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ABSTRACT For a family of optimal two-dimensional circulant networks with an analytical description,
two new improved versions of the shortest path search algorithm with a constant complexity estimate are
obtained. A simple, based on the geometric model of circulant graphs, proof of the formulas used for the
shortest path search algorithm is given. Pair exchange algorithms are presented, and their estimates are
given for networks-on-chip (NoCs) with a topology in the form of the considered graphs. New versions
of the algorithm improve the previously proposed shortest path search algorithm for optimal generalized
Petersen graphs with an analytical description. The new proposed algorithm is a promising solution for
the use in NoCs which was confirmed by an experimental study while synthesizing NoC communication
subsystems and comparing the consumed hardware resources with those when other previously developed
routing algorithms.

INDEX TERMS Two-dimensional circulant graphs, diameter, shortest path, optimal generalized Petersen
graphs, networks-on-chip.

I. INTRODUCTION
Along with the wide interest in circulant networks in various
fields of computer science and computer engineering [1]–[4],
their application as network-on-chip (NoC) topologies [5]
is becoming relevant. This is due to their best structural
characteristics [6] and high scalability with a large number of
nodes compared to standard NoC topologies (mesh, torus).
In connection with the need to reduce the hardware cost of
resources for NoCs, an important task is the development of
effective routing algorithms in networks with circulant topol-
ogy. This paper discusses efficient pair routing algorithms
designed for two-dimensional circulant networks.

Let s1, s2, . . . , sl,N be integers such that 1 ≤ s1 <

s2 < . . . < sl < N . An undirected graph C with
a set of vertices V = {0, 1, . . . ,N − 1} and a set of
edges E =

{
(i, j) : i− j ≡ ±sm mod N ,m = 1, l

}
is called a
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circulant network. Parametric description of type (N ; S)
defines a circulant of order N and dimension l with a set
of generators S = (s1, s2, . . . , sl). The symmetry property
of circulants allows us to restrict ourselves to considering
circulant graphs with generators not exceeding bN/2c.

The diameter D of a graph is equal to D = maxi,j∈VD(i, j),
where D(i, j) is the length of the shortest path between
vertices i and j. The average distance D is equal to D =
(1/N (N − 1))

∑
i,j D(i, j). The diameter and average dis-

tance estimate maximum and average transmission delays
in the network. As studies have shown, the best struc-
tures of computing systems, according to various criteria
of functioning (reliability, connectivity, bisection bandwidth)
with the same number of nodes and communication lines,
are structures with the minimum diameter and average
distance.

In this paper, we consider two-dimensional circulant net-
works. Such networks are represented by undirected circulant
graphs C(N ; s1, s2) with N vertices labeled with the integers
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FIGURE 1. Two-dimensional circulant graph C(12;2,3).

modulo N , and each vertex i is joined by an edge to the
vertices (i± s1) mod N and (i± s2) mod N . Fig. 1 shows
an example of such graph.

When using circulant graphs as communication net-
works of massively parallel computers or networks-on-chip,
an urgent issue is an effective solution to the problem of
organizing routing algorithms in them. In pair (two-terminal)
routing, a message is to be routed from its source node to
its destination node according to the model applied. Further
in the article, we assume the undirected store-and-forward
model. The organization of pair exchanges requires determi-
nation of the shortest paths in a graph. The known Dijkstra’s
algorithm of finding the shortest paths in any connected graph
of order N has both time and space quadratic complexity
O
(
N 2
)
which is the number of elements in the adjacency

matrix. In [7] the authors proved that the shortest path prob-
lem is NP-hard if a description (N ; S) of a circulant graph
of arbitrary dimension l is used. For fixed l = 2, different
pair routing algorithms were obtained for circulant graphs
in [5], [8]–[14]. There are several approaches to solve the
two-terminal routing problem in circulants of dimension two.
The first approach uses a construction of routing tables.
Such algorithms take constant time to determine the next
node on the shortest path of the packet, but require the extra
space for the routing tables of the order O(N 2) which is not
acceptable for NoCs. The second approach is based on the
O(logN )-time preprocessing calculating routing parameters
and also requires the extra space to store the additional infor-
mation. In the third approach, the dynamic algorithms are
capable (without routing tables or preprocessing) to route the
packet along the shortest path using only the name of the
packet destination node. They are more flexible in case of
traffic congestions or node/link faults, but the best known
time complexity of dynamic algorithms is only O(logN ).
According to engineering approach, in [5], [14] the search for
the optimal routing algorithm in NoCs with two-dimensional
circulant topology is implemented. It is based on the under-
standing of structural organization of NoCs and desire to offer
simple one-hop routing algorithms with a view to reducing

TABLE 1. Description of key notations and abbreviations used in this
paper.

hardware costs and at the same time providing an acceptable
distance between the nodes.

