
DOI: 10.4018/IJERTCS.2018070102

International Journal of Embedded and Real-Time Communication Systems
Volume 9 • Issue 2 • July-December 2018

﻿
Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

18

SystemC Language Usage as the
Alternative to the HDL and High-
level Modeling for NoC Simulation
Aleksandr Romanov, National Research University Higher School of Economics, Moscow, Russia

Alexander Ivannikov, The Institute for Design Problems in Microelectronics of Russian Academy of Sciences, Moscow,
Russia

ABSTRACT

This article describes how actual trends of networks-on-chip research and known approaches to their
modeling are considered. The characteristics of analytic and high- / low- level simulation are given.
The programming language SystemC as an alternative solution to create models of networks-on-chip
is proposed, and SystemC models speed increase methodic is observed. The methods of improving
SystemC models are formulated. There has been shown how SystemC language can reduce the
disadvantages and maximize the advantages of high-level and low-level approaches. To achieve
this, the comparison of results for high-level, low-level and SystemC NoC simulation is given on the
example of “hot spots” and the geometric shape of regular NoC topologies effect on their productivity.

Keywords
Hot Spots, Hardware Description Language, Network-On-Chip, NOC Modeling, OCNS, NoCtweak, SystemC,
System-On-Chip

INTRODUCTION

Continuous development of modern systems on chip (SoC) has led to the emergence of multiprocessor
systems. For example, Intel has developed two experimental processors with 48 and 80 cores (Howard
et al., 2011); a processor with 167 cores is being developed (Truong et al., 2009); ZMS-40 100-Core
StemCell Media processors with Quad ARM Cortex-A9 cores (Huangfu & Zhang, 2015; “ZiiLABS
unveils 100-Core ZMS-40 processor”, 2012), TILE-Gx72 with 72 C-programmable 64-bit RISC cores
processor and TILE-Mx100 targeting networking with 100 64-bit ARM Cortex-A53 cores processor
(“Mellanox Products: TILE-Gx72 Processor”, 2016) is commercially available. Other companies also
pursue their ongoing developments.

Multiprocessor SoCs, whose nodes are combined by the total communication subsystem consisting
of routers and short connections between them organized as networks, are called networks-on-chip
(NoCs). Because they are widespread, the problems of modeling, analysis, and simulation of NoCs
are very important.

The article consists of the following sections: statement of the problem and objectives of research;
analytical, low-level and high-level NoC modeling characterization; SystemC as a compromise between
high level and low-level modeling; description of method of HDL-model translation into SystemC
language; comparison of SystemC and high level OCNS NoC models, and comparative analysis of
the simulation time for the different models of the different levels.

International Journal of Embedded and Real-Time Communication Systems
Volume 9 • Issue 2 • July-December 2018

19

STATEMENT OF THE PROBLEM AND OBJECTIVES OF RESEARCH

According to Marculescu et al. (2009), basic directions of current research on the subject of NoCs are:

1. 	 Modeling of network traffic and creating the appropriate test tasks.
2. 	 Display of the problems on NoCs and their planning.
3. 	 Routing and flow control in the NoCs.
4. 	 Ensuring the required quality of service.
5. 	 Management of power, temperature control and timing.
6. 	 Reliability and fault tolerance of the NoCs.
7. 	 Creation of the optimal topology of NoC connections.
8. 	 Development of an effective structure of routers and network channels.
9. 	 Scheduling of NoC deployment.
10. 	NoC prototyping, testing, and verification.
11. 	NoC modeling, analysis and simulation.

A large number of research areas reflect the complexity of NoCs as an object of research. It
should be also emphasized that on NoC modeling, analysis, and simulation, other areas of search
are based. Therefore, the choice of adequate methods and tools for NoC modeling is challenging.

Analytical NOC Modeling
NoC modeling aims to obtain and analyze critical network characteristics such as bandwidth, energy
and resource consumption, resistance to bugs and others. Depending on the purpose of the study, the
models can be of different level of abstraction and therefore have a different accuracy and the time
required for modeling.

A typical approach involves an output, analysis and analytical approximation of formula
dependencies that describe the processes occurring in NoCs or their characteristics.

In general, the process of NoC synthesis can be implemented by mapping an application problem
characteristic graph (APCG) onto NoC architecture. APCG is G = G(C, A), a directed graph, where
C – set of vertices that characterize computing nodes, A – set of communication processes between
nodes. In turn, NoC architecture is characterized by: T(R, Ch) topology, where R and Ch – sets of
routers and physical links between them; a routing mechanism (PR); a function of mapping of APCG
vertices onto NoC routers (Ω (C)).

According to the above definitions, it is possible to bring out communication energy cost
dependence:

E a
a

E
bit

c c
i j

i j

i j
= ×
∀
∑ υ() ((), ())

,

,

Ω Ω 	 (1)

where υ()
,
a
i j

 – capacity of communication process between nodes i, j; E c c
bit i j
((), ())Ω Ω – energy

spent on 1 bit of data transfer between nodes c
i
 and c

j
.

Communication energy minimization problem has to be solved by finding such Ω (C), that
arranges for connections of communication process with high capacity to have a low energy
consumption for transferring 1 bit. For some regular NoC topologies, this problem is partially solved
by Hu and Marculescu (2003), but not for irregular topologies, so modeling of NoCs to find optimal
solutions remains an important task. Equation (1) is fundamental, and all researches to find optimal
NoC topologies for a particular problem, in one form or another, can be referred to an attempt to
minimize this function.

