
Heliyon 6 (2020) e04427
Contents lists available at ScienceDirect

Heliyon

journal homepage: www.cell.com/heliyon
Research article
Routing in triple loop circulants: A case of networks-on-chip

Aleksandr Yu. Romanov *, Vladimir A. Starykh

National Research University Higher School of Economics, 34 Tallinskaya Ulitsa, Moscow, 123458, Russian Federation
A R T I C L E I N F O

Keywords:
Electrical engineering
Topology
Computer architecture
Algorithm design
Very-large-scale integration
Computer-aided engineering
Network-on-chip
Dijkstra's algorithm
Triple loop circulant
Routing algorithm.
* Corresponding author.
E-mail address: a.romanov@hse.ru (A.Yu. Roma

https://doi.org/10.1016/j.heliyon.2020.e04427
Received 12 September 2019; Received in revised
2405-8440/© 2020 The Author(s). Published by Els
A B S T R A C T

In this paper we propose and analyze various approaches to organizing routing in a triple loop circulant topologies
as applied to networks-on-chip: static routing based on universal graph search algorithms, such as Dijkstra's al-
gorithm and a possible implementation using Table routing; algorithms created analytically based on an engi-
neering approach with taking into account the structural features of triple loop circulant graphs (Advanced
clockwise, Direction selection); an algorithm created on the basis of a mathematical analysis of graph structure
and solving the problem of enumerating coefficients at generators (Coefficients finding algorithm). Efficiency,
maximum graph paths, occupied memory resources, and calculation time of the algorithms developed are esti-
mated. Comparison of various variants of the algorithms is made and recommendations on their application for
the development of networks-on-chip with triple loop circulant topologies are given.

It is shown that Advanced clockwise and Direction selection algorithms guarantee that the packet reaches the
destination node, but often in more steps than the shortest path. Nevertheless, they themselves are simpler and
require less hardware resources than other algorithms. In turn, Coefficients finding algorithm has great compu-
tational complexity, but is optimal and, in comparison with Dijkstra's algorithm, is much simpler for RTL
implementation which reduces network-on-chip routers resources cost.
1. Introduction

Development of elemental base of electronics and communication
technologies opens up new opportunities and poses new challenges for
their use to achieve new levels of computing system performance [1, 2,
3]. One of the fundamental problems in the field of Multiprocessor
Systems-on-Chip (MPSoCs) [4, 5] at present is the construction of
communication structures and algorithms for exchanging data in
Networks-on-Chip (NoCs) [6] of new generations. Development of
communication tools allows combining a large number of processors into
compact (dense) structures with a minimum diameter, minimum ex-
change delays, maximum bandwidth capability, reliability, and surviv-
ability with low hardware costs and power consumption within a single
chip. Within the framework of this problem, it is required to develop and
study new optimal communication structures and interaction algorithms
for NoCs.

New classes and families of such optimal structures are constructed on
the basis of both regular [7, 8, 9] and irregular [10] network topologies.
The NoC topology itself has a decisive influence on NoC performance
[11, 12]. Therefore, the search for new topologies is acute, and circulant
topologies look promising [13] since they have better characteristics
nov).

form 5 October 2019; Accepted 8
evier Ltd. This is an open access
compared to classical topologies [14]. At the same time, standard routing
approaches have a rather low efficiency. So, using the classic Dijkstra's
algorithm for routing in NoCs is too resource-intensive due to the
complexity of implementing the algorithm at the level of a NoC router or
IP core [15, 16]. In case of Table routing, it is necessary to store all the
routing information at the level of each router, and this is also a
resource-intensive solution [17].

For the proposed classes of structures, it is required to study the or-
ganization of interactions and develop effective communication algo-
rithms for point-to-point and multiple exchanges. The objective of this
work is to develop simple algorithms of various types which can be
implemented as RTL state machines at the router level in NoCs.

2. Background

The analysis of two-dimensional circulants as a kind of topologies for
NoC development, given in previous works, show that ring circulants are
highly competitive in their characteristics with optimal circulants of the
same order [18]. Moreover, in general case, due to their simpler struc-
ture, they allow the use of simpler and more efficient routing algorithms.
And only for the family of optimal circulants of type CðN; D; Dþ 1Þ;
July 2020
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:a.romanov@hse.ru
http://crossmark.crossref.org/dialog/?doi=10.1016/j.heliyon.2020.e04427&domain=pdf
www.sciencedirect.com/science/journal/24058440
http://www.cell.com/heliyon
https://doi.org/10.1016/j.heliyon.2020.e04427
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.heliyon.2020.e04427


Figure 1. Ring circulant Cð16; 1; 2; 6Þ.

A.Yu. Romanov, V.A. Starykh Heliyon 6 (2020) e04427
D ¼ ffiffiffiffiffiffiffiffiffi
N=2

p � 1; N > 2 [14, 19], having a number of unique properties,
it was possible to offer a better routing algorithm compared with the one
for ring circulants.