In this paper, the another approach based on analytical and
mathematical methods of graph analysis was chosen; i.e., it is
proposed to first solve the routing problem analytically with
the time complexity O (1) independent of the network size
and then adapt the solution for practical use in NoCs.

For the convenience, Table 1 lists the notations used in this
paper.

II. OPTIMAL TWO-DIMENSIONAL CIRCULANTS
Two-dimensional circulants are intensively studied in the
literature in connection with various practical applica-
tions [1]–[3]. The exact lower bound of the diameter of
two-dimensional circulants for any order N > 4 is lb(N ) =
d(−1+ (2N − 1)1/2)/2e [15].
Bermond et al. [16], Boesch and Wang [17],

Yebra et al. [18] showed that lb (N ) can be achieved by
taking s1 = lb (N ) , s2 = lb (N ) + 1. In 1981, the author
of work [15] proved that for every N , circulant graphs can
achieve simultaneously both minimum diameter lb (N ) and
minimum possible average distance (i.e., to be optimal).
Theorem 1: For everyN > 4, the optimal two-dimensional

circulant of order N is

C(N ; d, d + 1), where d = [(−1+(2N−1)1/2)/2], (1)

here [x] is the nearest integer to x.
In 1991, Beivide et al. [19] obtained the same circulant

family (1) written in a different form.
Theorem 2: For everyN > 2, the optimal two-dimensional

circulant of order N is

C (N ;b−1,b) , where b =
⌈
(N/2)1/2

⌉
. (2)

The two optimal families (1) and (2) are identical both in
numerical values of generators and orders, as well as in the
ranges to be optimal with these generators. Let us prove it.
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Lemma 1: For every order N > 4, circulant graphs
C(N ; d, d + 1) and C(N ; b− 1, b), described by (1) and (2),
respectively, coincide for b− 1 = d .

Proof: Let N > 4 be any given number. For family
(1), the definition of the nearest integer implies d − 1

2 ≤

((2N − 1)
1
2 − 1)/2 < d + 1/2. Hence, after simple trans-

formations, we obtain 2d2 + 1/2 ≤ N < 2 (d + 1)2 + 1/2.
Since N is an integer, we have

2d2 < N ≤ 2 (d + 1)2.

Similarly, for family (2), it follows from the definition of b:
b− 1 < (N/2)1/2 ≤ b and

2(b− 1)2 < N ≤ 2b2.

Since the obtained ranges of variation of N take place for any
given N , this implies b− 1 = d . The lemma is proved.
Research issues of the found family of optimal circulants

as communication networks of computer systems have been
extensively studied. Liestman et al. [20] studied network
features of such circulants in particular optimal graphs of type
C(Nd ; d, d + 1) and considered the possibility of embedding
of lattices into them. Hereinafter, Nd = 2d2 + 2d + 1 is the
maximum possible order of a two-dimensional circulant of
diameter d ≥ 1. In [21]–[23] the authors considered opti-
mal networks (2) calledMidimew networks (mesh-connected
networks with wrap-around links) as a technical implementa-
tion of communication networks of supercomputer systems.
Puente et al. [21] showed that under real loads for Midimew
networks, there is an increase in network performance and a
decrease in the length of average communication path com-
pared to tori. In [21], [22] a practical solution to the problem
of preventing deadlocks (path locks during packet transmis-
sion) was presented. Yang et al. [23] used several examples
of such graphs as a basis in the design of communication net-
works of parallel systems. Martinez et al. [13], [24] applied
circulant networks, in particular a family of typeC(Nd ; d, d+
1), in coding theory when constructing perfect group codes.
The implementation of the graphs described by (1) or (2)
was proposed as a topology in the design of supercomputers
with mass parallelism and NoCs [5], [23], [25]. A number
of new hierarchical network designs were also constructed
using the Minimum Distance Mesh with Wrap-around links
(Midimew networks) as elements [26], [27]; simple use of
circulant (Midimew) topologies instead torus topology in
TESH [28] topology notably improved network performance
parameters [29].