International Journal of Embedded and Real-Time Communication Systems
Volume 9 • Issue 2 • July-December 2018

20

Similarly, the formula of the total volume of data transmitted between nodes in a NoC, is as
following:

V a L r i j
i j

a
i j R

i j

= ×
∀

∑ υ() (P (, ,))
, ,

,

	 (2)

where L r i j
i j R,
(P (, ,) – distance between nodes i and j according to the routing algorithm.

The application of routing algorithm that reduces the average distance between nodes makes it
possible to reduce the load on the network.

Formulae (1, 2) represent a typical quadratic task of assignments which is the minimization of
sum of cost functions products in their weighting coefficients. Similarly, we can find the formulae
for determination of other NoC characteristics by substituting of appropriate productivity metrics or
resources consumption; by combining some functions into a system, an analytical NoC model can
be obtained. This approach is applicable for 2, 3, 4, 5, 6, 7 and 9 lines of NoC research which were
defined earlier.

Somewhat detached, analytical models of network traffic are positioned. For NoCs with uniform
traffic, stochastic models, as well as models for self-similar traffic, in case of multimedia applications,
can be applied (Soteriou, Wang, & Peh, 2006; Varatkar & Marculescu, 2004).

An example of the analytical model is given in work which represents the dependence of parallel
data processing on NoC parameters as an expression and analyzes the influence of delays when data
transmitting under increase of network dimension (Chen, Lu, Jantsch, & Chen, 2009).

Analytical NoC modeling has several advantages: it is an obvious approach which does not require
the use of special computer-aided design (CAD) systems; the usage of Mathcad, MatLab or other
CAD makes calculation process much easier; Simulink even allows to describe a model graphically.
However, the analysis and optimization of these models is difficult because of their complexity and
nonlinearity of NoC behavior, the synthesis of NoC from analytical model is complicated, and anyway
there is a need of HDL NoC description. Commonly analytical model is the first step for more complex
model building and it estimates the base characteristics of developed design.

Low-Level NoC Simulation
The NoC models comprising another group can be referred to simulation ones. Depending on the level
of detalization, the models are divided into low-level and high-level classes (to be reviewed below).

Low-level simulation is network emulation at the logic gates. Components of the model are formed
by using hardware description languages (for example, Verilog or VHDL). Thus, their functioning
is analyzed with the help of specialized software for hardware simulation (for example, ModelSim
package), and such a model can be synthesized by using specialized CAD (for example, Quartus II or
Synplify Pro). HDL-languages support an interface for high-level programming languages, and this
facilitates compatible simulation and verifications (for example, VPI / PLI (Saifhashemi & Pedram,
2003), DPI (Sutherland, 2004)).

Thus, such an approach is used when simulation, as close to the NoC realization on a physical
level as possible (simulation at cycle level, cycle-accurate), is necessary, and this approach is applicable
moreover for 3, 5, 6, 7, 8, 10 and 11 lines of NoC research which were defined earlier.

This approach is widely spread. Thus, Goossens et al. (2005) by using HDL description, various
embodiments of NoC Æthereal routers to assess the occupied area on the chip and the maximum
clock frequency were synthesized. Ogras et al. (2007) there used the routers, described in Verilog
for construction, modeling and prototyping of NoC 4x4 mesh MPEG-2 decoder. Palma et al. (2005)
used NoC VHDL model to estimate energy expenditure as well as in other work (Marcon et al.,
2007), where by using VHDL model test sequences and HDL netlist for further SPICE simulation
were generated. The classic way from describing in HDL, and then to simulation in ModelSim and

International Journal of Embedded and Real-Time Communication Systems
Volume 9 • Issue 2 • July-December 2018

21

compatible emulation in FPGA, for fast hardware-software NoC simulation, was used by Genko et al.
(2005). The dissertation written by Janarthanan (2008) offers the VHDL coherent router model and
MoCReS NoC, built on its basis, for simulation and synthesis in FPGA. Verilog library with open
source – Netmaker (Mullins, West, & Moore, 2006; “Netmaker: Fully-synthesizable parameterized
NoC implementations library”, 2016), implementing the description of classic router with virtual
channels and also means of generation of regular topologies should be mentioned. In the previous work
(Romanov & Lysenko, 2012) the capacity of the library was extended to modeling of irregular NoCs
by modifying building connections module between the nodes and routing module. Another example
is set by Verilog library NoCSimp (created by the authors of this article), based on the wormhole
router with a simplified structure and FCFS (First Come First Serve) arbitration (Romanov, Ivannikov,
& Romanova, 2016). The possibility of modeling of irregular NoC topologies by setting up routing
tables was realized, and the NoC synthesis, due to the simplicity of implementation, was facilitated.

Low-level approach is applied to virtually all areas of NoC research. Its main advantage is the
high accuracy and customizability of models and the possibility of NoC synthesis. However, creation
of such models takes significant amount of time; modeling requires specialized programs of hardware
simulation (for example, package ModelSim). According to Genko et al. (2005), the maximum speed
of simulation by using ModelSim comes to about 3,2∙103 cycles/s, which is not enough for analysis
of large-scale NoCs (for example, Netmaker, for modeling of NoC with 9 nodes, needed more than
2 hours; NoCSimp usage, under the same conditions of modeling, made it possible to reduce the
simulation time to 10 minutes, but with increase of number of nodes in the NoC, the time required for
the simulation is growing exponentially, so even the use of simplified HDL models does not solve the
problem). Existing approaches of compatible hardware and software simulation and prototyping of
NoCs require specialized equipment (e.g., development boards) and special features (e.g., in-hardware
simulation), and these complicate the usage of such methods.