In case of three-dimensional circulant, there is no such graph families
that could be described using a formula. Their synthesis is carried out
using specialized software [20] as a result of which a volume dataset of
optimal graphs is obtained [21]. At the same time, a routing algorithm
that would perform well for graphs with any number of nodes could not
be proposed. Moreover, as in the case of two-dimensional circulants [18],
ring circulants characteristics basically coincide and differ insignificantly
in average distance between nodes and diameter only at some graph
orders [21]. Thus, for some tasks, where it is required to simplify the
routing algorithm, it is justified to use ring circulants because they pro-
vide a significant gain in their characteristics in comparison with the
classical regular 3D-mesh and 3D-torus topologies [19].
2.1. Triple loop circulants

Circulant graphs of type CðN; 1; s2; s3Þ; where
2 � s2 < s3 < N, are called triple loop circulants which are a special
case of ring graphs [22]. An example of such a graph is shown in Figure 1.

Three-dimensional circulants are a promising topology for NoC
design. As for the 3D-mesh and 3D-torus topologies [14], routers in such
networks contain 6 external ports, but the presentation of such topologies
is possible in two-dimensional form which is best suited for modern
ASICs and FPGAs performed using planar technology. In addition, cir-
culants have better diameter and average distance between nodes
compared to classical regular topologies [18].

3. Study area

3.1. Static routing in NoCs with triple loop circulant topologies

Most NoCs use pair routing [16], when a packet is sent from a data
source router to a destination node router. To organize such routing, one
can use any algorithm for finding the shortest path, for example, Dijk-
stra's algorithm [20]. Usually a static type of routing is used [17], where
each router of each node stores a list every element of which is one of the
network nodes and represents a different list with the numbers of the
2

nodes to which this node is connected. In addition, each router knows its
own serial number. The input to the router, which will have to transmit
the data packet, receives the number of the destination node (receiver
router). The router knows the network structure and, therefore, can
calculate the shortest path using one of the algorithms.

The essence of Dijkstra's algorithm [16] is as follows: each vertex is
associated with a label that contains the minimum known distance from
this vertex to vertex A (if the distance is unknown, then it is considered
equal to infinity or a sufficiently large number so that it can be considered
infinitely large). The algorithm step by step iterates over each vertex and
checks whether it is possible to reduce the distance (label) from the
starting node to the neighbor vertex using this vertex (the path from the
starting vertex to the current one). Dijkstra's algorithm performs until all
the vertices are visited.

Dijkstra's algorithm is quite universal and suitable for any graphs on
the basis of which circulants are developed, and, therefore, it is suitable
for any types of circulants including ring ones with any number and value
of generators [15]. The main problem of this algorithm is that with an
increase in the number of nodes, the runtime and memory consumption
increase significantly. Therefore, there is a need to develop a specialized
algorithm that would allow routers to calculate the next packet step on
the network based on its routing information. There are few works in the
literature devoted to the search for the shortest paths in
three-dimensional circulants. There are solutions [23, 24] for particular
circulant families of order N ¼ Oð3d2Þ, where d – diameter, and work
[22] presents a simple analytical method for finding the shortest path in
circulants of maximum order for a given diameter. There is neither
universal routing algorithm for three-dimensional circulants nor for the
subfamily of ring circulants.

4. Design

4.1. Development of specialized routing algorithms for NoCs with triple
loop circulant topologies

The number of router ports is defined by the degree of vertices of the
graph as p ¼ 2k, where k – graph dimension (generators count) [14]. So,
the router of circulant of type CðN; 1; s2; s3Þ has 6 interconnections
with other routers.

The most obvious algorithm for navigating in circulant networks is
the Table routing algorithm described in [20]. The routing table is a
square matrix NxN, where N – number of nodes (routers); the cells
contain ports numbers to which the packet must be sent so that it reaches
the destination node. Each router stores only its own row from the table.
According to work [18], the amount of memory occupied by routing
table is:

M ¼ N2 ⋅ log2p; (1)

whereN – number of nodes; log2p –memory in bits to store the indexes of
ports of the router; p – vertex degree (router port count).

On the one hand, the use of a table routing algorithm requires the
storage of large amounts of data; on the other hand, the implementation
of such an algorithm as RTL state machine does not take up much space
on the chip and is quite simple.