The analytical solution to the problem of finding the
shortest paths by a parametric description for optimal
two-dimensional circulant graphs described by (1) and (2)
was proposed in [30] and by Beivide et al. [19] and
Puente et al. [22]. In the present study, the above mentioned
analytical solution was improved and corrected, as well as
used to develop universal dynamic pair routing algorithm
applied for the routing in NoCs with two-dimensional circu-
lant topologies.

III. FINDING THE SHORTEST PATHS IN
TWO-DIMENSIONAL CIRCULANTS
Let us consider an effective solution to the problem of finding
the shortest paths by a parametric description for optimal
circulant graphs having descriptions of type C(N ; d, d + 1),
where d is determined by (1).

Let A0k =
(
x0k , y0k

)
= (x, y) denote a vector of the

shortest path from vertex 0 to vertex k , 0 ≤ k < N in a
circulant graph C(N ; s1, s2). Here

∣∣x0k ∣∣ sets the number of
generators s1;

∣∣y0k ∣∣ sets the number of generators s2 included
in the shortest path from 0 to k; sgnx0k and sgny0k determine
the directions of motion in the shortest path along (+) or
against (–) of the corresponding generator. We show that for
these graphs, the relationship between the numbers of vertices
i and j, and vector of shortest path Aij from i to j can be
obtained analytically.

To do this, we need to consider the geometric model of
a graph C (N ; d, d + 1) [15]. This graph is constructed on
a Z2 plane as a rhomboid configuration from unit squares
of an integer lattice, where each point of the lattice (x, y)
is labeled by a number k = xd + y (d + 1)modN , where
0 ≤ k < N is a vertex number of the graph. All vertex
marks 0 ≤ k < N are repeated on the plane an infinite
number of times forming a dense packing of rhomboid-like
configurations of unit squares. Fig. 2 shows how, from a
rhombus with the number of vertices N = Nd (indicated by
a solid line), all optimal configurations with the number of
vertices 2d2 − 1 ≤ N ≤ 2 (d + 1)2 + 1, by building up
(Fig. 2a) and contraction (Fig. 2b) of cells (vertices) on the
last layer, are obtained. All vertices of a graph C(N ; d, d+1)
of the diameter

D =

{
d, if 2d2 − 1 ≤ N ≤ Nd ,
d + 1, if Nd < N ≤ 2 (d + 1)2 + 1,

are located inside the rhombus RD = {(x, y) | |x| + |y| ≤ D},
and the layers from 0 to D − 1 are completely filled, and
among the numbers of the vertices located on these layers,
there are not the same numbers. By virtue of the indicated
features, for vertices 0 ≤ k < N of a graph C(N ; d, d + 1)
of diameter D, we have the following: to define the vector of
shortest paths from 0 to k, it suffices to calculate the paths in
the rhombus RD.
As an example of the geometric representation of graphs

of the family C (N ; d, d + 1) , Fig. 3 shows the graph
C(50; 4, 5) of diameterD = 5 in the coordinate system (x, y).
For simplicity of the image, the wrap-around links (edges)
in the graph are not shown. The graph C(50; 4, 5) has the
maximum possible order among the graphs of family (1) with
generators s1 = 4, s2 = 5. Note that the graph C(51; 4, 5) is
also optimal.

Theorems 3 and 4 solve the problem of computing the
vector of shortest paths from a zero vertex to all vertices of
the graphs of family (1).Moreover, in the proof of Theorem 3,
division of the vertex number of the graph by generator s1
is used which corresponds to selected horizontal regions of
the graph in Fig. 3a; in the proof of Theorem 4, division by
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FIGURE 2. Geometric model of graphs C(N;d ,d + 1).

FIGURE 3. Graph C(50;4,5).

generator s2 is used which corresponds to the selected vertical
regions of the graph in Fig. 3b.
Theorem 3: Let 0 ≤ k < N be a vertex number in a

graph C(N ; d, d + 1). Then the coordinates of vector A0k =(
x0k , y0k

)
are calculated as follows:

when k ≤ bN/2c

(
x0k , y0k

)
=


(α, β) , if β − d ≤ α ≤ d

(α + d + 1, β − d) , if α < β − d

(α − (d + 1) , β + d) otherwise,
(3)

where β = kmod d, α = bk/dc − β,
when k > bN/2c(

x0k , y0k
)
=

(
−x0N−k ,−y0N−k

)
.