High-Level NoC Simulation
High-level simulation is data streams distribution modeling in the network. This approach is
characterized by speed of development, configuration flexibility, and a relatively small modeling time.
In this case, the simulation can be defined as testing of NoC data dissemination model described by
a high-level language. This approach is applicable for all lines of NoC research which were defined
earlier, but for 1, 2, 3, 4, 7, 8 and 10 lines, first of all.

An example of high-level model is set presented in the work of Lv et al. (2008), where transfer
of the data to NoC is represented as parallel executable tasks described in C language.

Hossain et al. (2007) a universal simulator on Java programming language and modeling results
for different regular topologies represented. The model describes routers and compute nodes of NoCs
as separate objects that operate independently of each other. Computing nodes are the generators /
consumers of network traffic, and routers perform data transmission and reception according to the
routing algorithm.

This approach to the NoCs description is very common and has many advantages: performed
network modeling is close to the model experiment; there is a possibility of individual configuration
of each router, routing algorithm adjustment, connection of various test sequences of network traffic,
and so on.

Romanov et al. (2015) a quick high-level NoC OCNS based on OSI network model and the use
of the Java language and Qt Jambi framework represented; it allows to bring processing operations
in the graphic interface as a separate stream. Compared with the previous example, this simulator
implements irregular topologies modeling: each router contains a routing table, and NoC topology is
set on a matrix of links between the routers. Model parameters are specified by using xml configuration
file. Simulation results are displayed in the dialog box and selected settings are stored in the summary
table. The simulator makes it possible to run multiple iterations of modeling in a row with different
configuration. The use of the Java programming language with Qt Jambi framework provides all the

International Journal of Embedded and Real-Time Communication Systems
Volume 9 • Issue 2 • July-December 2018

22

advantages of object-oriented programming, cross-platformity of software solutions, and the speed
of their development. The complete independence of system components makes it possible to carry
out the development, modification and testing of different NoC models. OCNS application gives an
opportunity to achieve the simulation time for 9 node NoC faster than in 1 minute (while in Netmaker,
under the same conditions, the simulation takes 2 hours) and for 100 node NoC – in 5 minutes.

In the previous model, graphical interface is implemented by software, but there are also ready-
made software products which facilitate modeling. For example, de Freitas and Navaux (2008)
modeling in Petri networks within Visual Object Net simulator is used; in this way, it is possible to
analyze competition, cooperation and data conflicts in NoC communication space.

The modeling of the software execution on the NoC nodes can be realized by using Imperas
Open Virtual Platform as in, for example, Cucchetto, Lonardi & Pravadelli (2014), or Cadence VSP
(Suvorova et al., 2015) depending on the base processing unit used in NoC.

Special attention requires an agent approach described by Korotkyi and Lysenko (2009). Its
essence is that the subject area is represented as a set of interacting agents. The developer describes
the rules of creation, destruction, and change of agents. An agent is considered to be an object
that has memory and ability to take decisions and, therefore, its own behavior of different level of
difficulty. The internal structure of the agent can be described in various ways – from formal logic
to neural networks. At the time of launching the process of modeling each agent begins to function
according to the algorithm of the individual, and the global behavior system appears as the result of
the interaction of the whole set of agents. This ensures gradual correction in the working algorithm
of the agent, thereby, detailing the model. So, multiple scenarios of agent’s functioning of different
difficulty level ensure modeling of the operation of the system at different levels of abstraction.
Description of models of this type is performed in specialized languages of model description (for
example, UML), and the development is done in AnyLogic CAD.

High-level simulation is applicable for most NoC research areas where there is no reference to
the hardware implementation, and it is necessary to obtain quick simulation results with sufficient
accuracy.

The downside of high-level NoC models is the inability of their synthesis and the relatively low
accuracy, and so, there is a need for a hybrid approach, which would be able to combine the benefits
of low-level and high-level approaches based on the most common programming language – C.

SYSTEMC AS A COMPROMISE BETWEEN HIGH-
LEVEL AND LOW-LEVEL MODELING

SystemC, a language of design and verification of system-level models, is implemented as a C++
library with open code realizing electronic system-level (ESL) design methodology. The library
contains a core of event simulation which allows obtaining the executable model of the device. It is
used for building transactional and behavioral patterns, as well as for high-level synthesis devices.
SystemC uses a number of concepts similar to those applied by hardware description languages VHDL
and Verilog (interfaces, processes signals, eventness, hierarchy of modules). SystemC is suitable for
behavioral modeling and RTL (Register Transfer Level) –synthesis, and due to its flexibility, it can
be applied for all lines of NoC research which were defined earlier.

Transaction Level Modeling (TLM) approach can be applied to develop the NoC design
methodology, and to integrate it into a system-level platform. TLM can link software development,
and NoC design at several abstraction levels higher than the RTL, to decrease the simulation time of
complex models. TLM approach can be realized on the basis of SystemC TLM library. The drawback
is a possible accuracy loss (for example, according to Indrusiak and dos Santos (2011), there is 10%
accuracy loss with regard to a cycle-accurate counterpart), and also a hardness of the implementation
of this approach to the NoCs because of their complexity.