4.1.1. Clockwise algorithm
For routing in triple loop circulant networks, we propose an algorithm

based on an iterative calculation of the route between the nodes in which
each router makes a decision about switching a packet to the next router
only by one step. Since the circulants are symmetric, for any node, its
sequence number is not important; it is the distance (in hops) to other
nodes that matters. Therefore, to reduce the size of address (distance)
field, in the packet, the difference between the node numbers (data
source and receiver) is transmitted as the address. The load on the packet
(size of address field, bit) can be calculated by the following formula:



A.Yu. Romanov, V.A. Starykh Heliyon 6 (2020) e04427
P¼ log2N (2)
The router also stores N, s2 and s3; so, the total size of the stored data
is:

M¼N*
�
log2Nþ log2

N
2
þ log2

�
N
2
� 1

��
; (3)

where log2N – memory in bits to store N; log2
N
2 and log2

�
N
2 �1

�
–

memory in bits to store generators s2; s3 because generator s3 will surely
be less than N [4], and generator s2 will be at least by one less than s3.

By analogy with [18], the transition is calculated as follows: the di-
rection clockwise or counterclockwise of transition is calculated, and
then one of the generators is selected. The clockwise motion is chosen if
the difference between the numbers of source and receiver nodes is less
than half of N. Otherwise, the opposite direction is chosen. When a
clockwise motion, the procedure of generator choice is as follows:

� the transition will be by the larger generator while the difference
between the source and receiver nodes is greater than value s3;

� if the difference is greater than s2, but less than s3, the transition will
occur over generator s2, otherwise – over generator s1 ¼ 1.

At every step of the algorithm, the distance is changed by subtracting
the length of the generator over which the transition will be made. The
zero-value distance is a criterion that the packet reached its destination.
If a counterclockwise motion is chosen, the algorithm for selecting the
current step is the same, but the generators and the difference between
the value of the number of nodes in the network and the distance value
are compared. Before the transition, the length of the generator over
which the transition will occur is added to the distance field in the head
flit. The criterion for the end of the packet transmission (in this case) is
the equality of the address field of the head flit to the number of nodes in
the network. Proposed algorithm has much in common with a similar
algorithm for two-dimensional ring circulants described in [18]. Its
description is given below:

algorithm Find_Route_Triple_Loop_Circulant_Clockwise is
Input: startNode – start node, endNode – end node,N – count of nodes,

s1 – first generator, s2 – second generator, s3 – third generator.
Output: startNode – next start node.

1: S ← endNode–startNode
2: If S ¼ 0 then
3: return startNode
4: If S < 0 then
5: S ← Sþ N
6: If S � N

2 then
7: If S � s3 then
8: startNode ← ðs3 þstartNodeÞmodN
9: else
10: If S � s2 then
11: startNode ← ðs2 þstartNodeÞmodN
12: else
13: startNode ← ðs1 þstartNodeÞmodN
14: else
15: S ← N� S
16: If S � s3 then
17: startNode ← ðN � s3 þstartNodeÞmodN
18: else
19: If S � s2 then
20: startNode ← ðN � s2 þstartNodeÞmodN
21: else
22: startNode ← ðN � s1 þstartNodeÞmodN
23: If startNode ¼ 0 then
24: startNode ← N
3

25: return startNode

The presented algorithm is not optimal, because in some cases, it will
offer paths whose length (in hops) is greater than the network diameter,
but it will significantly save the memory occupied by the router.

It is possible to slightly optimize this algorithm as follows: compare
the difference between the source and receiver with s3þs2

2 and s1þs2
2 . If the

difference is greater than the first value, the transition will be made over
generator s3; if it is between these values, the transition will be made over
s2, otherwise – over s1:

Total size of the stored data for this algorithm will be equal to the
basic one (3). This algorithm works slightly better than the previous al-
gorithm, but still not efficiently enough.

4.1.2. Direction selection algorithm
Development of the proposed approach is the Direction selection al-

gorithm which changes the direction of motion by analogy with work
[18]. The destination node index is stored as an address in the head flit.
The load on the packet doesn't change (2). Every router stores its index:N
and s2; s3; so, the resulting formula to calculate the amount of the stored
data is:

M¼N*
�
2*log2Nþ log2

N
2
þ log2

�
N
2
� 1

�
: (4)

The work of the algorithm consists of 2 stages. Firstly, the sequence of
transmission of numbers of nodes of the packet source and receiver is
selected; then theyare transferred to the second stage of the algorithm. This
is possible due to the fact that the graph is non-oriented, and its vertices are
transitive [14]. This trick simplifies the algorithm by working only with
positive numbers. Also, on the first stage, the received direction of the
packet is normalized, and on the second stage of the algorithm, the next
step of motion of the packet is calculated directly. The algorithm proposed
has much in common with a similar algorithm for two-dimensional ring
circulants described in [18]. Its description is given below:

algorithm Find_Route_Triple_Loop_Circulant_Direction_Selection
is

Input: startNode – start node, endNode – end node,N – count of nodes,
s1– first generator, s2 – second generator, s3 � third generator.

Output: startNode – next start node.