Proof: According to the property of circulants(
x0k , y0k

)
=

(
−x0N−k ,−y0N−k

)
, for any vertex k ∈

0,N − 1. Thus, definition of the shortest path vector A0k for
all bN/2c < k < N reduces to definition of the shortest path
vector of the vertex with number (N − k) (the vertex lies in
the upper part of the rhombus to the right of the lines y = −x
for x ≤ 0 and y = −x + 1 for x > 0) and replacing the
signs of received coordinates with the opposite ones. Now let
0 ≤ k ≤ bN/2c. It is required to find x0k = x, y0k = y such
coordinates of the vertex with number k that

k = xd + y(d + 1). (4)

In the proof, we use the fact that for any positive integers k and
d , number k is uniquely representable in terms of the integer
part and remainder of the division by d :

k = bk/dc d + kmod d,

bk/dc ≥ 0, 0 ≤ kmod d < d . (5)

1) Consider the region of rhombus RD representing a graph
C (N ; d, d + 1) and bounded by the following lines:

0 ≤ y < d,
−y ≤ x ≤ d + 1− y,
y− d ≤ x ≤ d .

In this region of rhombus,{
x + y ≥ 0,
0 ≤ y < d .

Thus, if we represent number k of the vertex from this region
written in the form (4) as k = d (x + y)+ y, then, due to the
uniqueness of expression (5) for k , we obtain

bk/dc = x + y, kmod d = y.

This implies

x = bk/dc − kmod d, y = kmod d .

Substituting the found expressions for x and y in the record
of lines bounding the region under consideration, we find that
the formulas found for x and y hold when

kmod d − d ≤ bk/dc − kmod d ≤ d .

2) Now consider the region of the rhombus bounded by the
lines {

y < 0,
−y+ 1 ≤ x ≤ d + y.

In this region of rhombus,{
x + y− 1 ≥ 0,
0 < d + y < d .

Thus, if we represent number k of the vertex from this region
written in the form (4) as

k = (x + y− 1) d + (d + y),

then, due to the uniqueness of expression (5) for k, we obtain

bk/dc = x + y− 1, kmod d = d + y.

This implies

x = bk/dc − kmod d + (d + 1) , y = kmod d − d .

Similarly to case 1, we find that the formulas found for x and
y hold when bk/dc − kmod d < kmod d − d .
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3) For vertices with numbers k = d2 + d, d2 + 2d, d2 +
2d+1, the coordinates are (0, d) , (1, d) , (0, d + 1) , respec-
tively. The coordinates

(
x0k , y0k

)
calculated by formula (3)

coincide with the data. These formulas hold when

bk/dc − kmod d > d .

The theorem is proved.
Note that in graphs C(N ; d, d + 1) for 2d2 < N < Nd ,

to calculate the vector of shortest paths from 0 to any vertex,
it is sufficient to use only the first two types of formulas from
(3). Theorem 3 gives an analytical solution to the problem of
determining the shortest paths vector by the number of the
vertex of a graph C(N ; d, d + 1) with respect to the zero
vertex. Thus, calculation of the shortest paths in the structures
of the considered description turns out to be simpler than
the similar procedure for two-dimensional circulants with a
description different from that mentioned above [8].

Another type of formulas that can be used in calculating
the shortest path vectors in circulant graphs C(N ; d, d+1) is
determined by the following theorem.
Theorem 4: Let 0 ≤ k < N be a vertex number in a

graph C(N ; d, d + 1). Then the coordinates of vector A0k =(
x0k , y0k

)
are calculated as follows:

for k ≤ bN/2c ,(
x0k , y0k

)
=

{
(−β, α) , if β = 0 or α+β < d+1,

(d+1−β, α−d) , otherwise,
(6)

where β = kmod (d + 1) , α = bk/(d + 1)c + β; for k >
bN/2c , (

x0k , y0k
)
=

(
−x0N−k ,−y0N−k

)
.

Proof: By analogy with the proof of Theorem 3, the def-
inition of vector A0k for all bN/2c < k < N reduces to
determining the vector of the shortest paths of the vertex
with number (N − k) and replacing the signs of resulting
coordinates with the opposite ones.

Now let 0 ≤ k ≤ N/2. It is required to find x0k = x, y0k =
y such coordinates of the vertex with number k that

k = xd + y(d + 1). (7)

For the proof, we will use the fact that for any positive
integers k and d + 1, number k is uniquely representable
in terms of the integer part and remainder of the division by
d + 1:

k = bk/(d + 1)c(d + 1)+ kmod(d + 1),

bk/(d + 1)c ≥ 0, 0 ≤ kmod(d + 1) < d + 1. (8)

1) For vertices with numbers k = i (d + 1) , the coordinates
are

x = 0, y = bk/(d + 1)c.