International Journal of Embedded and Real-Time Communication Systems
Volume 9 • Issue 2 • July-December 2018

23

SystemC is widely used by NoC developers. Xpipes library, based on SystemC (Bertozzi & Benini,
2004), makes it possible to carry out a complete cycle of NoC simulation and synthesis (Bertozzi et
al., 2005). Mahadevan et al. (2007) the high-level SystemC-ARTS model for comparative modeling
techniques of bus and network methods of SoC building is presented. Noxim (Catania et al., 2015),
NIRGAM (Jain et al., 2007), and other well-known simulators are also based on SystemC. Some
works use a hybrid approach, where test sequences, by using SystemC, are generated, and the model
itself is implemented in HDL (Chan & Parameswaran, 2004; Goossens et al., 2005).

SystemC’s popularity is due to the fact that it is based on C / C++ language which developed
many standard libraries, allowing easier compliant simulation and verification of NoC models. The
present-day simulators, such as ModelSim, compiles the model described on HDL, into machine-
independent object code, while its subsequent optimization and simulation. When the model
modification needed, a new cycle of compilation and optimization starts. The models, created with
the aid of SystemC can be described as dynamically parameterized modules at runtime – without re-
compilation and re-optimization of the whole model. However, C / C++ language is consistent by its
nature (instructions are executed one by one), while the hardware processes occur simultaneously and
in parallel. This makes the programmer learn a new programming paradigm, as well as specific tools,
such as processes, events, signals and others. Although SystemC is a synthetic language, regarding
to NoCs it is primarily used as a high-level language for behavioral abstract modeling allowing faster
simulation in comparison with the one performed by using HDL-languages (up to 20∙103 cycles / s)
(Goossens, et al., 2005; Genko et al., 2007), but the NoC synthesis is more complicated.

Translation of HDL-Model into Systemc Language
Thus, one of the possible ways to increase productivity of NoC models written in HDL-languages,
is their translation into SystemC language, which will potentially speed the modeling process up to
7 times (from 3.2∙103 to 20∙103 cycles / s) while maintaining the high accuracy of the model and
the possibility of further NoC synthesis; it will also ensure the opportunity to simplify the model
simulation with the help of external libraries. For the translation of HDL into SystemC there are special
translators, for example, V2SC (Ayough et al., 2002), as well as a simple hand-by-line translation of
HDL-code into SystemC notation.

However, this approach may not yield significant improvements in model’s performance that is
associated with the fact that the HDL-language design and optimization techniques, effective in it,
may not work in SystemC, and even slow the model (for example, the presence of too many nested
sub-modules) (Korotkyi & Lysenko, 2011).

To improve the model in SystemC language and to streamline its working, let us formulate a set
of techniques and rules based on the analysis of works (Keist, 2010; Alemzadeh, 2010):

1. 	 By using built-in types of C++ instead of the ones of SystemC types, while describing signals
(channels), the bool two-symbol type (“0”, “1”) is better than 4-symbol sc_logic (‘0’, ‘1’, ‘x’,
‘z’). Multibit signals can be well described with the help of type int and data structures, but not
as arrays of bool variables.

2. 	 SystemC processes of SC_METHOD type application leads to faster simulation in comparison
with SC_THREAD, since the latter are real threads, and they have their own stack and local
variables that requires additional operations for thread context treatment.

3. 	 When transmitting the signal modification information through the ports and connection, it is
necessary to call four functions and perform three copy operations (call of write(), request_
update(), update() and read() functions, copy source variable to m_new_val, m_new_val to
m_cur_val, and m_cur_val to dest variable); so, minimization of quantity of intermodular links
leads to decreasing of intensity of mentioned function calls and to decreasing of copy operations
which result in shortening of simulation time.

International Journal of Embedded and Real-Time Communication Systems
Volume 9 • Issue 2 • July-December 2018

24

4. 	 To reduce the number of modules and intermodular links it is necessary to replace sub-modules
with the help of sequential program that realizes the operation algorithm of particular top-level
module.

5. 	 In case it is possible, we will have to use high-level containers instead of the low-level ones.
For example, we can employ deque from STL to implement the behavior of FIFO and this STL
implementation will operate much faster than hardware one of FIFO at RTL level of abstraction
will do.

6. 	 SystemC ternal operator signal assignments have a better simulation time than SystemC switch-
case statements, and switch-case statements simulate faster than if-else statements;

7. 	 To speed up the simulation of SystemC models some techniques of C++ programs optimization
can be adopted. Function call causes one of the most inefficiency in simulation time. Therefore,
full or partial function inlining can improve the simulator speed. Partial inlining means inlining
of simple conditions which may cause the immediate return in the case of function call.

By using programming language Python, a special script was designed for semi-automatic parsing
(syntactic analysis) of the generated SystemC code into compliance with the rules defined above.
This script generates a text code analysis reports, which contain the highlights of the text rows to be
updated and give recommendations to improve the code of the model to achieve its better performance
and reliability; the user can approve these recommendations, or leave the previous code realization.
Moreover, the user can make a setting that allows automatic replacement of non-optimal statements
according to the above formulated rules. In this way, proposed Python script gives an opportunity to
speed up translation of HDL models to SystemC language and enforces a single unified code style
for different programmers working with different models. Designed script can be improved and
supplemented with new regulations and controlled parameters defined by the programmer.