1: If startNode > endNode then
2: startNode ← startNode� StepðendNode; startNode;N; s1; s2; s3Þ
3: else
4: startNode ← startNodeþ StepðstartNode; endNode;N; s1; s2; s3Þ
5: If startNode > N then
6: startNode ← startNode� N
7: else
8: If startNode � 0 then
9: startNode ← startNodeþ N
10: return startNode

function Step is
Input: startNode – start node, endNode – end node,N – count of nodes,

s1 – first generator, s2 – second generator, s3 � third generator.
Output: the function returns the best step (direction is also selected)

1: bestTurnR ← 0; stepR ← 0; bestTurnL ← 0; S ← endNode�
startNode
2: R1 ← S�1

s2
þ S mod N; R2 ← S�1

s2
� S mod s2 þ s2 þ 1

3: R3 ← S�1
s2

�
�
s2*

�
S
s2
þ1

�
� S

�
þ s2 þ 1; R4 ← S�1

s3
�

S mod s3 þ s3 þ 1

4: R5 ← S�1
s3

�
�
s3*

�
S
s3
þ1

�
� S

�
þ s3 þ 1



Table 1. Comparison of efficiency of the algorithms developed.

Circulant Algorithm

Clockwise Advanced clockwise Direction selection Coefficients finding

C (9; 1, 2, 4) 1 1 1 1

C (16; 1, 4, 8) 0.818 1 1 1

C (25; 1, 6, 10) 0.742 0.821 0.939 1

C (36; 1, 8, 15) 0.656 0.687 0.955 1

C (49; 1, 10, 23) 0.527 0.685 0.887 1

C (64; 1, 12, 30) 0.481 0.643 0.909 1

С(81; 1, 15, 37) 0.474 0.646 0.959 1

С(100; 1, 17, 40) 0.441 0.588 0.781 1

С(100; 1, 10, 30) 0.689 1 1 1

С(150; 1, 33, 59) 0.329 0.536 0.795 1

С(200; 1, 56, 87) 0.291 0.525 0.804 1

С(300; 1, 74, 138) 0.148 0.279 0.837 1

С(400; 1, 69, 195) 0.195 0.321 0.968 1

С(400; 1, 65, 199) 0.342 0.368 0.988 1

С(500; 1, 34, 200) 0.537 0.947 0.968 1

A.Yu. Romanov, V.A. Starykh Heliyon 6 (2020) e04427
5: If R3 > R2 then
6: R3 > R2

7: If R5 > R4 then
8: R5 > R4

9: If R1 < R3 then
10: If R1 < R5 then
11: bestTurnR ← R1, stepR ← s1
12: else
13: bestTurnR ← R5, stepR ← s3
14: else
15: If R3 < R5 then
16: bestTurnR ← R3, stepR ← s2
17: else
18: bestTurnR ← R5, stepR ← s3
19: S ← endNode� startNodeþ N
20: L1 ← S�1

s2
þ S mod N, L2 ← S�1

s2
� S mod s2 þ s2 þ 1

21: L3 ← S�1
s2

�
�
s2*

�
S
s2
þ1

�
� S

�
þ s2 þ 1, L4 ← S�1

s3
� S mod s3þ

s3 þ 1

22: L5 ← S�1
s3

�
�
s3*

�
S
s3
þ1

�
� S

�
þ s3 þ 1

23: If L3 > L2 then
24: L3 > L2
25: If L5 > L4 then
26: L5 > L4
27: If L1 < L3 then
28: If L1 < L5 then
29: bestTurnL ← L1, stepL ← � s1
30: else
31: bestTurnL ← L5, stepL ← � s3
32: else
33: If L3 < L5 then
34: bestTurnL ← L3, stepL ← � s2
35: else
36: bestTurnL ← L5, stepL ← � s3
37: If bestTurnR < bestTurnL then
38: return stepR
39: else
40: return stepL

The proposed algorithm takes into account cycles and situations when
it is more reasonable to first move over the highest generator and then
return over the middle one. However, when checking the algorithm on
4

graphs, it has turned out that it is still not always able to guarantee that
the packet will move along the shortest path between the nodes.

Therefore, another variant of algorithm (close in the principle of
operation to Dijkstra's algorithm) was developed, however, with taking
into account the peculiarities of considered circulants.

4.1.3. Algorithm for finding coefficients at graph generators (coefficients
finding algorithm)

It is possible to represent finding the shortest path for the topology
based on a ring circulant as the following optimization problem:

N ⋅ k þ s ¼ a1 þ a2s2 þ a3s3; (5)

where k – number of cycle considered (may be negative); s– path length
from source node to destination node; s2, s3 – generators; a1, a2, a3 –

coefficients at generators s1, s2, s3 respectively.
This task is similar to the routing algorithm in undirected double loop

networks proposed in [25], but for triple loop circulant topologies.
The optimization task is to minimize the sum of absolute values of

coefficients a1, a2, a3. Were all the variables expressed in terms of vari-
able a1, there would be an equation with the three unknowns a2, a3, k
remained.

a1 ¼ a2s2 þ a3s3 � N*k � s: (6)

Next, it is chosen, in which limits variables a2, a3, k will change; then
(using simple round robin) value a1, is found; after that, the set of co-
efficients, sum of which is the smallest, is chosen.