2) Consider the region of the rhombus RD representing a
graph C(N ; d, d + 1) and bounded by the following lines:{

x < 0,
−x ≤ y ≤ x + d .

In this region of the rhombus,{
x + y ≥ 0,
0 < −x < d .

Thus, if we represent number k of the vertex from this region
written in the form (7) as k = (x + y) (d + 1) + (−x), then
due to the uniqueness of expression (8) for k , we obtain

bk/(d + 1)c = x + y, kmod(d + 1) = −x.

This implies

x = −kmod (d + 1) ,

y = bk/(d + 1)c + kmod (d + 1) .

Substituting the found expressions for x and y in the record
of lines bounding the rhombus region under consideration,
we find that the formulas found for x and y hold when

bk/(d + 1)c < d + 1− 2k mod(d + 1).

Thus, the kind of formulas found for case 2 also holds for
case 1 under the condition

k mod (d + 1) = 0.

3) Let us now consider the region of the rhombus bounded by
lines 

0 < x < d + 1,
x − d ≤ y,
1− x ≤ y ≤ d + 1− x.

In this region of the rhombus,{
x + y− 1 ≥ 0,
0 < d + 1− x < d + 1.

Thus, if we represent number k of the vertex from this region
written in the form (7) as k = (x + y− 1) (d + 1) + (d +
1 − x), then, due to the uniqueness of expression (8) for k ,
we obtain

bk/(d + 1)c = x + y− 1,

kmod(d + 1) = d + 1− x.

This implies

x = −kmod (d + 1)+ d + 1,

y = bk/(d + 1)c + kmod(d + 1)− d .

Similarly to case 2, we find that the formulas found for x and
y hold under the condition

d + 1− 2kmod(d + 1) ≤ bk/(d + 1)c.

The theorem is proved.
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Note that in circulant topologies, the application of the
shortest path vector A0k = (x0k , y0k ) for development of
routing algorithms offers a possibility to use a total num-
ber of different shortest paths defined by this vector. More
precisely, a total number of all the shortest paths for A0k

is
(∣∣x0k ∣∣+ ∣∣y0k ∣∣)!/(∣∣x0k ∣∣! ∣∣y0k ∣∣!). Thus, this property makes

it possible to construct an adaptive dynamic pair exchange
algorithm avoiding potential routing problems (traffic con-
gestions or node/link faults).

IV. PAIR EXCHANGE ALGORITHM IN
TWO-DIMENSIONAL CIRCULANTS
Consider the path procedure that implements pair interactions
(pair exchange) in a NoC with an optimal two-dimensional
circulant topology described by (1). Suppose, it is required to
transfer a packet from a source node s to a destination node j.
Provided that the shortest path vectorAij(of a destination node
j with respect to a node i executing the path procedure) is
known in each transit node i, modification of the shortest
path vector to determine the output direction belonging to the
shortest path to the destination node is reduced to operation(

x ijp
)′
= x ijp − sgn

(
x ijp
)
· 1

for any x ijp 6= 0, x ijp ∈
{
x ij, yij

}
. (9)

If there are no failures of the nodes and communication lines
in a network, then the vector of the shortest paths between the
nodes will be calculated in the source node by the number
of the destination node and written to the packet header.
In each transit node along the path to the destination, any of
the directions belonging to the shortest path is selected, and
the vector of the shortest paths is modified by operation (9)
in order to reduce the absolute value of nonzero coordinates
of the vector. The modified vector is written to the packet
header which is passed on. The end of the path procedure is
the equality to zero of all coordinates of vector of the shortest
paths.

The data for the pair exchange algorithm can be described
as follows: Aij is a vector of the shortest paths of the desti-
nation node with number j relative to a node i executing the
path procedure; W is a set of numbers of output directions
belonging to the shortest path to the destination node; the
entry inp0 > 0 means that a packet with the sign ‘‘pair
exchange’’ has arrived at the input port with number 0 (that
is, from the source node); the entry inph > 0 means that from
a neighboring node, the packet with the sign ‘‘pair exchange’’
has arrived at the input port with number h, (h = 1, 4); the
entry ‘‘put the packet in the output port outp’’ means that the
packet is put in the output port with number p.

Depending on the chosen method of calculating the short-
est path vector Aok and using formulas (3) or (6), two versions
of the algorithm are obtained: version (1) and version (2),
respectively.