The comparison results for SystemC models realizing the NoCs of mesh 8x8 type, are given
(Korotkyi et al., 2011). The use of SystemC, and the above SystemC model improvement techniques
gives an opportunity to reduce the duration of modeling up to 10.2 times and cut down the amount of
occupied memory up to 121 times. As it will be shown further, implementation of the above stated
rules while SystemC model developing, can make it faster in simulation. All these demonstrate the
effectiveness of this approach as an alternative to the high-level simulation while HDL modeling
does not satisfy the requirements of the simulation time, but it is necessary to keep synthesizability
of the model.

Comparison of SystemC and High Level OCNS NoC Model
One of the important tasks in the NoC analysis is the impact of the distribution of most intensive tasks
of computing load and the exchange of data on NoC nodes. Units, with which the network exchange
is the most intense, are called “hot spots”. Since, unlike computer networks, NoC computational
cores are compactly arranged, and the data is exchanged at high frequencies, the distribution of “hot
spots” is crucial. Another problem is the evaluation of the effect of the geometric shape of regular
NoC topologies on their productivity.

To simulate different situations of NoCs “hot spots” arrangement in NoCs with different form
and the type of topology, it is suitable to use OCNS high-level model (Romanov, 2015), a brief
description of which is given above, because it supports the connection of different test sequences
of network traffic, thin configuration of each router and has a high accuracy and simulation speed.

As an alternative to OCNS, we chose a NoCTweak model (Tran, 2012). This NoC model is
characterized by open code and is designed to study the performance and energy efficiency of NoCs.
The use of SystemC and C++ in NoCTweak allows a high-speed simulation at the loop level. The
simulator is focused on the modeling of the data transition in the NoC communication sub-system of
mesh topology and has a large number of adjustable parameters. Open source code of NoCTweak allows
performing its modification, optimization, and configuration for a specific application task, which

International Journal of Embedded and Real-Time Communication Systems
Volume 9 • Issue 2 • July-December 2018

25

gave an opportunity to adjust the model for our problem, fix some bugs and to optimize NoCTweak
source code, and to develop bash scripts to automatically start multiple simulation runs. Collection
and analysis of statistics and construction of summary graphs of changes in NoC characteristics are
implemented by using the scripts in Matlab.

By using the OCNS model and NoCTweak modified model, NoC simulation with mesh topology,
10x10, 5x20 and 9x11, as well as 7x7 and 5x10 by size, was performed. The modeling parameters,
close to the OCNS settings, were chosen for NoCTweak: the modeling duration was 30,000 simulation
cycles, and the networks warm-up time – 5000 cycles. The iterations of modeling were performed for
different fleet generation frequency (fleet injection rate, fleet/cycle/unit) – from 0.05 to 0.3, and the
packet generation mode has been set as “random”. The simulation results (Figure 1–3) are generally
the same: a reduction in NoC capacity based on mesh topology (up to 25% in both models), when used
with non-optimal topology of geometric dimensions takes place (Romanov et al., 2015; Romanov,
2016). Almost complete agreement of the results of modeling and commensurate amount of time on
simulation demonstrate the effectiveness of the use of SystemC models for rapid NoC simulation as
a substitute for a high-level model with appropriate timing win comparing to HDL-modeling. Such
features as the use of translators of HDL descriptions in SystemC, maintenance of synthesizability of
models, as well as the existence of benefits in the form of a simple integration of third-party libraries
and visualization, parallelization, etc., make SystemC a powerful alternative to the high-level modeling.

THE INFLUENCE OF THE NUMBER OF NODES IN THE SIMULATED
NETWORK TO THE SIMULATION USING DIFFERENT MODELS

In the above shown example, the simulation models using various programming languages are
significantly different. The greater the number of nodes in the simulated NoCs, the more difference
in time, and while the simulation results difference for NoCs with 9 nodes is small, for the NoCs with
100 nodes, the difference in simulation time grows greatly. The comparison for NoC with 9 and 100
nodes modeling time using different models by Table 1 is shown.

The longest modeling time is for Netmaker, despite its better accuracy, the modeling of the
networks with more than 20 nodes is complicated. The fastest model is OCNS, but its accuracy
cannot be guaranteed. Modeling time of SystemC models is adequate enough, and the fact, that one
of the models was generated using high-accurate HDL model Netmaker can guarantee its accuracy
and synthesizability. The improvement of the SystemC model by using of the special techniques and
rules gives an opportunity to enough decrease the modeling time from 35 s to 28 s for NoC with 9
nodes, and from 14 m 35 s to 11 m 07 s (about 26.6%) for NoC with 100 nodes. SystemC models,
generated from HDL model Netmaker (with and without modifications according to the proposed
rules) and modified NoCTweak model, were checked for the equivalence to the original HDL model.
The obtained results showed the equivalent data distribution in the networks and reduction in NoC
capacity when using non-optimal topologies. These factors imply the possibility of HDL model
replacement by the equivalent SystemC model at the stage of modeling to speed up this process.

CONCLUSION

Thus, when developing and researching NoCs, a choice of the universal approach to their design
is challenging. Among the typical approaches there can be distinguished the following: analytical
approach (analysis of such models is difficult because of their complexity and nonlinearity of NoC
behavior); high-level simulation (applicable for most NoC research areas where there is no reference
to the hardware implementation, and obtainment of modeling results with reasonable accuracy is
necessary); low-level HDL simulation (high precision, configurability and possibility of NoC synthesis,
but high time expenditure on model development and simulation).

International Journal of Embedded and Real-Time Communication Systems
Volume 9 • Issue 2 • July-December 2018

26

The use of SystemC language can be considered to be effective for building NoC models, and
this makes it possible to reduce the disadvantages and maximize the advantages of high-level and
low-level approaches. To achieve this, methods of improving of SystemC models are formulated; the
comparison of results for high-level, low-level and SystemC NoC simulation is given.

