ized algorithmic approaches,” Alexandria Eng. J., vol. 61, no. 12,
pp. 11 267–11 275, 2022, doi: 10.1016/j.aej.2022.04.022.

[22] R. Hoffman, D. Diserable, and F. Seredynski, “Cellular automata rules
solving the wireless sensor network coverage problem,” Natural Comput.,
vol. 21, pp. 417–447, Jun. 2022, doi: 10.1007/s11047-022-09888-0.

[23] A. Y. Romanov, E. V. Lezhnev, A. Y. Glukhikh, and A. A. Amerikanov,
“Development of routing algorithms in networks-on-chip based on two-
dimensional optimal circulant topologies,” Heliyon, vol. 6, no. 1, Jan.
2020, Art. no. e03183, doi: 10.1016/j.heliyon.2020.e03183.

[24] E. A.Monakhova, A. Y. Romanov, and E. V. Lezhnev, “Shortest path search
algorithm in optimal two-dimensional circulant networks: Implementation
for networks-on-chip,” IEEE Access, vol. 8, pp. 215010–215019, 2020,
doi: 10.1109/ACCESS.2020.3040323.

[25] A. Y. Romanov, “Development of routing algorithms in networks-
on-chip based on ring circulant topologies,” Heliyon, vol. 5, no. 4,
Apr. 2019, Art. no. e01516, doi: 10.1016/J.HELIYON.2019.
E01516.

[26] C. Mart�ınez, E. Vallejo, R. Beivide, C. Izu, and M. Moret�o, “Dense
Gaussian networks: Suitable topologies for on-chip multiprocessors,” Int.
J. Parallel Program., vol. 34, no. 3, pp. 193–211, 2006, doi: 10.1007/
s10766-006-0014-1.

[27] R. Lu, “Fast methods for designing circulant network topology with high
connectivity and survivability,” J. Cloud Comput., vol. 5, no. 1, 2016,
Art. no. 5, doi: 10.1186/s13677-016-0056-x.

[28] E. Monakhova and O. Monakhov, “A generalized routing algorithm for
a family of optimal 2D circulant networks based on relative addressing,”
in Proc. IEEE 17th Int. Asian Sch.-Seminar Optim. Problems Complex
Syst., 2021, pp. 55–59, doi: 10.1109/OPCS53376.2021.9588737.

[29] E. A. Monakhova, “On the analytical description of the optimal two-
dimensional diophantine structures of homogeneous computing sys-
tems,” Comput. Syst. Quest. Theory Constr. Comput. Syst., vol. 90,
pp. 81–91, 1981.

[30] R. Beivide, A. Arruabarrena, E. Herrada, and J. L. Balcazar, “Optimal dis-
tance networks of low degree for parallel computers,” IEEE Trans. Comput.,
vol. 40, no. 10, pp. 1109–1124, Oct. 1991, doi: 10.1109/12.93744.

[31] J. L. A. Yebra, M. A. Fiol, P. Morillo, and I. Alegre, “The diameter of
undirected graphs associated to plane tessellations,” Ars Comb.,
vol. 20-B, pp. 159–171, 1985.

[32] H. Perez-Roses, M. Bras-Amoros, and J. M. Seradilla-Merinero,
“Greedy routing in circulant networks,” Graphs Combinatorics, vol. 38,
no. 86, Apr. 2022, doi: 10.1007/s00373-022-02489-9.

[33] B. AIBdaiwi, Z. Hussain, A. Cerny, and R. Aldred, “Edge-disjoint node-
independent spanning trees in dense Gaussian networks,” J. Supercomput-
ing, vol. 72, pp. 4718–4736, Jun. 2016, doi: 10.1007/s11227-016-1768-x.

[34] B.-X. Chen, J.-X. Meng, and W.-J. Xiao, “A constant time optimal
routing algorithm for undirected double-loop networks,” in Proc. Int.
Conf. Mobile Ad-Hoc Sensor Netw., 2005, vol. 3794, pp. 308–316,
doi: 10.1007/11599463_31.

[35] B. Robic, “Optimal routing in 2-jump circulant networks,” Univ. Cam-
bridge, Cambridge, U.K., Tech. Rep. N397, 1996.