We give estimates of this algorithm. NoC with the number
of nodes N requires

⌈
log2 N

⌉
+
⌈
log2 (N/2)

1/2⌉ bits to store
in memory the values of two parameters: N and generator

Algorithm 1 (Pair Exchange Algorithm)
Input: parameters N , d for version (1), or N , d + 1 for
version (2); j is the node number of the receiver; i is the
number of the node performing the path procedure (in the
source node i = s).
Output: modified vector of the shortest paths Aij.
1: If inp0 > 0 then

k := |s-j| and go to 5.
2: If inph > 0 then
3: If Aij = 0 then

go to 9,
4: else go to 8.
5: If j ≤ s then

sgn := −1 and go to 7,
6: else sgn := 1.
7: If k > bN/2c then

sgn:= −sgn and k:=N − k .
Calculate Aok by the formulas (3) or (6),
Aij:=sgn · Aok .

8: Choose any number p ∈ W , modify Aij by operation (9),
write Aij in the packet header,
put the packet in the output port outp.

9: End of the algorithm.

TABLE 2. Overall time (t) of the execution of the shortest path algorithm
in circulants of type C(N; d , d + 1).

d for version (1), or generator d + 1 for version (2). Items
1 and 5-8 of the algorithm are executed in the source node.
In total, for version (1), regardless of the number of nodes
in the network, 1 modulo operation, 2 division operations,
2 multiplication operations, 19 operations (such as addition),
and about 40 words of RAM are required. For version (2)
of the algorithm, 5 operations (such as addition) less are
required. In transit nodes, items 2–4, 8 are performed: 1 oper-
ation of multiplication and 3 operations (such as subtraction)
and 10 words of RAM are required.

In order to determine the time complexity of the pro-
posed pair exchange algorithm, we experimentally checked
its realization with Python 3 programming language on Intel
Core i5-8265 processor. We tested circulant networks with
the number of nodes N from 20 to 150000 and obtained a
constant time of execution of algorithmwhich proves our esti-
mate. In Table 2, the overall time of execution of the shortest
path algorithm is presented provided that the messages are
delivered from node 0 to all the other N − 1 nodes.
The presented algorithm for finding the shortest paths

in optimal two-dimensional circulants does not use routing
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TABLE 3. Time complexity of different routing algorithms for
two-dimensional circulants.

tables and adjacency matrices; it is adapted to node and
link failures and load distribution of nodes; it has a constant
complexityO(1) that does not depend on the size of the graph,
in contrast to the following algorithms: 1) Dijkstra’s algo-
rithm with quadratic complexity O(N 2) for any connected
graph of order N ; 2) the algorithm from [8] with an estimate
of O(N 1/2) of the time for calculating the shortest paths for
circulants of type C(N ; s1, s2) and l = O(d) of the routing
steps, where l is the distance between the vertices, and d is
the diameter of the network; 3) the algorithm from [9] having
the overall time complexity of one routing step O(logN );
4) the algorithm from [10] with O(logN )−time preprocess-
ing; 5) the algorithm from [11] with an estimate of O(logN )
arithmetic operations; 6) the algorithm from [12] having a
constant estimate of the time complexity to calculate the
shortest path for circulants of type C (N ; s1, s2) , but requir-
ing preliminary calculation of the parameters for calculation
with time complexityO (2 logN ) ; 7) the algorithm from [13]
in circulants of typeC(Nd ; d, d+1) with an estimate ofO(d).
The results of these algorithms comparison on time com-

plexity are presented in Table 3.
Comparison of algorithms for such parameters as auxil-

iary space usage and intrinsic space usage and others is not
required in this study, due to the specific of the required area
of application of the developed algorithm for implementation
at the register-transfer level (RTL) of routers in NoC.

V. IMPROVING THE SHORTEST PATH SEARCH
ALGORITHM FOR GENERALIZED PETERSEN GRAPHS
Theorems 3 and 4 can be also used to improve the short-
est path search algorithm developed for optimal generalized
Petersen graphs [3]. Generalized Petersen graphs as regu-
lar graphs of degree three can increase network reliability,
compared to ring networks and trees used in modern infras-
tructures, and are significantly better than chordal rings of
degree three in a number of indicators including the diameter
and average distance, while maintaining a low network cost.
Thus, generalized Petersen graphs of degree three can also
be considered as a promising topology for implementation in
NoCs. We give the necessary definitions.

Generalized Petersen graphs P(N , a, b) of order 2N are
graphs consisting of outer (vertices V0 connected by gener-
ator 2a) and inner (vertices V1 connected by generator 2b)
rings with an equal number of verticesN connected by edges.