ACKNOWLEDGMENT

The publication was prepared within the framework of the Academic Fund Program at the National
Research University Higher School of Economics (HSE) in 2018-2019 (grant Nº 18-01-0074) and
by the Russian Academic Excellence Project “5-100”.

Figure 1. Dependence of average packet latency on injection rate at 0…0.18 flit / cycle / node

International Journal of Embedded and Real-Time Communication Systems
Volume 9 • Issue 2 • July-December 2018

27

Figure 2. Dependence of average packet latency on injection rate at 0…0.3 flit / cycle / node

International Journal of Embedded and Real-Time Communication Systems
Volume 9 • Issue 2 • July-December 2018

28

Figure 3. Dependence of average throughput on flit injection rate at 0…0.8 flit / cycle / node

Table 1. Comparison of NoC modeling time

Model 9 nodes 100 nodes

OCNS (Java) (Romanov et al., 2015) 25 s 02 m 17 s

NoCTweak (SystemC, basic model) (Tran, 2012) 35 s 14 m 33 s

NoCTweak (SystemC, after modifications) (Romanov, 2016) 28 s 11 m 07 s

SystemC model generated from HDL model Netmaker (with modifications) 30 s ~20 m

Netmaker (System Verilog) (Romanov & Lysenko, 2012) 8 m 24 s Not estimated,
more than 1 day

International Journal of Embedded and Real-Time Communication Systems
Volume 9 • Issue 2 • July-December 2018

29

REFERENCES

Alemzadeh, H., Aminzadeh, S., Saberi, R., & Navabi, Z. (2010, September). Code optimization for enhancing
SystemC simulation time. In Proceedings of 2010 East-West Design & Test Symposium (pp. 431–434).
doi:10.1109/EWDTS.2010.5742036

Ayough, L. M., Abutalebi, A. H., Nadjarbashi, O. F., & Hessabi, S. (2002). Verilog2SC: A Methodology for
Converting Verilog HDL to SystemC. In Proceedings of the 11th International HDL Conference (HDL Con
2002) (pp. 211–217).

Bertozzi, D., & Benini, L. (2004). Xpipes: A network-on-chip architecture for gigascale systems-on-chip. IEEE
Circuits and Systems Magazine, 4(2), 18–31. doi:10.1109/MCAS.2004.1330747

Bertozzi, D., Jalabert, A., Murali, S., Tamhankar, R., Stergiou, S., Benini, L., & De Micheli, G. (2005). NoC
synthesis flow for customized domain specific multiprocessor systems-on-chip. IEEE Transactions on Parallel
and Distributed Systems, 16(2), 113–129. doi:10.1109/TPDS.2005.22

Catania, V., Mineo, A., Monteleone, S., Palesi, M., & Patti, D. (2015, July). Noxim: An open, extensible and
cycle-accurate network on chip simulator. In 2015 IEEE 26th International Conference on Application-specific
Systems, Architectures and Processors (ASAP) (pp. 162–163). IEEE.

Chan, J., & Parameswaran, S. (2004). NoCGEN: A template based reuse methodology for networks on
chip architecture. In 17th International Conference on VLSI Design (pp. 717–720). IEEE. doi:10.1109/
ICVD.2004.1261011

Chen, X., Lu, Z., Jantsch, A., & Chen, S. (2009, October). Speedup analysis of data-parallel applications on
Multi-core NoCs. In 2009 IEEE 8th International Conference on ASIC (pp. 105–108). IEEE.

Cucchetto, F., Lonardi, A., & Pravadelli, G. (2014, October). A common architecture for co-simulation of
SystemC models in QEMU and OVP virtual platforms. In 2014 22nd International Conference on Very Large
Scale Integration (VLSI-SoC). IEEE. doi:10.1109/VLSI-SoC.2014.7004154

De Freitas, H. C., & Navaux, P. O. A. (2008, July). Evaluating on-chip interconnection architectures for parallel
processing. In 11th IEEE International Conference on Computational Science and Engineering Workshops,
2008 (CSEWORKSHOPS’08) (pp. 188–193). IEEE. doi:10.1109/CSEW.2008.60

Genko, N., Atienza, D., De Micheli, G., & Benini, L. (2007). Feature-NoC emulation: A tool and design flow
for MPSoC. IEEE Circuits and Systems Magazine, 7(4), 42–51. doi:10.1109/MCAS.2007.910029

Genko, N., Atienza, D., De Micheli, G., Mendias, J. M., Hermida, R., & Catthoor, F. (2005, March). A complete
network-on-chip emulation framework. In Design, Automation and Test in Europe (pp. 246-251). IEEE.
doi:10.1109/DATE.2005.5

Goossens, K., Dielissen, J., Gangwal, O. P., Pestana, S. G., Radulescu, A., & Rijpkema, E. (2005, March). A
design flow for application-specific networks on chip with guaranteed performance to accelerate SOC design
and verification. In Proceedings of the conference on Design, Automation and Test in Europe (Vol. 2, pp.
1182–1187). IEEE Computer Society. doi:10.1109/DATE.2005.11

Goossens, K., Dielissen, J., & Radulescu, A. (2005). Æthereal network on chip: Concepts, architectures, and
implementations. IEEE Design & Test of Computers, 22(5), 414–421. doi:10.1109/MDT.2005.99