Total size of the stored data for such an algorithm is calculated by the
formula:

M¼N �
�
2log2Nþ log2

N
2
þ log2

�
N
2
� 1

�
þ log2αþ log2βþ log2τ

�
; (7)

where α; β; τ – coefficients responsible for the number of cycles and
generators that will be considered in the algorithm, respectively; log2αþ
log2β þ log2τ – required amount of memory in bits to store coefficients α;
β; τ.

Coefficient τ is set manually as the number of cycles that can be

passed in both directions. Then coefficients α ¼
�
τ �N
s3

�
and β ¼

�
τ �N
s2

�
.

function Find_Route_Triple_Loop_Circulant_Coefficients is
Input: startNode – start node, endNode – end node,N – count of nodes,

s1 – first generator, s2 – second generator, s3 � third generator.
Output: the function returns the best coefficients a1, a2, a3



Table 2. Comparison of maximum graph paths (hop) for various routing algorithms.

Circulant Algorithm

Clockwise Advanced clockwise Direction selection Coefficients finding, Dijkstra's algorithm

C (9; 1, 3, 5) 2 2 2 2

C (16; 1, 4, 8) 4 3 3 3

C (25; 1, 6, 10) 5 4 3 3

C (36; 1, 8, 15) 7 5 5 4

C (49; 1, 10, 23) 10 6 5 4

C (64; 1, 12, 30) 12 7 6 4

С(81; 1, 15, 37) 15 9 6 5

С(100; 1, 17, 40) 17 10 9 6

С(100; 1, 10, 30) 11 7 7 7

С(150; 1, 33, 59) 32 17 11 8

С(200; 1, 56, 87) 55 28 15 12

С(300; 1, 74, 138) 73 37 10 8

С(400; 1, 69, 195) 66 36 13 11

С(400; 1, 65, 199) 66 34 23 9

С(500; 1, 34, 200) 37 19 20 18

A.Yu. Romanov, V.A. Starykh Heliyon 6 (2020) e04427
1: bestA1 ← maxint; bestA2 ← maxint; bestA3 ← maxint
2: S ← endNode� startNode; a1 ← 0
3: zero ← 10; alpha ← ðzero*NÞdivs3; beta ← ðzero*NÞdivs2
4: For all k 2 ð � zero; zeroÞ :
5: For all a3 2 ð � alpha; alphaÞ :
6: For all a2 2 ð � beta; betaÞ :
7: a1 ← k*N þ S� a3*s3 � a2*s2
8: Ifja1j þ ja2j þ ja3j < jbestA1j þ jbestA2j þ jbestA3j then
9: bestA1 ← a1; bestA2 ← a2; bestA3 ← a3
10: return bestA1; bestA2; bestA3

5. Experimental

5.1. Testing of algorithms proposed

To evaluate the performance of the algorithms, it is proposed to use
an efficiency criterion that takes into account the number of steps
required for a packet to establish broadcast routing. Dijkstra's algorithm
is taken as the optimal algorithm [16] which surely finds the shortest
path in any connected graph. Therefore, performance criterion is deter-
mined by the formula [18]:
Figure 2. Dependence of the Direction selection algorith

5

K¼
N�1
i¼1 HDð0�iÞPN�1 ; (8)
P
i¼1 HAð0�iÞ

where
PN�1

i¼1 HAð0�iÞ – sum of all route length for the algorithm used;PN�1
i¼1 HDð0�iÞ – sum of all route length calculated by Dijkstra's algorithm.
For testing the algorithms, we chose ring circulants of type

CðN; 1; s2; s3Þ, whereN determinedby the formulaN ¼ n2; where N �
100; and N ¼ 150; 200; 300; 400; 500 (n – natural number to
compare the results of work of triple loop circulants with torus and mesh
topologies). The tested circulants are optimal and have a minimum diam-
eter among ring circulantswith the same number of nodes [20]. Test results
are given in Table 1.

For Dijkstra's and Table routing algorithms, the efficiency coefficient
will always be 1, since the first one is a reference one, and the second one
implies the existence of an optimal path. For the clockwise algorithm, the
efficiency strongly depends on the s3 and the difference between the
generators s2 and s3 – the larger they are, the lower the efficiency of the
algorithm is. As for the Coefficients finding algorithm, the efficiency is
always 1.

Table 2 presents the results of comparison of the developed routing
algorithms on the length of the maximum path in the graph.