The edges connecting vertices 2i and 2i + 1, i = 0,N − 1
will be considered corresponding to generator c = 1. Graphs
P(N , a, b) with the smallest possible diameter for a given
order are called the optimal ones.

An univalent mapping of the family of optimal two-
dimensional circulants described by (1) was found in the class
of generalized Petersen graphs with preserving the optimality
of the graph, and a parametric description of optimal general-
ized Petersen graphs for any graphs of order 2N was obtained:
Theorem 5: For every N > 9, there exists an opti-

mal generalized Petersen graph P(N , a, a + 1), where a =⌈
((N − 1)/2)1/2

⌉
− 1.

This makes it possible, on the basis of the shortest paths
search algorithm [30] for optimal circulants described by (1),
to find an analytical solution to the shortest paths search
problem for the class of optimal generalized Petersen graphs.

The use of formulas (3) and (6) makes it possible to
improve the shortest path search algorithm for generalized
Petersen graphs in terms of requiredmemory and speed, since
the main part of the calculations in it is determination of the
shortest path vector from 0 to any vertex of an appropriate
circulant graph C (N ; d, d + 1).

VI. PAIR EXCHANGE ALGORITHM TESTING
The first version of Algorithm 1 was implemented for NoCs.
For its operation on the FPGA, it is necessary that the router
receives all the necessary data for calculating the route. Based
on the proposed algorithm, the head fleet should contain two
fields in which the number of steps along generators s1 and s2
(the shortest path vectorAij) is stored. This is correct when the
router sends the calculated path to the next router. But when
receiving a packet from the IP-core, the destination node
number should be stored in the head fleet. Thus, the load on
the package in the general case is calculated by the following
formula:

P = 2dlog2Ne,

where N is the number of nodes in the network.
Since themaximum number of hops does not exceedD (the

diameter of a graph), we can assume that values of vector of
the shortest paths transmitted in the head fleet will not exceed
D either. Thus, the load on the package can be reduced to
2dlog2De, provided that

⌈
log2N

⌉
≤ 2dlog2De. The number

of such circulants does not exceed 54 % of the total number
of possible options for N ≤ 256 with the memory gain
in 1–2 bits; and for N> 256, such circulants do not occur at
all.

The router stores its network number, total number of
routers in the network and the value of generator s1, since
s2 can be easily calculated. Additionally, the router stores the
values calculated during the execution of algorithm. The total
size of the stored data can be estimated using the following
formula:

Mall = 6
⌈
log2 N

⌉
+
⌈
log2 (N/2)

⌉
+ 1,

where N is the number of nodes in the network;
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TABLE 4. Calculation and RTL synthesis data for the pair exchange algorithm.

⌈
log2 N

⌉
is the required amount of memory in bits to store

the serial number of the router in the network, total number of
routers in the network, and values calculated by the algorithm;⌈

log2 (N/2)
⌉
is the required amount of memory in bits to

store generator s1;
1 bit is the required amount of memory to store the flag

of generator selection for transmitting the packet to the next
node.

Testing the operation of the proposed algorithm for the
circulants of type C(N ;d, d+1) was carried out on the FPGA
Cyclone V5CGXFC9A6U19I7 [31] by Intel FPGA. The
routers are described inVerilog. For testing, the optimal circu-
lants of type C(N ;d, d+1) with number of nodes determined
by formula N = n2, where N is the number of nodes in the
network, n is a natural number, are chosen. Table 4 shows the
results of the theoretical calculation of occupied memory in
bits, as well as consumed resources REG and ALM obtained
after the synthesis of NoC communication subsystem.

The results show that the amount of required memory
and ALM blocks occupied by one router changes in steps.
This is due to increase in data size for the stored parameters
and does not directly depend on the number of nodes in
the network. The dependence can also be observed with the
use of resources for the entire network – for those circu-
lants, in which the use of registers by one router does not
change, the increase in resource use by the entire network is
less.

There is also a discrepancy of 20–30% in a larger direction
of REG consumption in comparison with theoretical esti-
mates of memory consumption. This discrepancy between
the calculations can be explained by the use of additional
logic to test the operation of the network on the FPGA whose
modeling also takes logical and memory resources.

VII. COMPARISON AND ANALYSIS OF ROUTING
ALGORITHMS
We also made a comparative analysis of the hardware
resources consumption for our algorithm and for the
Table routing algorithm, Clockwise algorithm, Adaptive
algorithm, and Algorithm for circulants of type C(N ; d, d +
1) from [5], [14] previously realized in NoCs with
two-dimensional circulant topology.