[36] T. Dobravec, J. �Zerovnik, and B. Robi�c, “An optimal message routing
algorithm for circulant networks,” J. Syst. Archit., vol. 52, no. 5,
pp. 298–306, 2006, doi: 10.1016/j.sysarc.2005.12.003.

[37] D. G�omez, J. Gutierrez, �A. Ibeas, C. Mart�ınez, and R. Beivide, “On find-
ing a shortest path in circulant graphs with two jumps,” in Proc. Int.Com-
put. Combinatorics Conf., 2005, vol. 3595, pp. 777–786, doi: 10.1007/
11533719_79.

[38] J. �Zerovnik, B. Robi�c, and T. Dobravec, “Optimal permutation
routing in 2-jump circulant networks,” in Proc. 1st Int. Conf.
Softv. Eng. Appl. Netw. Parallel/Distrib. Comput. (SNPD), 2000,
pp. 175–180.

[39] C. Mart�ınez, R. Beivide, E. Stafford, M. Moret�o, and E. M. Gabidulin,
“Modeling toroidal networks with the Gaussian integers,” IEEE Trans. Com-
put., vol. 57, no. 8, pp. 1046–1056, Aug. 2008, doi: 10.1109/TC.2008.57.

[40] E.W. Dijkstra, “A note on two problems in connexion with graphs,” Numeri-
scheMathematik, vol. 1, no. 1, pp. 269–271, 1959, doi: 10.1007/BF01386390.

[41] C. Mart�ınez, E. Vallejo, M. Moret�o, R. Beivide, and M. Valero,
“Hierarchical topologies for large-scale two-level networks,” XVI
Jornadas Paralelismo, pp. 133–140, 2005.

[42] O. Alsaleh, B. Bose, and B. Hamdaoui, “On-to-many node-disjoint paths
routing in dense Gaussian networks,” Comput. J., vol. 58, no. 2,
pp. 173–187, Feb. 2015, doi: 10.1093/comjnl/bxt142.

[43] K.-J. Pai, J.-S. Yang, G.-Y. Chen, and J.-M. Chang, “Configuring pro-
tection routing via completely independent spanning trees in dense
Gaussian on-chip networks,” IEEE Trans. Netw. Sci. Eng., vol. 9, no. 2,
pp. 932–946, Mar./Apr. 2022, doi: 10.1109/tnse.2022.3140329.

[44] J. Y. Cai, G. Havas, B. Mans, A. Nerurkar, J. P. Seifert, and I. Shparlinski,
“On routing in circulant graphs,” in Proc. Int. Comput. Combinatorics
Conf., 1999, vol. 1627, pp. 360–369, doi: 10.1007/3-540-48686-0_36.

[45] P. K. Jha, “Dimension-order routing algorithms for a family of minimal-
diameter circulants,” J. Interconnect. Netw., vol. 14, no. 1, Mar. 2013,
Art. no. 1350002, doi: 10.1142/S0219265913500023.

[46] J. �Zerovnik and T. Pisanski, “Computing the diameter in multiple-loop
networks,” J. Algorithms, vol. 14, no. 2, pp. 226–243, 1993, doi: 10.1006/
JAGM.1993.1011.

Emilia A. Monakhova received the M.S. degree in
mathematics and appliedmathematics fromNovosibirsk
State University, Novosibirsk, Russia, and the Ph.D.
degree in computer science fromLeningrad Electrotech-
nical Institute, Saint Petersburg,, Russia, in 1988. She is
currently a Leading Scientific Researcher with the Sys-
temModeling and Optimization Laboratory, Institute of
Computational Mathematics and Mathematical Geo-
physics of SB RAS, Novosibirsk, Russia. She is the
author of two books and more than 100 articles. Her
research interests include network topologies, parallel
computer architecture, routing algorithms, and evolu-
tionary computation.