Thus, for the clockwise algorithm and its improved version, the
resulting diameter differs significantly worse than the diameter obtained
using Dijkstra's algorithm (for some cases – several times). The direction
m efficiency on difference between generators s2; s3.



Table 3. Algorithm-occupied memory resources, bit.

Circulant Algorithm

Table routing Advanced clockwise Direction selection Coefficients finding

C (9; 1, 3, 5) 243 108 144 270

C (16; 1, 4, 8) 768 192 256 480

C (25; 1, 6, 10) 1875 375 500 850

C (36; 1, 8, 15) 3888 648 864 1368

C (49; 1, 10, 23) 7203 882 1176 1862

C (64; 1, 12, 30) 12288 1152 1536 2432

С(81; 1, 15, 37) 19683 1701 2268 3402

С(100; 1, 17, 40) 30000 2100 2800 4200

С(150; 1, 33, 59) 67500 3600 4800 6900

С(200; 1, 56, 87) 120000 4800 6400 9200

С(300; 1, 74, 138) 270000 8100 10800 15000

С(400; 1, 65, 199) 480000 10800 14400 20000

С(500; 1, 34, 200) 750000 13500 18000 25000

Note: when calculating the memory for the Coefficients finding algorithm of constant α; β; τ are chosen equal 10, 20, 30 respectively.

Table 4. Calculation time of the algorithms, s.

Circulant Algorithm

Advanced clockwise Direction selection Coefficients finding

C (9; 1, 3, 5) 0.003504 0.006079 28.323078

C (16; 1, 4, 8) 0.003981 0.012421 50.129890

C (25; 1, 6, 10) 0.005578 0.019598 96.979403

C (36; 1, 8, 15) 0.010770 0.036001 116.926932

C (49; 1, 10, 23) 0.018406 0.054717 153.540992

C (64; 1, 12, 30) 0.037407 0.080180 202.219200

С(81; 1, 15, 37) 0.044202 0.113415 261.775398

С(100; 1, 17, 40) 0.090599 0.269699 328.511905

С(150; 1, 33, 59) 0.298190 0.450205 510.957384

С(200; 1, 56, 87) 0.491786 0.728797 656.596207

С(300; 1, 74, 138) 0.867891 0.984096 994.344091

С(400; 1, 65, 199) 0.913595 2.111387 1324.184012

С(500; 1, 34, 200) 0.977516 2.547621 1682.586193

A.Yu. Romanov, V.A. Starykh Heliyon 6 (2020) e04427
selection algorithm shows the best quality, but in some cases, the dif-
ference between the diameters reaches 14. The Coefficients finding al-
gorithm shows the same result as the reference algorithm.

The operation of the Coefficients finding algorithm was tested on 502
optimal graphs from dataset [21] obtained using the software described
in [20]. As a result, it was confirmed that for given coefficients α; β; τ
equal 10, 20 and 30 respectively, the efficiency of the algorithm does not
fall below 1.

Also, the Direction selection algorithm was tested for the dependence
of the efficiency of the algorithm on the difference between s2 and s3. As
a result of testing the algorithm for data [21] among which there were
502 optimal ring circulants, it was found that with an increase in the
Difference between generators s2; s3 there is a tendency to decrease the
efficiency of the algorithm (Figure 2).

According to the above formulas (3, 4, 7), the calculation of
the memory in bits required for the algorithm to work is shown in
Table 3.

Considered algorithms are implemented in Python 3 which made it
possible to estimate the time of their work for finding all the paths in the
ring graph. Testing was carried out on a computer with Windows 8.1
operating system, 12 GB RAM, and 2.4 GHz quad-core processor. Table
routing algorithm has not been considered, because it does not imply
complex calculations. Results of clockwise algorithm are almost the same
as those of advanced clockwise algorithm and are, therefore, combined
6

into one column. Obtained indicators of operating time of algorithms in
seconds are presented in Table 4.

6. Future work

Developed algorithms require further research on more circulants in
order to determine possible boundary of N, when Coefficients finding al-
gorithm ceases to be optimal. RTL synthesis of NoC communication sub-
system is also required to confirm the statement obtained in [18] that
resource costs calculated using the technique applied in this article
correspond to the real amount of ALM blocks and registers consumed on
the FPGA. Also, in future, Coefficients finding algorithm as applied to
other classes of topologies should be considered, and possibility to
formulate (on its basis) a universal approach to routing in any circulants
should be analyzed; the latter has not yet been achieved in this work due to
complexity of the task and uncertainty about its feasibility in general [14].

Although it is obvious that improving topological characteristics
(diameter and average distance between nodes), as well as using
adaptive and best propagation routing algorithms improve the func-
tioning of NoCs in general, a thorough study of the impact of proposed
routing algorithms on traffic congestion, network latency, throughput,
and power consumption is needed. It can be done by using various
models of different levels of abstraction and for different traffic
profiles.