It should be noted that the Clockwise algorithm does
not guarantee the optimal path, and the Adaptive algorithm,
in order to be optimal, requires a more complicated compu-
tational procedure when paths with more than 2 cycles are
available.

Besides, it is difficult to speak about comparison in terms
of time complexity here since the algorithms from [5], [14]
are one-hop algorithms. Unlike the Pair exchange algorithm,
where the path is calculated at first node, and at the inter-
mediate ones, there is only a modification of the vector of
the shortest paths Aij, in the algorithms under consideration,
each next hop is calculated separately at each intermediate
node with time complexity equal to O(1). Therefore, it can
be argued that the complexity of all algorithms is compara-
ble, but this gives little information in the context of their
implementation in RTL. Much more information is provided
by the dependence of occupied memory resources (REG) and
logical blocks (ALM) on the number of nodes in the network.

Time-depended parameters could be also measured as
the resulting time delay of the combinational circuit which
implements the algorithm, but it greatly depends on specific
parameters like chip manufacturing technology, floorplaning
procedure, etc. and cannot be a universal metric. Moreover,
if we assume that the digital automaton implements the
algorithm in one clock cycle, then the number of ALM can
be considered time-dependent, and REG – space-dependent
metric.

The results of implementation on RTL for the proposed
algorithm and the algorithms from [5], [14] are given
in Tables 5 and 6.

As a result of comparing the algorithms, we can conclude
that the proposed pair exchange algorithm takes less logical
resources than the adaptive algorithm in [5] and the algorithm
for circulants of type C(N ;d, d+1) in [14]. In [5] it has been
shown that ALMs are a more critical resource than RAMs
which limit the number of possible routers in NoCs. At the
same time, the pair exchange algorithm is inferior to the
adaptive algorithm in terms of used memory resources and
it is slightly better than the algorithm for circulants of type
C(N ; d, d+1). When necessary to minimize the use of mem-
ory registers, it is preferable to use the adaptive algorithm, but
then the consumption of logical resources in comparison with
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TABLE 5. Dependence of memory resources occupied by different algorithms from [5], [14] and pair exchange algorithm in REG on number of nodes in
the network (RTL synthesis results).

TABLE 6. Dependence of logic resources occupied by different algorithms from [5], [14] and pair exchange algorithm in ALM on number of nodes in the
network (RTL synthesis results).

the pair exchange algorithm increases by more than 4 times.
Note that the clockwise algorithm is better than pair algorithm
in terms of the memory used and logical registers, but it
increases the path of a packet into several times and does
not guarantee its successful delivery to the destination node.
Moreover, the proposed algorithm, as opposed to some of the
routing algorithms from [5], [14], is optimal, i.e. always uses
the shortest paths to the packet destination. The analytical
method proposed is an exact and deterministic; by using
analytical formulas, it determines a set of the shortest paths
between any two nodes of a network in pair routing.

Thus, the use of the analytical method for development of
a routing algorithm in NoCs is a sufficient effective solution.
But the method is limited to a specialized structure of com-
munication networks. In the present case, we used the best
possible family of two-dimensional circulants of maximum
connectivity and with minimums of diameter and mean dis-
tance under any number of nodes that provides the ability to
use it as the basis to construct interconnection networks for
NoCs. It would be promising to accept the analytical method
of computing the shortest paths for development of routing
algorithms in NoCs with a topology of other known fami-
lies of three-dimensional and of higher dimension circulant
graphs [1]–[3], [20], [24].

VIII. CONCLUSIONS
Thus, the problem of finding the shortest paths in opti-
mal two-dimensional circulants was analytically solved in
this work. The calculations proposed were mathematically
proven. The theorems formulated and proved in the work
to improve the shortest path search algorithm, developed

for optimal generalized Petersen graphs, were also used.
Based on the proposed mathematical apparatus, an effec-
tive dynamic pair exchange algorithm in two-dimensional
circulants was developed. Since it always uses the shortest
paths for routing, it is optimal. The algorithm does not use
routing tables and adjacency matrices. Due to calculating a
vector of the shortest paths and a possibility to use all the
set of the shortest paths to a destination node, it is adapted
to node and link failures and to load distribution of nodes.
We experimentally showed that the overall time complexity
O (1) of the algorithm does not depend on the network size
in contrast to other well-known algorithms like Dijkstra’s
algorithm. Such properties make it a promising solution for
the use in NoCs which was confirmed by an experimental
study while synthesizing NoC communication subsystems
and comparing the consumed hardware resources with those
when other previously developed routing algorithms.
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