Hossain, H., Ahmed, M., Al-Nayeem, A., Islam, T. Z., & Akbar, M. M. (2007, March). GpNoCsim – a general
purpose simulator for network-on-chip. In 2007 International Conference on Information and Communication
Technology (pp. 254–257). IEEE. doi:10.1109/ICICT.2007.375388

Howard, J., Dighe, S., Vangal, S. R., Ruhl, G., Borkar, N., Jain, S., & Droege, G. et al. (2011). A 48-core IA-32
processor in 45 nm CMOS using on-die message-passing and DVFS for performance and power scaling. IEEE
Journal of Solid-State Circuits, 46(1), 173–183. doi:10.1109/JSSC.2010.2079450

Hu, J., & Marculescu, R. (2003, January). Energy-aware mapping for tile-based NoC architectures under
performance constraints. In Proceedings of the 2003 Asia and South Pacific Design Automation Conference
(pp. 233–239). ACM. doi:10.1145/1119772.1119818

http://dx.doi.org/10.1109/EWDTS.2010.5742036
http://dx.doi.org/10.1109/MCAS.2004.1330747
http://dx.doi.org/10.1109/TPDS.2005.22
http://dx.doi.org/10.1109/ICVD.2004.1261011
http://dx.doi.org/10.1109/ICVD.2004.1261011
http://dx.doi.org/10.1109/VLSI-SoC.2014.7004154
http://dx.doi.org/10.1109/CSEW.2008.60
http://dx.doi.org/10.1109/MCAS.2007.910029
http://dx.doi.org/10.1109/DATE.2005.5
http://dx.doi.org/10.1109/DATE.2005.11
http://dx.doi.org/10.1109/MDT.2005.99
http://dx.doi.org/10.1109/ICICT.2007.375388
http://dx.doi.org/10.1109/JSSC.2010.2079450
http://dx.doi.org/10.1145/1119772.1119818

International Journal of Embedded and Real-Time Communication Systems
Volume 9 • Issue 2 • July-December 2018

30

Huangfu, Y., & Zhang, W. (2015, April). Real-Time GPU Computing: Cache or No Cache? In 2015 IEEE 18th
International Symposium on Real-Time Distributed Computing (pp. 182-189). IEEE.

Indrusiak, L. S., & dos Santos, O. M. (2011, March). Fast and accurate transaction-level model of a wormhole
network-on-chip with priority preemptive virtual channel arbitration. In 2011 Design, Automation & Test in
Europe (pp. 1–6). IEEE.

Jain, L., Al-Hashimi, B., Gaur, M. S., Laxmi, V., & Narayanan, A. (2007, April). NIRGAM: a simulator for NoC
interconnect routing and application modeling. In Design, Automation and Test in Europe Conference (pp. 16–20).

Janarthanan, A. (2008). Networks-on-chip based high performance communication architectures for FPGAs
(Doctoral dissertation, University of Cincinnati).

Keist, A., Bunton, B., Donovan, J., & Black, D. C. (2010). SystemC: From the Ground Up (2nd ed.). Springer.

Korotkyi, I., & Lysenko, O. (2009). Метод моделирования реконфигурируемых сетей на кристалле
[Reconfigurable networks-on-chip modelling method]. Вестник НТУУ «КПИ» Серия: Информатика,
управление и вычислительная техника, 51, 60–66.

Korotkyi, I., & Lysenko, O. (2011, December). Hardware implementation of link aggregation in networks-
on-chip. In 2011 World Congress on Information and Communication Technologies (WICT) (pp. 1112–1117).
IEEE. doi:10.1109/WICT.2011.6141403

Lv, M., Guo, Y., Guan, N., & Deng, Q. (2008, December). RTNoC: a simulation tool for real-time communication
scheduling on networks-on-chips. In 2008 International Conference on Computer Science and Software
Engineering (Vol. 4, pp. 102–105). IEEE. doi:10.1109/CSSE.2008.275

Mahadevan, S., Virk, K., & Madsen, J. (2007). ARTS: A SystemC-based framework for multiprocessor systems-
on-chip modelling. Design Automation for Embedded Systems, 11(4), 285–311. doi:10.1007/s10617-007-9007-6

Marcon, C. A., Palma, J. C., Calazans, N. L., Moraes, F. G., Susin, A. A., & Reis, R. (2007). Modeling the
traffic effect for the application cores mapping problem onto nocs. In Vlsi-Soc: From Systems To Silicon (pp.
179-194). Springer US. doi:10.1007/978-0-387-73661-7_12

Marculescu, R., Ogras, U. Y., Peh, L. S., Jerger, N. E., & Hoskote, Y. (2009). Outstanding research problems in
NoC design: System, microarchitecture, and circuit perspectives. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 28(1), 3–21. doi:10.1109/TCAD.2008.2010691

Mellanox Products. (2016). TILE-Gx72 Processor. Retrieved June, 26, 2016, from http://www.mellanox.com/
page/products_dyn?product_family=238

Mullins, R., West, A., & Moore, S. (2006, January). The design and implementation of a low-latency on-chip
network. In Proceedings of the 2006 Asia and South Pacific Design Automation Conference (pp. 164-169).
IEEE Press.