424 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 10, NO. 1, JANUARY/FEBRUARY 2023

Authorized licensed use limited to: Higher School of Economics. Downloaded on January 08,2023 at 07:55:56 UTC from IEEE Xplore.  Restrictions apply. 

https://dx.doi.org/10.1006/jpdc.1995.1002
https://dx.doi.org/10.1016/0012-365X(94)00361-L
https://dx.doi.org/10.1007/s11227-022-04396-5
https://dx.doi.org/10.1016/J.DISC.2020.112034
https://dx.doi.org/10.1016/J.DISC.2020.112034
https://dx.doi.org/10.1109/ACCESS.2021.3131635
https://dx.doi.org/10.1109/ICSPCS53099.2021.9660228
https://dx.doi.org/10.1016/J.COMNET.2016.12.001
https://dx.doi.org/10.1016/J.COMNET.2016.12.001
https://dx.doi.org/10.21954/ou.ro.00013612
https://dx.doi.org/10.1109/TAC.2013.2259992
https://dx.doi.org/10.1016/j.disc.2012.12.003
https://dx.doi.org/10.1016/j.disc.2012.12.003
https://dx.doi.org/10.1016/J.DISC.2018.05.024
https://dx.doi.org/10.1016/j.aej.2022.01.049
https://dx.doi.org/10.1016/j.aej.2022.01.049
https://dx.doi.org/10.1016/j.aej.2022.04.022
https://dx.doi.org/10.1007/s11047-022-09888-0
https://dx.doi.org/10.1016/j.heliyon.2020.e03183
https://dx.doi.org/10.1109/ACCESS.2020.3040323
https://dx.doi.org/10.1016/J.HELIYON.2019.E01516
https://dx.doi.org/10.1016/J.HELIYON.2019.E01516
https://dx.doi.org/10.1007/s10766-006-0014-1
https://dx.doi.org/10.1007/s10766-006-0014-1
https://dx.doi.org/10.1186/s13677-016-0056-x
https://dx.doi.org/10.1109/OPCS53376.2021.9588737
https://dx.doi.org/10.1109/12.93744
https://dx.doi.org/10.1007/s00373-022-02489-9
https://dx.doi.org/10.1007/s11227-016-1768-x
https://dx.doi.org/10.1007/11599463_31
https://dx.doi.org/10.1016/j.sysarc.2005.12.003
https://dx.doi.org/10.1007/11533719_79
https://dx.doi.org/10.1007/11533719_79
https://dx.doi.org/10.1109/TC.2008.57
https://dx.doi.org/10.1007/BF01386390
https://dx.doi.org/10.1093/comjnl/bxt142
https://dx.doi.org/10.1109/tnse.2022.3140329
https://dx.doi.org/10.1007/3-540-48686-0_36
https://dx.doi.org/10.1142/S0219265913500023
https://dx.doi.org/10.1006/JAGM.1993.1011
https://dx.doi.org/10.1006/JAGM.1993.1011


Oleg G. Monakhov received the M.S. degree in sys-
tem analysis from Novosibirsk Electrotechnical Insti-
tute, Novosibirsk, Russia, in 1974, and the Ph.D.
degree in computer science from Taganrog State
Radio Technical University, Taganrog, Russia in
1987. From 2000 to 2002, he was a Visiting Professor
with the University of Aizu, Aizu-Wakamatsu, Japan.
He is currently a Leading Scientific Researcher with
the System Modeling and Optimization Laboratory,
Institute of Computational Mathematics and Mathe-
matical Geophysics of SB RAS, Novosibirsk, Russia.

He is the author of two books and 120 articles. His research interests include
parallel computer architecture, network topologies, routing algorithms, genetic
programming, metaheuristic algorithms.

Aleksandr Y. Romanov (Member, IEEE) received
the B.S. and M.S. degrees in computer systems and
networks from National Technical University Khar-
kov Polytechnic Institute, Kharkov, Ukraine, in 2007
and 2009, respectively, and the Ph.D. degree in tech-
nical sciences from the Federal State-Funded Institu-
tion of Science Institute for Design Problems in
Microelectronics of Russian Academy of Sciences
(IPPM RAS), Zelenograd, Russia, in 2015. He is cur-
rently an Associate Professor with National Research
University Higher School of Economics (HSE Uni-

versity), Moscow. He is a University Teacher of the following subjects: SoC
Development, System Design of Electronic Devices. He is the author of the
book Digital Design: Practical Course, he has also authored or coauthored
more than 100 research articles. His basic scientific research interests include
SoCs, NoCs, embedded systems, FPGA, and neural networks. He is an IEEE
Industrial Electronics Society Member.

MONAKHOVA et al.: ROUTING ALGORITHMS IN OPTIMAL DEGREE FOUR CIRCULANT NETWORKS BASED ON RELATIVE ADDRESSING 425

Authorized licensed use limited to: Higher School of Economics. Downloaded on January 08,2023 at 07:55:56 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