A.Yu. Romanov, V.A. Starykh Heliyon 6 (2020) e04427
7. Conclusion

The use of triple loop circulant topologies for NoC design is considered.
For the triple loop circulants, the following are proposed: a Table routing
algorithm, Clockwise algorithm,Direction selection algorithm, and optimal
algorithm based on Coefficients finding. It is shown that the classical Table
routing algorithm can be replaced by Coefficients finding algorithm at
graph generators, since it provides the samenumber of hops betweennodes
and is optimal, while its implementation at the hardware level requires
significantly less memory resources. Alternatively, with low requirements
for NoC throughput, but with limited hardware resources, a clockwise al-
gorithm and its improved version, as well as Direction selection algorithm
can be used. Theymake it possible to reduce the cost of hardware resources
by almost 2 times, but lead to a significant increase in the network diameter
and average distance between nodes.

A comparison of complexity of algorithms and resources, occupied by
synthesized NoC communication subsystems, is made. Since proposed
algorithms, unlike classic Dijkstra's algorithm, do not require calculating
the entire path of the packet, but determining only the port number for
the next step, ensuring that the packet reaches the destination node, they
can be easily implemented as RTL state machine in NoC routers.

Despite the fact that the proposed algorithms are applicable to any triple
loop circulant topologies, their effectiveness analysis was carried out using
optimal circulants.The results obtainedallowus toovercome the significant
lack of efficient algorithms for routing in triple loop circulants and to
expand the application of such topologies on networks-on-chip.

Declarations

Author contribution statement

Aleksandr Yu. Romanov: Conceived and designed the experiments;
Performed the experiments; Analyzed and interpreted the data;
Contributed reagents, materials, analysis tools or data; Wrote the paper.

Vladimir A. Starykh: Analyzed and interpreted the data; Wrote the
paper.

Funding statement

This article is an output of a research project implemented as part of
the Basic Research Program at the National Research University Higher
School of Economics (HSE University).

Competing interest statement

The authors declare no conflict of interest.

Additional information

Data associated with this study has been deposited at GitHub under
the accession number https://github.com/RomeoMe5/circulantGraphs.
7

References

[1] D. Loghin, Y. Meng Teo, The time and energy efficiency of modern multicore
systems, Parallel Comput. 86 (2019) 1–13.

[2] D. Turner, D. Andresen, K. Hutson, A. Tygart, Application performance on the
newest processors and GPUs, in: Proc. Pract. Exp. Adv. Res. Comput. – PEARC ’18,
ACM Press, New York, New York, USA, 2018, pp. 1–7.

[3] A. Feldman, Cerebras Wafer Scale Engine: Why We Need Big Chips for Deep
Learning, 2020. https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-
need-big-chips-for-deep-learning/. (Accessed 5 October 2019).

[4] J. Paul, W. Stechele, B. Oechslein, C. Erhardt, J. Schedel, D. Lohmann, W. Schr€oder-
Preikschat, M. Kr€ohnert, T. Asfour, �E. Sousa, V. Lari, F. Hannig, J. Teich,
A. Grudnitsky, L. Bauer, J. Henkel, Resource-awareness on heterogeneous MPSoCs
for image processing, J. Syst. Archit. 61 (2015) 668–680.

[5] S. Hesham, J. Rettkowski, D. Goehringer, M.A.A. El Ghany, Survey on real-time
networks-on-chip, IEEE Trans. Parallel Distrib. Syst. 28 (2017) 1500–1517.

[6] M.S. Abdelfattah, A. Bitar, V. Betz, Design and applications for embedded networks-
on-chip on FPGAs, IEEE Trans. Comput. 66 (2017) 1008–1021.

[7] M.B. Marvasti, T.H. Szymanski, The performance of hypermesh NoCs in FPGAs, in:
IEEE Int. Conf. Comput. Des. VLSI Comput. Process., 2012, pp. 492–493.

[8] R. Bishnoi, P. Kumar, V. Laxmi, M.S. Gaur, A. Sikka, Distributed adaptive routing for
spidergon NoC, in: 18th Int. Symp. VLSI Des. Test, VDAT 2014, 2014, pp. 1–6.

[9] D. Deb, J. Jose, S. Das, H.K. Kapoor, Cost effective routing techniques in 2D mesh
NoC using on-chip transmission lines, J. Parallel Distrib. Comput. 123 (2019)
118–129.

[10] N.L. Venkataraman, R. Kumar, Design and analysis of application specific network
on chip for reliable custom topology, Comput. Network. 158 (2019) 69–76.

[11] W.J. Dally, B.P. Towles, Principles and Practices of Interconnection Networks,
Elsevier, 2003.