Netmaker Wiki. (2016). Netmaker: Fully-synthesizable parameterized NoC implementations library Retrieved
June, 26, 2016, from http://www-dyn.cl.cam.ac.uk/~rdm34/wiki

Ogras, U. Y., Marculescu, R., Lee, H. G., Choudhary, P., Marculescu, D., Kaufman, M., & Nelson, P. (2007).
Challenges and promising results in NoC prototyping using FPGAs. IEEE Micro, 27(5), 86–95. doi:10.1109/
MM.2007.4378786

Palma, J. C. S., Marcon, C. A. M., Moraes, F. G., Calazans, N. L., Reis, R. A., & Susin, A. A. (2005, September).
Mapping embedded systems onto NoCs: the traffic effect on dynamic energy estimation. In Proceedings of the 18th
annual symposium on Integrated circuits and system design (pp. 196-201). ACM. doi:10.1145/1081081.1081131

Romanov, A. Yu. (2016). Исследование сетей на кристалле с топологией mesh с помощью модели
NoCTweak [The research of network-on-chip with mesh topology by using NoCTweak model]. Información
Tecnológica, 7(22), 498–503.

Romanov, A. Y., Ivannikov, A. D., & Romanova, I. I. (2016, April). Simulation and synthesis of networks-on-chip
by using NoCSimp HDL library. In 2016 IEEE 36th International Conference on Electronics and Nanotechnology
(ELNANO) (pp. 300–303). IEEE. doi:10.1109/ELNANO.2016.7493072

http://dx.doi.org/10.1109/WICT.2011.6141403
http://dx.doi.org/10.1109/CSSE.2008.275
http://dx.doi.org/10.1007/s10617-007-9007-6
http://dx.doi.org/10.1007/978-0-387-73661-7_12
http://dx.doi.org/10.1109/TCAD.2008.2010691
http://www.mellanox.com/page/products_dyn?product_family=238
http://www.mellanox.com/page/products_dyn?product_family=238
http://www-dyn.cl.cam.ac.uk/~rdm34/wiki
http://dx.doi.org/10.1109/MM.2007.4378786
http://dx.doi.org/10.1109/MM.2007.4378786
http://dx.doi.org/10.1145/1081081.1081131
http://dx.doi.org/10.1109/ELNANO.2016.7493072

International Journal of Embedded and Real-Time Communication Systems
Volume 9 • Issue 2 • July-December 2018

31

Aleksandr Romanov, an associate professor of National Research University Higher School of Economics (dept.
Moscow Institute of Electronics and Mathematics), a PhD (the thesis: Automation Methods of Networks-on-Chip
development based on the Quasi-Optimal Topologies). A university teacher of the following subjects: “SoC
development”, “Informatics and Programming”, “System Design of Electronic Devices”. Research interests: SoC,
NoC, parallel computing and neural networks.

Alexander Ivannikov is a Professor at the Institute for Design Problems in Microelectronics of Russian Academy
of Sciences.

Romanov, A.Yu., Tumkovskij, S.R., & Ivanova, G.A. (2015). Моделирование сетей на кристалле на основе
регулярных и квазиоптимальных топологий с помощью симулятора OCNS [Simulation of networks-
on-chip based on regular and quasi-optimal topologies by using OCNS simulator]. Вестник Рязанского
государственного радиотехнического университета, 2(52), 61–66.

Romanov, O., & Lysenko, O. (2012, June). The comparative analysis of the efficiency of regular and pseudo-
optimal topologies of networks-on-chip based on Netmaker. In 2012 Mediterranean Conference on Embedded
Computing (MECO) (pp. 13–16).

Saifhashemi, A., & Pedram, H. (2003, June). Verilog HDL, powered by PLI: a suitable framework for describing
and modeling asynchronous circuits at all levels of abstraction. In Proceedings of the 40th annual Design
Automation Conference (pp. 330–333). ACM. doi:10.1145/775832.775917

Soteriou, V., Wang, H., & Peh, L. (2006, September). A statistical traffic model for on-chip interconnection
networks. In 14th IEEE International Symposium on Modeling, Analysis, and Simulation (pp. 104–116). IEEE.
doi:10.1109/MASCOTS.2006.9

Sutherland, S. (2004). Integrating systemc models with verilog and systemverilog models using the systemverilog
direct programming interface. SNUG Europe.

Suvorova, E., Matveeva, N., Korobkov, I., Shamshin, A., & Sheynin, Y. (2015) Virtual Prototyping in SpaceFibre
System-on-Chip Design. In DVCON Euripe – Design and Verification conference and exibition.

Tran, A. T. (2012). On-Chip Network Designs for Many-Core Computational Platforms [Doctoral dissertation].
University of California Davis.

Truong, D. N., Cheng, W. H., Mohsenin, T., Yu, Z., Jacobson, A. T., Landge, G., & Work, E. W. et al. (2009). A
167-processor computational platform in 65 nm CMOS. IEEE Journal of Solid-State Circuits, 44(4), 1130–1144.
doi:10.1109/JSSC.2009.2013772

Varatkar, G. V., & Marculescu, R. (2004). On-chip traffic modeling and synthesis for MPEG-2 video applications.
IEEE Transactions on very large scale integration (VLSI) systems, 12(1), 108–119.

ZiiLABS unveils 100-Core ZMS-40 processor: Double the performance, half the power consumption (2012,
January 5). Retrieved June, 26, 2016, from http://phys.org/news/2012-01-ziilabs-unveilscore-zms-processor.html

http://dx.doi.org/10.1145/775832.775917
http://dx.doi.org/10.1109/MASCOTS.2006.9
http://dx.doi.org/10.1109/JSSC.2009.2013772
http://phys.org/news/2012-01-ziilabs-unveilscore-zms-processor.html