[12] A. Kumar, S. Tyagi, C.K. Jha, Performance analysis of network-on-chip topologies,
J. Inf. Optim. Sci. 38 (2017) 989–997.

[13] V. Vilfred, A few properties of circulant graphs: self-complementary, isomorphism,
Cartesian product and factorization, in: 2017 7th Int. Conf. Model. Simulation,
Appl. Optim. ICMSAO 2017, 2017, pp. 1–5.

[14] E.A. Monakhova, A survey on undirected circulant graphs, Discret. Math.
Algorithms Appl. 4 (2012) 1250002.

[15] J.Y. Cai, G. Havas, B. Mans, A. Nerurkar, J.P. Seifert, I. Shparlinski, On routing in
circulant graphs, in: Lect. Notes Comput. Sci., Springer, Berlin, Heidelberg, 1999,
pp. 360–369.

[16] E.W. Dijkstra, A note on two problems in connexion with graphs, Numer. Math. 1
(1959) 269–271.

[17] A. Benmessaoud Gabis, M. Koudil, NoC routing protocols – objective-based
classification, J. Syst. Archit. 66–67 (2016) 14–32.

[18] A.Y. Romanov, Development of routing algorithms in networks-on-chip based on
ring circulant topologies, Heliyon 5 (2019), e01516.

[19] R. Beivide, E. Herrada, J.L. Balcazar, A. Arruabarrena, Optimal distance networks of
low degree for parallel computers, IEEE Trans. Comput. 40 (1991) 1109–1124.

[20] A.Y. Romanov, I.I. Romanova, A.Y. Glukhikh, Development of a universal adaptive
fast algorithm for the synthesis of circulant topologies for networks-on-chip
implementations, in: 2018 IEEE 38th Int. Sci. Conf. Electron. Nanotechnology,
ELNANO 2018, 2018, pp. 110–115.

[21] A.Y. Romanov, Optimal Circulants Dataset, 2020. https://github.com/RomeoM
e5/circulantGraphs/ (accessed March 21, 2019).

[22] E.A. Monakhova, Optimal triple loop networks with given transmission delay:
topological design and routing, in: Int. Netw. Optim. Conf., Paris, 2003,
pp. 410–415.

[23] L. Barri�ere, J. F�abrega, E. Sim�o, M. Zaragoz�a, Fault-tolerant routings in chordal ring
networks, Networks 36 (2000) 180–190.

[24] A.L. Liestman, J. Opatrny, M. Zaragoza, Network properties of double and triple
fixed step graphs, Int. J. Found. Comput. Sci. 9 (1998) 57–76.

[25] B.-X. Chen, J.-X. Meng, W.-J. Xiao, A Constant Time Optimal Routing Algorithm for
Undirected Double-Loop Networks, Springer, Berlin, Heidelberg, 2005,
pp. 308–316.

https://github.com/RomeoMe5/circulantGraphs
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref1
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref1
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref1
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref2
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref2
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref2
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref2
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref2
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref4
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref4
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref4
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref4
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref4
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref4
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref4
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref4
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref5
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref5
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref5
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref6
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref6
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref6
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref7
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref7
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref7
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref8
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref8
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref8
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref9
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref9
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref9
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref9
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref10
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref10
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref10
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref11
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref11
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref12
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref12
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref12
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref13
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref13
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref13
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref13
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref14
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref14
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref15
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref15
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref15
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref15
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref16
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref16
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref16
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref17
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref17
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref17
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref17
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref17
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref18
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref18
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref19
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref19
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref19
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref20
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref20
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref20
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref20
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref20
https://github.com/RomeoMe5/circulantGraphs/
https://github.com/RomeoMe5/circulantGraphs/
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref22
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref22
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref22
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref22
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref23
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref23
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref23
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref23
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref23
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref23
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref23
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref24
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref24
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref24
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref25
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref25
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref25
http://refhub.elsevier.com/S2405-8440(20)31271-8/sref25

	Routing in triple loop circulants: A case of networks-on-chip
	1. Introduction
	2. Background
	2.1. Triple loop circulants

	3. Study area
	3.1. Static routing in NoCs with triple loop circulant topologies

	4. Design
	4.1. Development of specialized routing algorithms for NoCs with triple loop circulant topologies
	4.1.1. Clockwise algorithm
	4.1.2. Direction selection algorithm
	4.1.3. Algorithm for finding coefficients at graph generators (coefficients finding algorithm)


	5. Experimental
	5.1. Testing of algorithms proposed

	6. Future work
	7. Conclusion
	Declarations
	Author contribution statement
	Funding statement
	Competing interest statement
	Additional information

	References


